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Abstract– This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative

guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote

sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification

containing inherently more information than a comparable hard classification at an increased computational

cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel

algorithm development work here. Experimental results of applying parallel CIGSCR to an image with

approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is

generated in just over four minutes using 32 processors.
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1. Introduction

The land cover classification of remote sensing images is fundamental to many scientific problems but is
unfortunately laborious and computationally expensive. Land cover classifications are laborious because they either
require hand labeling a set of training data prior to classification or manually labeling clusters after classification.
The identification of good training data is difficult becauseeach class should have within class similarity and
dissimilarity to other classes. Furthermore, the set of training classes needs to span the range of data contained in
the image to be classified. Techniques such as clustering canautomatically find good training classes with these
properties, but labeling these clusters with land cover class labels is nontrivial. Labeling can be further complicated
if a particular cluster is composed of multiple classes. Supervised classifications that use training data can be
computationally efficient as the same operation is applied to each pixel within an image. However, remote sensing
images often contain billions of pixels, each described using tens or hundreds of bands, making classification
computationally expensive. Partially supervised and unsupervised methods that make use of clustering algorithms
are even more computationally expensive.

Partially supervised classification methods that use clustering and statistical methods to label clusters save
human time by lessening training data requirements. These methods combine the automation of clustering with
automatic labeling methods that leverage statistical tests and a limited amount of training data. This limited
training data can be smaller, lessening the training burden, and even further, the training class requirements
are substantially reduced. The classes are no longer required to have within class similarity and between class
dissimilarity as sub-clusters address those issues. Similarly, the issue associated with having training data that is
entirely representative of the image can be mitigated through clustering and labeling. This reduction in analyst
burden is offset by an increase in computational requirements as clustering requires more processing and computer
memory resources. The computation requirements increase even more when soft clustering and classification is
required.

Soft clustering and classification methods are required to effectively model pixels or samples that can be
assigned to multiple classes either because of class assignment uncertainty or multiple class memberships. Sensors
with low spatial resolution result in pixels that can reasonably contain multiple land cover classes. Additionally,
high spectral resolution (hyperspectral) image pixels areoften modeled as mixtures of pure spectral elements or
classes. Mixed membership and uncertainty are also incorporated in soft clustering methods, where each sample
has partial membership in multiple clusters. These methodsallow more flexibility in finding clusters at the
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boundary between land cover classes. Soft clusters and softendmembers are frequently used in hyperspectral
image classification.

Methods for endmember identification tend to be either manually intensive or require parameter tuning that
can be just as manually intensive to achieve good classification results. However, the continuous iterative guided
spectral class rejection (CIGSCR) algorithm leverages soft clustering to automatically find good training spectral
classes/endmembers using a limited set of training data. CIGSCR is comparably insensitive to parameters. This
is achieved through a series of clustering iterations that automatically evaluate and label soft clusters and then
further refine them. This clustering iteration is computationally expensive, but can leverage parallel architectures
to reduce execution times. In order to reduce the execution time required to run the highly automated CIGSCR
algorithm, this paper introduces a parallel version. The next section outlines prior work that indicates CIGSCR is
a good candidate for parallel speedup and useful to the remote sensing community. Section 3 describes CIGSCR,
and Section 4 describes the parallel algorithm. Section 5 includes experimental results and discussion, and Section
6 concludes the paper.

