Computer Science Technical Reports
CS at VT

An SMP Soft Classification Algorithm for Remote Sensing

Phillips, Rhonda D. and Watson, Layne T. and Easterling, David R. and Wynne, Randolph H. (2012) An SMP Soft Classification Algorithm for Remote Sensing. Technical Report TR-12-22, Computer Science, Virginia Polytechnic Institute and State University.

Full text available as:
PDF - Requires Adobe Acrobat Reader or other PDF viewer.
pcigscrCG12.pdf (1826305)


This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification containing inherently more information than a comparable hard classification at an increased computational cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel algorithm development work here. Experimental results of applying parallel CIGSCR to an image with approximately 10^8 pixels and six bands demonstrate superlinear speedup. A soft two class classification is generated in just over four minutes using 32 processors.

Item Type:Departmental Technical Report
Keywords:remote sensing, semisupervised clustering, classification, iterative guided spectral class rejection (IGSCR)
Subjects:Computer Science > Numerical Analysis
Computer Science > Parallel Computation
Computer Science > Algorithms and Data Structure
ID Code:1217
Deposited By:Administrator, Eprints
Deposited On:27 February 2013