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Abstract——In control system analysis and design, finding a reduced order model, optimal in the
L? sense, to a given system model is a fundamental problem. The problem is very dificult without the
global convergence of hamotopy metheds, and a homotopy based approach has been proposed. The
issues are the number of degrees of freedom, the well posedness of the finite dimensional optimization
problem, and the numerical robustness of the resulting homeotopy algorithm. A homotopy algorithm
based on the input normal form characterization of the reduced order model iz developed here and
is compared with the homotopy algorithms based on Hyland and Bernstein’s aptimal projection
equations. The main conclusions are that the input normai form algorithm can be very efficient, but
can also be very ill conditioned or even fail,

Index Terms—homotopy method, input normal form, optimal projection equations, parameter

optimization, reduced order model problem.

1. INTRODUCTION.

The L? optimal model reduction problem, i.e., the problem of approximating a higher order
dynamical system by a lower order one so that a quadratic model reduction criterion is minimized,
is of significant importance and is under intense study. Several earlier attempts to apply homotopy
methods to the L2 optimal model order reduction problem were not entirely satisfactory. Richter
and Collins [9]-[11] devised a homotopy approach which only estimated certain crucial partial
derivatives and empldyed relatively crude curve tracking techniques. Zigié, Bernstein, Collins,
Richter, and Watson [14]-[16] formulated the problem so that numerical linear algebra technigues
could be used to explicitly calculate partial derivatives, and employed sophisticated homotopy curve
tracking algorithms, but the number of variables made large problems intractable. We propose here
a method to reduce the dimension of the homotopy map so that large problems are computationally
feasible. Alternative numerical algorithms can be found in 2.

The problem can be formulated as: given the asymptotically stable, controllable, observable,
time invariant, continuous time system

&(t) = Ax(t) + Buft),
y(t) = Cx(t),
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where 4 € R™*" B ¢ R*X™m (' ¢ R™™, the goal is to find a reduced order model

Zm(t) = Am @m(t) + By u(t),

Im(2) = Co (), )

where 4,, € R"»Xmm B c Rnm XM Cp € RI¥"m  n.. < 1 which minimizes the cost function
J(Am; Bin, Cm) = Jm B (g~ 4 )T B(y ~ yn)], (3)

where the input u(t) is white noise with symmetric and positive definite intensity V and R is a
symmetric and positive definite weighting matrix.

The optimal projection equations of Hyland and Bernstein [5], [6], described in [5], are basis
independent and correspond to the maximum number of degrees of freedom one could plausibly
use. Richter and Collins [11] use this maximum number, and Zigi¢ [14] reduced it somewhat. At
the other extreme, the minimum number of degrees of freedom corresponds to the input normal
form described in Section II, and developed into a probability-one homotopy algorithm in Sections
II and IV. Comparisons between the input normal form and the optimal projection equations
approach are given in Section V.

II. INPUT NORMAL FORM FORMULATION.

The following theorem is needed to present the homotopy method for the input normal form.

THEOREM 1 [7]. Suppose A,, is asymptotically stable. Then for every minimal (A, B, Com ),

i.e., (@m,ém) is controllable and (ﬁm,C_'m) is observable, there ezist a similarity transformation

U and a positive definite matriz @ = diag(wi,- -+, wy,, ) such that A,, = U~14,,U y B =U'B,,
and Cr, = Cp U satisfy

0= Anm+ AL + B, VBT,

4

0= ALQ+ QA + CTRC,,. ®)
In addition,

1
(Am)ii = “E(BmVBg;)w
(CAECn),
(BmVBL),’ (5
(A ) _ (CE‘ERCm)z] - wJ (‘BmV‘BE‘l)
mpas =

& Wi — wy

Wy =

&

3 if Wy ;é Wi,

DeriniTION 1. The triple (Am, Bm,Cy,) satisfying (4) or (5) is said to be in input normal
form.