2. Background

Partially supervised classification methods leverage the automation of clustering to overcome challenges in
training data collection. For example, in hyperspectral image classification with a large number of spectral
dimensions, clustering can mitigate the Hughes’ phenomenon, or classification overfitting (Shahshahani and
Landgrebe, 1994). Additionally, unsupervised spectral class formation can locate missing spectral classes (Mantero
et al., 2005), and unsupervised approaches can be used to locate all classes when training data is only present
for one class of interest (Gomez-Chova et al., 2004, Jeon andLandgrebe, 1999, Sanchez-Hernandez et al.,
2007). These techniques proved to be suitable for the identification of one class of interest using supervised
classification, with the advantage of allowing an analyst tofocus training resources on only the class of interest
(Sanchez-Hernandez et. al., 2007). In some cases, spectralclass training data is unavailable for some images,
but exists for similar images/areas of interest such as multiple images taken of the same scene at different times.
Several partially supervised spectral class identification approaches are proposed to leverage an existing training
data set (Rajan et al., 2006, Rajan et al., 2008, Cossu et al.,2005, Bruzzone and Prieto, 2001).

Partially supervised methods are also used to divide the land cover classes identified in the training data into
spectral classes that are suitable for classification. Perhaps one of the first such algorithms is described in (Fleming
et al., 1975). Clustering is used to define spectral classes,and clusters are manually analyzed using a variety
of statistical methods to determine the spectral classes tobe used for classification. Guided clustering applies a
clustering algorithm directly to the training data to identify spectral classes (Bauer et al., 1994). This method does
not address the possibility that spectral classes that are present in the image may not be well represented by the
training data. The iterative guided spectral class rejection (IGSCR) classification method (Wayman et al., 2001,
Musy et al., 2006, Phillips et al., 2007) addresses this issue by clustering the entire image. The clusters are labeled
using a statistical test that selects the land cover class that best describes the data in each cluster. If a cluster is
confused (contains multiple classes), it is refined in subsequent iterations. Due to its high accuracy and automation,
IGSCR is a frequently used partially supervised classification method in the remote sensing community (Jiang
et al., 2004, Kelly et al., 2004, Sivanpillai et al., 2005, Wynne et al., 2007). Unlike the previously mentioned
algorithms that leverage hard clustering algorithms and are therefore constrained to locating hard clusters, CIGSCR
uses soft clustering. CIGSCR can locate more spectral classes (especially at land cover class boundaries) than
IGSCR and often produces more accurate classifications (Phillips et al., 2012).

Partially supervised classification methods that leverageclustering are good candidates for parallelization as
many parallel clustering algorithms exist. Unfortunately, few remote sensing classification algorithms have been
implemented in parallel. Typical clustering algorithms that are used for remote sensing classification such as
K-means, fuzzyK-means (a soft version ofK-means), and ISODATA have parallel counterparts (Dhillon and
Modha, 2002, Dhodhi et al., 1999, Kwok et al., 2002). A parallel version of IGSCR incorporates parallelK-means
to achieve superlinear parallel speedup (Phillips et al., 2007). As CIGSCR is similar to IGSCR and built on similar
parallel algorithms, a parallel version of CIGSCR should achieve similarly good parallel speedup. The next section
describes the CIGSCR classification algorithm.

3. Continuous IGSCR

CIGSCR uses a soft clustering algorithm to locate soft clusters within an image, and then applies a statistical
test to each cluster in order to assign a land cover class label. CIGSCR begins by applying a soft clustering
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algorithm to all of the pixels in a particular image, formingsoft clusters. Each pixel has a positive probability
of belonging to each cluster, and the sum of one pixel’s probabilities across all clusters equals one. In the
hard clustering case, the clusters represent a group of mathematically similar pixels, and the cluster mean is
representative of those pixels and of a spectral class within the image. The interpretation of soft clustering is that
cluster means are still representative of spectral classeswithin the image, and that pixels are mixtures of those
pure spectral classes. This may be a more accurate and realistic model of real image data. Once these clusters
are identified, they have to be associated to the dominant class within the cluster, determined to be the class with
the highest average probability of belonging to the cluster. This is determined using a set of labeled training data.
All training data have class labels, and all training data are assigned probabilities to each cluster. In this manner,
labeled training data from one class can be compared to training data from other classes for a specific cluster.

