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Abstract— This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative
guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote
sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification
containing inherently more information than a comparable hard classification at an increased computational
cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel
algorithm development work here. Experimental results of applying parallel CIGSCR to an image with
approximately 108 pixels and six bands demonstrate superlinear speedup. A soft two class classification is
generated in just over four minutes using 32 processors.
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1. Introduction

The land cover classification of remote sensing images islgomental to many scientific problems but is
unfortunately laborious and computationally expensivend.cover classifications are laborious because they either
require hand labeling a set of training data prior to clasaifon or manually labeling clusters after classification.
The identification of good training data is difficult becaus&ch class should have within class similarity and
dissimilarity to other classes. Furthermore, the set dhitng classes needs to span the range of data contained in
the image to be classified. Techniques such as clusteringue@mmatically find good training classes with these
properties, but labeling these clusters with land covessclabels is nontrivial. Labeling can be further complidate
if a particular cluster is composed of multiple classes. ébuviged classifications that use training data can be
computationally efficient as the same operation is appledach pixel within an image. However, remote sensing
images often contain billions of pixels, each describech@idens or hundreds of bands, making classification
computationally expensive. Partially supervised and pastised methods that make use of clustering algorithms
are even more computationally expensive.

Partially supervised classification methods that use efumj and statistical methods to label clusters save
human time by lessening training data requirements. Thesthads combine the automation of clustering with
automatic labeling methods that leverage statisticalstaestd a limited amount of training data. This limited
training data can be smaller, lessening the training byrdem even further, the training class requirements
are substantially reduced. The classes are no longer egfjtor have within class similarity and between class
dissimilarity as sub-clusters address those issues. &lyithe issue associated with having training data that is
entirely representative of the image can be mitigated tnociustering and labeling. This reduction in analyst
burden is offset by an increase in computational requiresn@s clustering requires more processing and computer
memory resources. The computation requirements incregse rmore when soft clustering and classification is
required.

Soft clustering and classification methods are requiredffectively model pixels or samples that can be
assigned to multiple classes either because of class assigruncertainty or multiple class memberships. Sensors
with low spatial resolution result in pixels that can reaay contain multiple land cover classes. Additionally,
high spectral resolution (hyperspectral) image pixelsaften modeled as mixtures of pure spectral elements or
classes. Mixed membership and uncertainty are also incatgubin soft clustering methods, where each sample
has partial membership in multiple clusters. These methalisv more flexibility in finding clusters at the
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boundary between land cover classes. Soft clusters andeadfnembers are frequently used in hyperspectral
image classification.

Methods for endmember identification tend to be either miyistensive or require parameter tuning that
can be just as manually intensive to achieve good classificagsults. However, the continuous iterative guided
spectral class rejection (CIGSCR) algorithm leverages doktering to automatically find good training spectral
classes/endmembers using a limited set of training dat&SCR is comparably insensitive to parameters. This
is achieved through a series of clustering iterations thbraatically evaluate and label soft clusters and then
further refine them. This clustering iteration is compwutasilly expensive, but can leverage parallel architectures
to reduce execution times. In order to reduce the execuiine tequired to run the highly automated CIGSCR
algorithm, this paper introduces a parallel version. Thet gection outlines prior work that indicates CIGSCR is
a good candidate for parallel speedup and useful to the ees@ising community. Section 3 describes CIGSCR,
and Section 4 describes the parallel algorithm. Sectiorchidies experimental results and discussion, and Section
6 concludes the paper.

2. Background

Partially supervised classification methods leverage tenaation of clustering to overcome challenges in
training data collection. For example, in hyperspectrahgm classification with a large number of spectral
dimensions, clustering can mitigate the Hughes' phenomemo classification overfitting (Shahshahani and
Landgrebe, 1994). Additionally, unsupervised spectrassiformation can locate missing spectral classes (Mantero
et al., 2005), and unsupervised approaches can be usedate lalt classes when training data is only present
for one class of interest (Gomez-Chova et al., 2004, Jeon Lamdigrebe, 1999, Sanchez-Hernandez et al.,
2007). These techniques proved to be suitable for the fisation of one class of interest using supervised
classification, with the advantage of allowing an analysfatus training resources on only the class of interest
(Sanchez-Hernandez et. al., 2007). In some cases, spelasal training data is unavailable for some images,
but exists for similar images/areas of interest such asipheillimages taken of the same scene at different times.
Several partially supervised spectral class identificaipproaches are proposed to leverage an existing training
data set (Rajan et al., 2006, Rajan et al., 2008, Cossu &04l5, Bruzzone and Prieto, 2001).

Partially supervised methods are also used to divide the tawer classes identified in the training data into
spectral classes that are suitable for classification. d@arbne of the first such algorithms is described in (Fleming
et al., 1975). Clustering is used to define spectral classed,clusters are manually analyzed using a variety
of statistical methods to determine the spectral classdmtased for classification. Guided clustering applies a
clustering algorithm directly to the training data to idgnspectral classes (Bauer et al., 1994). This method does
not address the possibility that spectral classes that resept in the image may not be well represented by the
training data. The iterative guided spectral class regacfiGSCR) classification method (Wayman et al., 2001,
Musy et al., 2006, Phillips et al., 2007) addresses thisidsuclustering the entire image. The clusters are labeled
using a statistical test that selects the land cover classhibst describes the data in each cluster. If a cluster is
confused (contains multiple classes), it is refined in sgbest iterations. Due to its high accuracy and automation,
IGSCR is a frequently used partially supervised classificamethod in the remote sensing community (Jiang
et al., 2004, Kelly et al., 2004, Sivanpillai et al., 2005, Mg et al., 2007). Unlike the previously mentioned
algorithms that leverage hard clustering algorithms aedfaerefore constrained to locating hard clusters, CIGSCR
uses soft clustering. CIGSCR can locate more spectral eda@specially at land cover class boundaries) than
IGSCR and often produces more accurate classificationdigBret al., 2012).