Note that generically w; # wj for ¢ # 7, and this is assumed henceforth. Under the assumption
that a solution (Am, Bm, Cr,) in input normal form is sought, the only independent variables are
By and Cy,, and in this case the domain is

{(Am, B, Cr) ¢ Ay, is stable, (Am; Bm,Cr) is minimal and in input normal form}.
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Assuming (4,,, Bm,Cr,) is in input normal form, the cost function (3) can be written as
J(Am, Bm,Crm) = tr (QR)
where () is a symmetric and positive definite matrix satisfying
AG+GAT +7 =0,
and

V =

CTRC —»C’TRCm) - (BVBT BVBEL)

- A 0 .
A“(o Am)’ R—(uc;—ch CL RCy

= ( @1 Qu)
QL @)’
where Q1 € R"*™, Q12 € R™*"™, and @ € R ¥"m,
The goal of minimizing (6) under the constraints (4) and (7) leads to the Lagrangian

B.VBT B,VBL

@ can be written as

L(Ams Biny Gy 0, Q) = t2[QR + (Am + AL + B, VBI) M,
+ (AZQ + QA + CERC,) M, + (AQ + QAT + V) P],
where the symmet:iic matrices M,, M., and P are Lagrange multipliers.
Setting 8L/0Q} = 0 gives
ATP+PA+R=0,

where P is symmetric positive definite and can be partitioned as
5 P Py )
P=1 x =< ].
(P L P
AL/ =0 and LB A, = 0 yield

0=2M,+20M, +2(P5Q12 + @2}, 0= (AnM,),, 1<i< np,.

i

A straightforward calculation shows

9L o(PLB + BBV +2M.B,,,
8B,

oL x N :
e 2R(Cn@2 = CQ12) + 2RCp, M,

THEOREM 2 [3]. The matrices M, and M, in (12) satisfy

M, = —(-;—S + QM,),

1 &

(MO)H = "m Z(Am)gj (Mo)ja"

i j=1
JF

_ (8)i = (9);i

(Mo)z'j—_ Q(Ct)j'—wi) »

ifwj 75 Wiy
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where o o
§ =2(PL01 + PQs). (14)

IIl. A HOMOTOPY APPROACH BASED ON THE INPUT NORMAL FORM.

A homotopy approach based on the input normal form is now described. Let Ay, By, Cy ,
Ry, and Vs denote 4, B, C, R, and V in the above and define

A()\) = Ag + /\(A_f — As),
B(A) = Bo + A(B; — By),
C(.}\) = Cy + A(C_f - C{)),

R(A) = Ro + A(B; — Ro), 5
V(N = Vo + (Y} - Vo).

For brevity, A(A), B(A), C(A), V(}), and R(A) will be denoted by A, B, C, V, and R respectively
in the following. Let

oL

Hp, (0,)) = 55~ = 2(P,B + BB,V +2M. BV,
oL x ~
He, (6,2)= Yo = 2R(CmQ2 - CQIZ) +2RC M,
where
0= Vec (By,)
~ \ Vec (Cr)

denotes the independent variables By, and Cp, M, and M, satisfy (13), and G and P satisfy
respectively (7) and (10) with partitioned forms (9) and (11). Vec(P) for a matrix P € RPX? is
the concatenation of its columns:

P,
Py
Vec(P)=| . | € RP¥9.
P,
The probability-one homotopy map is defined as

\_ f Vec [HB,.(0, )]
P8, 2) = (Vec [Hc. (G,A)]) ’ (16)

and its Jacobiar matrix is
Dp(0,2) = (—Dap(ga A)rDAp(ga’\))' (17)

The vector (Vec (Ag), Vec (By), Vec (Co), Vec (Vp), Vec (Ro)) plays the role of the parameter vec-
tor in the probability-one homotopy theory [13]. Define

fip, (PO, M) = 2(PLDB + BV B,V + 24D B,.V,
E-C’"(Q'(j)’ Mf(’j)) = QR(Cngj) - GQ"%)) + 2RCmM(£j)a

4



where the superscript () means 8/06;; Y) = g—g:,. Using the above definitions, we have for
8; = (Bn),,

Obe_ _ iy, (B9, M) +2(B, + M) EGDY,
O Bm)m (18)
OHo, & sxen s
L+ () (N,
a(Bm)k'l Crm (Q y 4y )
and for 8; = (Cm)ki,
0Hg,

NCo i - ™ ¢ (19)

where E(*) is a matrix of the appropriate dimension whose only nonzero element is e = 1. P
and QU) can be obtained by solving the Lyapunov equations

0= AN + AGD + GWAT 4 GATH) 4 T,

20
0= ATWp 4 ATPW P4 PAD 1 B, (20)

Similarly for A, using a dot to denote 8/82,

oH . I PR . ~ .
3:\% = Hp, (P, M.) + 2P}, (BV + BV) + 2(B; + M.) BV,
(21)

H N L. . v = H NA
3a§m = He,, (@, M,) + 2RC (Q2 + M) — 2(RC + RC) s,

where P and Q are obtained by solving the Lyapunov equations
0=AQ+AQ+ QAT+ QAT +V,
0=ATP+ ATP 4+ PA+ PA+ R.