The test used to determine which clusters should be used for classification is a statistical hypothesis test.
The hypothesis test measures whether a particular class is significantly stronger in a particular cluster than other
classes. When hard cluster assignments are used, this test can use discrete probability distributions to model the
data. CIGSCR uses soft cluster assignments, so a statistical distribution that takes the range of possible cluster
assignment values (between 0 and 1) into account is necessary. The statistic used for the test for thecth class and
the jth cluster is

ẑ =

√
nc(wc,j − wj)

Swj

, (1)

whereẑ is assumed to be drawn from a normal distribution,nc is the number of training samples in thecth class,
wc,j is the average probability of samples in thecth class of belonging to thejth cluster,wj is the average
probability of all samples belonging to thejth cluster, andSwj

is the sample standard deviation of the probabilities
associated to thejth cluster. If P (Z > ẑ) < α, the dominant class (thecth class) within thejth cluster is
significant, and the cluster does not require further refinement. α is the type-I error.

The clusters that do not pass the test are subjected to refinement in an iterative procedure. As long as there are
clusters that fail the test, the cluster that had the lowestP (Z > ẑ) value is selected for splitting. The new cluster
means are selected to be the mean value of the dominant class within the cluster and the former mean value of
the cluster. All data are reassigned to the clusters, including the new cluster mean, and because the new cluster
mean was seeded using the information from one class, it is likely to be representative of that class. This iterative
process terminates when all clusters pass the test and all classes are represented by clusters, or a maximum number
of iterations is reached.

Using the soft clusters, a soft classification is produced called the iterative stacked (IS) classification. The
classification function for IS classification is

IS(x) = p(ci|x) =

K
∑

j=1

p(ci|kj , x)p(kj |x), (2)

wherep(kj |x) is the probability that a pixel belongs to clusterkj andp(ci|kj , x) = 1 if the kj th cluster is assigned
to the cith class and equals zero, otherwise. The statistics of theseclusters can also be used to train a supervised
classifier, such as the maximum likelihood decision rule assuming Gaussian data. This is called the decision rule
(DR) classification. The classification function for the DR classification is the same as the IS classification in (2),
but p(kj |x) is estimated usingp(x|kj , Uj, Σj) (using Bayes’ rule) and assumingkj is a normal distribution with
estimated meanUj and estimated covarianceΣj .

The full CIGSCR algorithm is listed below for completeness.

Algorithm CIGSCR
Input: X % 3-dimensional multispectral image
{(i, j, φ(i, j))} % training data: set of indices and class labels
Kinit % number of initial clusters
Kmax % maximum number of clusters
C % number of classes
ǫ % convergence threshold
α % Type-I error for one-sided hypothesis test
Output: DR % decision rule classification
IS % iterative stacked classification
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begin
% Initialization

Initialize cluster meansU along the the axis defined by the
mean plus or minus the standard deviation of the imageX ;
K := Kinit;

% Determine number of training samples per class
for c := 1 step 1 until C do
nc :=| φ−1(c) |;

% Begin Iteration
for iteration := Kinit step 1 until Kmax do

begin
w := 0; convergence := 1;
while convergence > ǫ do

begin
% Cluster Data

num := 0; denom := 0;
for i := 1 step 1 until rows do

for j := 1 step 1 until cols do
for k := 1 step 1 until K do

begin

ŵij,k :=
1/||X(ij) − U (k)||22

K
∑

l=1

1/||X(ij) − U (l)||22

;

% update sums for mean calculations.
num(k) := num(k) + ŵ2

ij,kX(ij);

denomk := denomk + ŵ2
ij,k;

end
% update cluster means
for k := 1 step 1 until K do

U (k) :=
num(k)

denomk
;

convergence := max
i,j,k

|wij,k − ŵij,k|;
w := ŵ;

end
% Determine Good Clusters

for k := 1 step 1 until K do
begin

for cl := 1 step 1 until C do

wcl,k :=

∑

i,j∈φ−1(cl)

wij,k

ncl
;

end
ck := argmax

c
wc,k;

swk :=

rows
∑

i=1

cols
∑

j=1

wij,k;

sswk :=

rows
∑

i=1

cols
∑

j=1

w2
ij,k;

wk :=
swk

rows ∗ cols
;
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swk
:=

√

√

√

√
sswk − sw2

k
rows ∗ cols

rows ∗ cols − 1
;

