Computer Science Technical Reports
CS at VT

An Input Normal Form Homotopy for the L2 Optimal Model Order Reduction Problem

Ge, Yuzhen and Collins, Emmanuel G. and Watson, Layne T. and Davis, L. D. (1993) An Input Normal Form Homotopy for the L2 Optimal Model Order Reduction Problem. Technical Report TR-93-16, Computer Science, Virginia Polytechnic Institute and State University.

Full text available as:
PDF - Requires Adobe Acrobat Reader or other PDF viewer.
TR-93-16.pdf (566939)


In control system analysis and design, finding a reduced order model, optimal in the L-squared sense, to a given system model is a fundamental problem. The problem is very difficult without the global convergence of homotopy methods, and a homotopy based approach has been proposed. The issues are the number of degrees of freedom, the well posedness of the finite dimensional optimization problem, and the numerical robustness of the resulting homotopy algorithm. A homotopy algorithm based on the input normal form characterization of the reduced order model is developed here and is compared with the homotopy algorithms based on Hyland and Bernstein's optimal projection equations. The main conclusions are that the input normal form algorithm can be very efficient, but can also be very ill conditioned or even fail.

Item Type:Departmental Technical Report
Subjects:Computer Science > Historical Collection(Till Dec 2001)
ID Code:358
Deposited By:User autouser
Deposited On:05 December 2001