IV. NUMERICAL ALGORITHM FOR INPUT NORMAL FORM HOMOTOPY.

The initial point (6,A) = (65,0) = ((Bn)o,(Cm)o,0) is chosen so that the triple ((Am)o,
(Bm)o, (Cim)o) is in input normal form and satisfies p(06,0) = 0. In the following algorithm
Vo = V; and Ry = Ry are used.

THEOREM 3 [8]. Suppose A is asymptotically stable. Then for every minimal (4, B,C),
i.e., (fi,ﬁ) s controllable and (ﬁ, C’) is observable, there exist a similarity transformation T
and a positive definite matriz A = diag (di,dz, -+, dy) with d; > diyq such that A = T-1AT,
B=T71B, and C = CT satisfy

0= AA+ AAT + BV BT,
0=ATA+AA+CTRC.



DEFINITION 2. The triple (A, B,C) in the above theorem is balanced.

According to Moore [8], under certain conditions, the leading principal 7, X n,, block of A,
the leading principal n,, X m block of B, and the leading principal [ X n,, block of € in balanced
form are good approximations to the reduced order model. This suggests that the initial point
(80, 0) be chosen as follows:

1) Transform the given triple (A 1 85,Cr) to balanced form (Ay, By, Cy).
2) Partition (Ay, By, Ch) as

_nmf (A Ap _ i Bl) -
Ap = Ay Am )’ By = B, ) Cv= (C1 Cy).

3) (Ag, By, Cp) is chosen as

A 0 B
GO I () e

4) The initial point for the reduced order model is chosen as

g = [ Vec (Bu)o\ _ [ Vec By
7 A\ Vec (Cdo ) ~ \ Vec )

and (Am)o = A11 by construction. :
5} Transform the initial point ((;{m)g,(Bm)o,(Cm)o) to input normal form so that the initial
reduced order model is

((Am)ﬂa (-Bm)o, (Cm)ﬂ) = (Tnl (A~m)0 T, T_l (Em)ﬂg (ém)o T)
The initial point for the homotopy map is then (60, 0), where

o= (Vo)

(In general, the truncation to obtain the approximate reduced order model should be based on the
component costs instead of on the sizes of the balanced gains d; as done above [12]. This explains
why in some cases the above algorithm for choosing the initial points did not lead to a reduced
order model with a minimal cost.)
Once the initial point is chosen, the rest of the computation is as follows:

1) Set A:= 0, 0 := 4.

2) Calculate A, from (5), R, ¥, and compute Q and P according to (7) and (10).

3) Evaluate § from (14) and M, and M, according to (13).

4) Evaluate the homotopy map p(4, A) in (16) and Dp(8,2) in (17).

5) Predict the next point Z(® = (69, \(9) on the curve 1.

6) For k:=0,1,2,--- until convergence do

z(k+1) [Dp(Z(k))] ?p(Z(k)),
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where [J'Jp(Z)]Jr is the Moore-Penrose inverse of Dp(Z). Let (81, ) = Jim AUN

7) If A < 1, then set # ;= 61, A := A1, and go to step 2).
8) If A; > 1, compute the solution 4 at A = 1. Ap, is then obtained from (5)-

An alternative strategy for choosing an initial point is as follows:
1) Modify Ay to A = e1] + e3 Ay, where ¢; < 0 and ¢ > 0.
1) Transform (A}, By, Cy) to balanced form and choose (Ag, B, Cy) as before.
3) Compute the initial reduced order model ((Am)o, (Bm)os (Cm)o) from the triple (A}, Bg, Cp)
as before.
When ¢; = 0, ¢; = 1, this strategy reduces to the previous one. For some problems, our
numerical experiments show that HOMPACK reaches A > 1 in fewer steps with ¢; # 0 than with
¢; = 0. A modification to the homotopy map p(8, A) in (16) is

p1(8,A) = Ap(8, ) + (1 = A)(6 — bo),

where 6y denotes the initial value of # at A = 0. For some problems this homotopy map can be
more efficient than the one in (16), while in other cases it can be less efficient.
V. CoMPARISONS AND DISCUSSIONS.