Ẑk :=

√
nc(wc,k − wk)

swk

;

end
if any class is not associated with a clusterthen

begin
c := first unassociated class;

k := argmax
k

wc,k

wck,k
;

K := K + 1;

U (K) =

∑

ij∈φ−1(c)

wij,kX(ij)

∑

ij∈φ−1(c)

wij,k

;

end
elseif (any(Ẑk < Z(α), k = 1, . . . , K) then

begin
k := argmink Ẑk;
K := K + 1;

U (K) =

∑

ij∈φ−1(ck)

wij,kX(ij)

∑

ij∈φ−1(ck)

wij,k

;

end
else

exit for loop;
end

end
for k := 1 step 1 until K do

begin
% initialize for covariance calcs.
Σk := 0;
denomk := 0;

end
% IS classification

for i := 1 step 1 until rows do
for j := 1 step 1 until cols do

begin
csum := 0;
for k := 1 step 1 until K do

if (Ẑk > Z(α)) then
csumck

:= csumck
+ wij,k;

for cl := 1 step 1 until C do

ISij,cl :=
csumcl

C
∑

k=1

csumk

;

% calculate covariance matrices
for k := 1 step 1 until K do

begin
Σk := Σk + wij,k
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·(X(ij) − U (k))(X(ij) − U (k))T ;

denomk := denomk + wij,k;

end
end

for k := 1 step 1 until K do
Σk := 1/denomk · Σk;

% DR classification
for i := 1 step 1 until rows do

for j := 1 step 1 until cols do
begin

csum := 0;

for k := 1 step 1 until K do

if (Ẑk > Z(α)) then
begin

p := 2e−
1
2 (X(ij)

−U(k))T Σ−1
k

(X(ij)
−U(k))

πB/2|Σk|
1
2

;

csumck
:= csumck

+ p;

else
csumck

:= 0;
end

for cl := 1 step 1 until C do

DRij,cl :=
csumcl

C
∑

k=1

csumk

;

end
end

4. Parallel CIGSCR

The shared memory parallel CIGSCR algorithm is similar to parallel IGSCR. Both algorithms rely on a
clustering algorithm based onK-means, and various parallel versions ofK-means run well in parallel. The other
expensive portions of both algorithms are the final classifications that assign each pixel to a class independently of
other pixels’ assignments. Because the assignment of each pixel is independent, this operation can be executed in
parallel.

Kmeans

IS
DR

Fig. 1. Proportion of time devoted to each major operation inCIGSCR using one processor.
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The most expensive part of CIGSCR (as shown in Figure 1) is thesoft clustering implemented as fuzzy
K-means. The execution time for fuzzyK-means, represented by a wedge in the pie chart in Figure 1, is
the execution time required for multiple iterations of the already iterative clustering algorithm. Each clustering
iteration involves the iterative (soft) assignment of eachpixel to the clusters and the recalculation of cluster centers
once the assignment is complete. The parallel version of fuzzy K-means performs the assignment of pixels to
clusters in parallel. The mean values of the clusters are updated based on the pixel assignments, requiring the
sum of pixel assignments to a cluster over all processors. This is implemented as a parallel reduction operation
(a sum). Additionally, the cluster significance test requires cluster statistics that can be computed using a parallel
sum reduction operation. A custom version of fuzzyK-means is implemented specifically for CIGSCR to tally
the sums necessary to calculateẑ for each cluster, making the calculation ofẑ efficient. Each computationally
expensive iteration of fuzzyK-means is implemented in parallel in this manner, and each iteration is followed
by the much less expensive cluster evaluation, which can also be performed in parallel by assigning different
processors to evaluate different clusters.

Once the clusters have been identified, two classifications are applied using those clusters. Both classifications,
like their counterparts in IGSCR, are applied to each pixel independently, making the classifications straightforward
to implement in parallel. The pixels are divided evenly among the processors for both classifications. For the DR
classification, the calculation ofΣj should be performed prior to classification. Pixels are thendivided among
processors to apply the DR classification. The parallel CIGSCR algorithm is given below.

Algorithm Parallel CIGSCR
Input: X % 3-dimensional multispectral image
{(i, j, φ(i, j))} % training data: set of indices and class labels
Kinit % number of initial clusters
Kmax % maximum number of clusters
C % number of classes
ǫ % convergence threshold
α % Type-I error for one-sided hypothesis test
Output: DR % decision rule classification
IS % iterative stacked classification

begin
% Initialization

Initialize cluster meansU in parallel along the the axis
defined by the mean plus or minus the standard deviation
of the imageX ;
K := Kinit;

% Determine number of training samples per class
for c := 1 step 1 until C do
nc :=| φ−1(c) |;

% Begin Iteration
for iteration := Kinit step 1 until Kmax do

begin
w := 0; convergence := 1;
while convergence > ǫ do

begin
% Cluster Data

num := 0; denom := 0;
private: i, j, k
shared: rows, cols, K,ŵ, w, X, U
reduction: (+, num, denom)
for i := 1 step 1 until rows fork CLUSTER
CLUSTER:

for j := 1 step 1 until cols do
for k := 1 step 1 until K do

begin
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ŵij,k :=
1/||X(ij) − U (k)||22

K
∑

l=1

1/||X(ij) − U (l)||22

;

% update sums for mean calculations.
num(k) := num(k) + ŵ2

ij,kX(ij);

denomk := denomk + ŵ2
ij,k;

end
join processes;
% update cluster means
private: k
shared: denom, num, U , K
for k := 1 step 1 until K fork UPDATE
UPDATE:

U (k) :=
num(k)

denomk
;

join processes;
convergence := max

i,j,k
|wij,k − ŵij,k|;

w := ŵ;
end

% Determine Good Clusters
private: i, j, k, cl
shared: rows, cols, C, K,w, w(·), w(·,·), sw(·)

, Ẑ,
sw, ssw, n, c
for k := 1 step 1 until K fork STAT
STAT:

begin
for cl := 1 step 1 until C do

wcl,k :=

∑

i,j∈φ−1(cl)

wij,k

ncl
;

ck := argmax
c

wc,k;

swk :=

rows
∑

i=1

cols
∑

j=1

wij,k;

sswk :=
rows
∑

i=1

cols
∑

j=1

w2
ij,k;

wk :=
swk

rows ∗ cols
;

swk
:=

√

√

√

√
sswk − sw2

k
rows ∗ cols

rows ∗ cols − 1
;

Ẑk :=

√
nc(wc,k − wk)

swk

;

end
join processes;
if any class is not associated with a clusterthen

begin
c := first unassociated class;

k := argmax
k

wc,k

wck,k
;

K := K + 1;
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U (K) =

∑

ij∈φ−1(c)

wij,kX(ij)

∑

ij∈φ−1(c)

wij,k

;

end
elseif (any(Ẑk < Z(α), k = 1, . . . , K) then

begin
k := argmink Ẑk;
K := K + 1;

U (K) =

∑

ij∈φ−1(ck)

wij,kX(ij)