The input normal form algorithm developed here was applied to Systems 1 through 9 in [15}.
It successfully solved all of the problems except the following system:

0 1 0 0 0 0
-2 -002 1 o001 {10 N
A=177% o | B=|g o] c=(@ 10 0).
0.1 0.00L —0.1 -0.001 01

For this problem, with the input normal form, when n, = 2, 3, two of the initial ws are
approximately the same, which leads to a significant numerical error in computing M, and the
numerical failure of the homotopy algorithm. Therefore this technique for choosing initial points
fails, and some modification to the algorithm is needed to avoid this kind of ill conditioning.
However, it is not at all clear how to systematically avoid nearly equal ws, and this remains an
open question. Tt can be shown that the solutions, obtained by the optimal projection equation
approach, also have close ws, which implies that changing the strategy for choosing initial points
will not suffice for this example.

For a given order ., the set

N = {(An; B, Cm) : An is stable, (Am, Bm,Crm) is minimal and in input normal form }

is an open set. Therefore J(An, By, Cr) may not attain ¢ minimum value over this open set,
e.g., if the optimal model of order n,, cannot be represented in input normal form, then J achieves
its minimum on the boundary of N. The homotopy then, embodying the input normal form
parametrization, must become more and more ill conditioned as the zero curve approaches the
boundary of N. The starting point, form of homotopy map, and numerical algorithms used are
irrelevant - the computation must eventually fail close enough to the boundary of /V. Note that,
contrary to what a minimal parametrization tacitly assumes, J need not attain ¢ minimum value
with & particular structure for (Am, Bum,Cm).



Table 1 gives the comparison of the optimal projection equations approach and the input
normal form formulation for System 8 (4th order) and System 9 (7th order) in [15]. System 8 [8]
is given by

0 0
0 0

A=| .| B= , C=(50 15 1 0).
-5

O O o

1 0
0 1
0 0
0 -79 -3

9 3 -5

System 9 [4] is given by

—6.2036  15.054 -9.8726 —376.58 25132  -162.24 66.827

0.53  -2.0176  1.4363 0 0 0 0
16.846  25.079  —43.555 0 0 0 0
A= 3774 80449 16283 57.998 —65.514 68579 15757 ,
0 0 0 107.25  —118.05 0 0
0.36992 —0.14445 —0.26303 —0.64719 049947 -0.21133 0
0 0 0 0 0 376.99 0

89.353 0

376.99 0

0 0
0000GOCT1o0
B=| o0 o |, C’::( )
o 0 006 000GO0 1

0 021133
0 0

The data in Table 1 is typical of that for all systems tested. The time is CPU time on a DECstation
5000/200, and the steps are function evalvations along the homotopy zero curve, not the number
of 2)~7) loop iterations, which is usually much smaller.

TABLE 1. COMPARISON OF METHODS.

System 8
Optimal projection input normal form
T # steps time (sec) # steps time (sec)
1 31 .6 10 0.20
2 59 2.7 18 0.50
3 89 14. 10 0.65
System 9
2 575 88 123 8.0
3 601 223 6 1.3
4 671 518 6 1.9

The optimal projection equations homotopy successfully solved all of the test problems, but
Table 1, containing typical results, shows that the input normal form homotopy is much more
efficient. However, when the input normal form is used, some restrictions are imposed on the
structure of the triple (A, By, Cpn), potentially resulting in ill conditioning. For the input normal
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form formulation, ill conditioning occurs if two diagonal elements of Q) in (4) are approximately
the same. In other words, let @m and P, be the controllability and observability Gramians of the
system represented by (A, By, Cyp ), and let

Qm = WEIWT, P,=wTow-!

where ¥ is diagonal and is the controllability and observability Gramian in balanced form. If
two diagonal elements of ¥ are approximately the same, then ill conditioning occurs. For the
example that input normal form fails, when n,, = 2, 3, both the initial point chosen using the
given strategy and the solution obtained in [14]-[16] are ill conditioned, i.e., two diagonal elements
of {2 are approximately the same. Hence the input normal form method will not be able to solve
this problemn; this has nothing to do with the initial points chosen or the particular homotopy maps
used, but rather is an inherent failure of the input normal form parametrization.
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