∑

ij∈φ−1(ck)

wij,k

;

end
else

exit for loop;
end

end
for k := 1 step 1 until K do

begin
% initialize for covariance calcs.
Σk := 0;
denomk := 0;

end
% IS classification

private: i, j, k, cl, csum
shared: rows, cols, C, K,Ẑ, Z(α), IS, w, X , U , c
reduction: (+, Σ, denom)
for i := 1 step 1 until rows fork ISCLASS
ISCLASS:

for j := 1 step 1 until cols do
begin

csum := 0;
for k := 1 step 1 until K do

if (Ẑk > Z(α)) then
csumck

:= csumck
+ wij,k;

for cl := 1 step 1 until C do

ISij,cl :=
csumcl

C
∑

k=1

csumk

;

% calculate covariance matrices
for k := 1 step 1 until K do

begin
Σk := Σk + wij,k

·(X(ij) − U (k))(X(ij) − U (k))T ;
denomk := denomk + wij,k;

end
end

join processes;
for k := 1 step 1 until K do
Σk := 1/denomk · Σk;

% DR classification
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private: i, j, k, cl, csum, p
shared: rows, cols, C, K,Ẑ, Z(α), DR, Σ, X , U , c
for i := 1 step 1 until rows fork DRCLASS
DRCLASS:

for j := 1 step 1 until cols do
begin

csum := 0;
for k := 1 step 1 until K do

if (Ẑk > Z(α)) then
begin

p := 2e−
1
2 (X(ij)

−U(k))T Σ−1
k

(X(ij)
−U(k))

πB/2|Σk|
1
2

;

csumck
:= csumck

+ p;
else

csumck
:= 0;

end
for cl := 1 step 1 until C do

DRij,cl :=
csumcl

C
∑

k=1

csumk

;

end
join processes;

end

5. Experimental Results and Discussion

The classification algorithm is applied to two representative classification problems in order to demonstrate the
scalability of parallel CIGSCR. First, a two-class classification is applied to a multispectral image, where the
classes of interest are forest and nonforest. This image hasmany rows and columns (millions of pixels), but
only six bands. The second classification problem uses a hyperspectral image to determine land cover classes for
three species of pines and a nonpine class. This dataset has fewer rows and columns, but many more bands.
Additionally, the discrimination between spectrally similar pine classes requires many clusters. The first dataset is
less computationally expensive than the second dataset. Performance on a range of problem sizes can be inferred
by testing parallel CIGSCR on this set of problems. The algorithms described above were implemented using
Fortran 95, LAPACK (Linear Algebra PACKage), and OpenMP, and executed on a SunFire X4600 M2 with a total
of 64 GB of RAM (2 GB per core) and eight quad-core 2.0 GHz AMD Opteron Model 8356 processors.

5.1. Multispectral Classification Results

The first image classified using Parallel CIGSCR is a mosaicked Landsat Enhanced Thematic Mapper Plus
(ETM+) satellite image taken from Landsat Worldwide Reference System (WRS) path 17, row 34, located in
Virginia, USA, shown in Figure 2. This image contains approximately 108 pixels and six bands (six brightness
values per pixel). This image, hereafter referred to as Virginia17, was obtained on November 2, 2003 and consists
largely of forested, mountainous regions, and a few developed regions that are predominantly light blue and light
pink in Figure 2. Figure 2 is a three color representation of Virginia17 where the red color band in Figure 2
corresponds to the near infrared wavelength in Virginia17,the green color band in Figure 2 corresponds to the red
wavelength in Virginia17, and the blue color band in Figure 2corresponds to the green wavelength in Virginia17.

The training data for this image was created by the interpretation of point locations from a systematic, hexagonal
grid over Virginia Base Mapping Program (VBMP) true color digital orthophotographs. A two-class classification
was performed (forest/nonforest) using 25 initial clusters and a maximum of 30 clusters (30 clusters were used
in the final classifications). Theα value for the cluster test was 0.0001. Figures 3 and 4 containthe IS and
DR classification results, respectively. The serial version of CIGSCR was executed and compared to the parallel
version using up to 32 processors as shown in Table 1. The total amount of time required to run Parallel CIGSCR
on the test image using 32 processors is about four minutes (for an image with approximately108 pixels and six
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Fig. 2. Landsat ETM+ satellite image Virginia17.
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Fig. 3. CIGSCR IS (forest is green, nonforest is brown) classification of Virginia17.

bands). Also note that classification requires 891 seconds (or about 15 minutes) using eight processors. Many
modern desktop computers contain eight cores.

In order to measure parallel speedup, the serial execution time of CIGSCR was compared to the execution
times of Parallel CIGSCR using two through 32 processors. Parallel speedup forp processors is defined as the
serial execution time (using one processor) divided by the observed parallel execution time usingp processors.
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Fig. 4. CIGSCR DR (forest is green, nonforest is brown) classification of Virginia17.

Table 1

Parallel CIGSCR execution times in seconds—Virginia17.

no. processorsK-means IS DR Total
1 7467 516 528 8524
2 3013 244 243 3611
4 1510 138 117 1776
6 1007 89 77 1184
8 756 67 58 891

10 605 53 46 714
12 504 44 38 596
14 432 37 32 512
16 378 37 28 454
18 337 35 26 408
20 303 33 24 370
22 276 33 24 343
24 253 31 22 316
26 233 34 24 302
28 217 36 24 287
30 202 35 23 271
32 190 38 24 262

Ideal speedup forp processors isp, indicating thatp processors can evenly divide the work of one processor.
Observed speedup is rarely ideal as most parallel algorithms contain some serial sections, and even algorithms that
parallelize perfectly incur parallel overhead when implemented. Computed speedup results are shown in Figure 5.
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Table 2

Parallel CIGSCR execution times in seconds—ABpines.

no. processorsK-means IS DR Total
1 18630 20 316 18971
2 8677 10 159 8850
4 4046 5 79 4133
6 2624 3 53 2685
8 1912 2 41 1960

10 1508 2 33 1548
12 1242 2 28 1276
14 1059 1 25 1089
16 905 1 22 932
18 798 1 20 823
20 718 1 18 741
22 642 1 16 663
24 585 1 15 605
26 538 1 14 557
28 502 1 13 520
30 464 1 12 482
32 434 1 12 450
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Fig. 5. CIGSCR parallel speedup compared to execution time of serial IGSCR, Virginia17.

5.2. Hyperspectral Classification Results

The second image was collected using the airborne AVIRIS sensor over the Appomattox-Buckingham state
forest, hereafter referred to as ABpines and shown in Figure6. In situ surveys were conducted to acquire ground
truth for three different species of pines, loblolly pines,shortleaf pines, and Virginia pines. In addition to these
ground truth, known tree stand maps and a region growing algorithm were used to generate additional training
data. An “other” class was created using all of these data sources to encompass regions in the scene that did
not fall into the pine categories, namely deciduous forest and nonforest. The final training set has 5257 points
in loblolly, 439 points in shortleaf, 1920 in Virginia pines, and 7357 in other. The final CIGSCR classification
is shown in Figure 7. The CIGSCR parameters used to generate these results are 100 clusters andα = .0001.
Speedup is shown in Figure 8.
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Fig. 6. Landsat ETM+ satellite image, ABpines.

Fig. 7. Final CIGSCR classification, ABpines.

6. Discussion

This implementation of parallel CIGSCR efficiently uses a shared memory architecture to achieve better than
ideal parallel speedup. The measured speedup in Figures 5 and 8 is higher than ideal speedup and is called
superlinear speedup. Ideal speedup indicates that usingp processors instead of one should reduce the execution
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Fig. 8. CIGSCR parallel speedup compared to execution time of serial IGSCR, ABpines.

time by a factor ofp. Speedup that is better than ideal is caused by factors otherthan additional processors such
as memory. The SunFire X4600 M2 has a nonuniform memory access (NUMA) architecture, meaning that even
though there is global memory that is accessible from each processor, there are physical sections of memory that
are closest to each processor, which can affect memory access times. Furthermore, each processor has local cache
memory, and additional processors used for classification contribute additional cache memory.

In order to take advantage of nonuniform global memory and individual processors’ cache memory, it is
necessary to consider the physical data layout when implementing an algorithm. This consideration is mandatory
in distributed memory programming as data is manually divided and distributed across processors. One advantage
of shared memory programming is that consideration of data distribution is not required. However, using shared
memory effectively often requires understanding how the data is divided and placed into memory. In distributed
memory programming, this is explicit. On most shared memorysystems including the SunFire X4600, data is
physically stored closest to the processor that first accesses it. Good memory access requires that shared data
is accessed each time in code using the same data access patterns, and each process/local memory is bound
to a particular processor. The superlinear speedup achieved in this paper results from leveraging these coding
techniques. Namely, the parallel processes that fork for the CLUSTER, ISCLASS, AND DRCLASS loops access
X , IS, andDR the same way. Finally, in order to take full advantage of cache memory, all multidimensional data
such as the imageX is accessed in the order it is stored in memory.

Although superlinear speedup is desirable, it can obscure scalability issues. In order to determine if the
algorithm will scale beyond 32 processors, compare execution times onp processors to execution times for two
processors. The intuition behind this analysis is that two processors have more cache than one processor, and
therefore speedup is due to the increased processing power and not increased cache memory. Once the number of
processors used has enough cache to efficiently access and process the data, adding more cache does not decrease
execution times. The comparison of execution times to what is observed using two processors is shown in Figures
9 and 10 for the data sets Virginia17 and ABpines, respectively.

The parallel scalability (defined as the speedup forp processors with respect to two processors, divided by
p/2) of parallel CIGSCR depends on clustering scalability, andclustering scalability in turn depends on data size.
Notice in Figure 9 that scalability (compared to two processors) is ideal through 24 processors, but then tapers
off through 32 processors. However, scalability in Figure 10 is superideal (> 1) through 32 processors with no
indication of a dropoff. The main differences between thesetwo datasets is that ABpines corresponding to Figure
10 has many more bands and the resulting classification uses many more clusters. The increases the dimensionality
of both the input image,X , and the cluster memberships,w. Modest increases in either the number of input bands
or the number of clusters require additional memory. The ABpines classification problem requires large amounts
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Fig. 9. CIGSCR parallel speedup compared to execution time of two processors, Virginia17.
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Fig. 10. CIGSCR parallel speedup compared to execution timeof two processors, ABpines.

of RAM and cache, fully utilizing this kind of shared memory architecture. Parallel CIGSCR is likely to scale
efficiently for many more processors for any representativehyperspectral classification problem. Furthermore,
as spectral and spatial resolution of sensors will continueto increase and the number of processors included in
computers will increase, parallel CIGSCR will continue to be relevant.

Perhaps more important than potential speedup beyond 32 processors is the potential scientific value of Parallel
CIGSCR on a modest multicore computer. 32 processors produce a two class soft classification in about four
minutes, but as few as eight processors bring the execution time down to 15 minutes (see Table 1) from 2.5 hours.
This drastic time reduction will allow scientists to perform more classifications with different parameter values to
gain better insight into the classification. Scientists canspend more time analyzing results rather than waiting for
results.

16



Kmeans

IS

DR
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6. Conclusions

This work introduced a parallel version of the CIGSCR classification algorithm. CIGSCR uses soft clustering
to produce soft classifications, which are more computationally expensive than hard classifications but provide
more information. This parallel version of CIGSCR achievessuperlinear (better than ideal) speedup using up to
32 processors, bringing the execution time required for a six-band image containing approximately108 pixels
from over 2 hours to about 4 minutes. Additional processors are likely to reduce the execution time even more.
Regardless, 32 processors substantially reduce the execution time required to produce a soft classification of such
a large image, enabling scientists to spend more time on science and less time waiting for classification results.
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