Partially supervised classification methods that leveragstering are good candidates for parallelization as
many parallel clustering algorithms exist. Unfortunatébw remote sensing classification algorithms have been
implemented in parallel. Typical clustering algorithmstttare used for remote sensing classification such as
K-means, fuzzyK-means (a soft version ak-means), and ISODATA have parallel counterparts (Dhillow a
Modha, 2002, Dhodhi et al., 1999, Kwok et al., 2002). A palalersion of IGSCR incorporates parall§lmeans
to achieve superlinear parallel speedup (Phillips et 80,72. As CIGSCR is similar to IGSCR and built on similar
parallel algorithms, a parallel version of CIGSCR shoulbiaee similarly good parallel speedup. The next section
describes the CIGSCR classification algorithm.

3. Continuous IGSCR

CIGSCR uses a soft clustering algorithm to locate soft ehsstvithin an image, and then applies a statistical
test to each cluster in order to assign a land cover clasd. [dBESSCR begins by applying a soft clustering
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algorithm to all of the pixels in a particular image, formisgft clusters. Each pixel has a positive probability
of belonging to each cluster, and the sum of one pixel's fodites across all clusters equals one. In the
hard clustering case, the clusters represent a group ofematiically similar pixels, and the cluster mean is
representative of those pixels and of a spectral classmitié image. The interpretation of soft clustering is that
cluster means are still representative of spectral clag#dén the image, and that pixels are mixtures of those
pure spectral classes. This may be a more accurate andicealizdel of real image data. Once these clusters
are identified, they have to be associated to the dominass eléthin the cluster, determined to be the class with
the highest average probability of belonging to the clustdiis is determined using a set of labeled training data.
All training data have class labels, and all training da& assigned probabilities to each cluster. In this manner,
labeled training data from one class can be compared tartgpaata from other classes for a specific cluster.
The test used to determine which clusters should be usedldgsification is a statistical hypothesis test.
The hypothesis test measures whether a particular clasgngicantly stronger in a particular cluster than other
classes. When hard cluster assignments are used, thisatestse discrete probability distributions to model the
data. CIGSCR uses soft cluster assignments, so a stdtigistebution that takes the range of possible cluster
assignment values (between 0 and 1) into account is negeSdee statistic used for the test for thth class and

the jth cluster is

5= \/n_c(mcaj - Ej)’ (1)

S%,

where? is assumed to be drawn from a normal distributiop,is the number of training samples in thin class,
w.,; is the average probability of samples in théa class of belonging to thgth cluster,w; is the average
probability of all samples belonging to thiéh cluster, andS; is the sample standard deviation of the probabilities
associated to thgth cluster. If P(Z > 2) < «, the dominant class (theth class) within thejth cluster is
significant, and the cluster does not require further referemy is the type-I error.

The clusters that do not pass the test are subjected to refiteman iterative procedure. As long as there are
clusters that fail the test, the cluster that had the lowst > %) value is selected for splitting. The new cluster
means are selected to be the mean value of the dominant cites the cluster and the former mean value of
the cluster. All data are reassigned to the clusters, imguthe new cluster mean, and because the new cluster
mean was seeded using the information from one class, keadylto be representative of that class. This iterative
process terminates when all clusters pass the test anchsdied are represented by clusters, or a maximum number
of iterations is reached.

Using the soft clusters, a soft classification is producdtbdahe iterative stacked (IS) classification. The
classification function for IS classification is

1S(z) = plei|x) = Zp cilkj, z)p(kj|z), (2)

wherep(k;|z) is the probability that a pixel belongs to clustgrandp(c;|k;, z) = 1 if the k;th cluster is assigned
to the ¢;th class and equals zero, otherwise. The statistics of ttlaseers can also be used to train a supervised
classifier, such as the maximum likelihood decision rulaiadsg Gaussian data. This is called the decision rule
(DR) classification. The classification function for the DRssification is the same as the IS classification in (2),
but p(k;|x) is estimated using(z|k;,U;, ;) (using Bayes’ rule) and assumirkg is a normal distribution with
estimated mealy; and estimated covariancg;.

The full CIGSCR algorithm is listed below for completeness.

Algorithm CIGSCR

Input: X % 3-dimensional multispectral image

{(i,7,6(i,5))} % training data: set of indices and class labels
Kinit % number of initial clusters

Kmax % maximum number of clusters

C % number of classes

€ % convergence threshold

a % Type-| error for one-sided hypothesis test

Output: DR % decision rule classification

15 % iterative stacked classification



begin
% Initialization
Initialize cluster mean#’ along the the axis defined by the
mean plus or minus the standard deviation of the image
K = Kinit;
% Determine number of training samples per class
for ¢ := 1 step 1 until C' do
ne =] o7 (e) |;
% Begin lteration
for iteration := Kinit step 1 until Kmax do
begin
w := 0; convergence := 1;
while convergence > € do
begin
% Cluster Data
num := 0; denom := 0;
for i := 1 step 1 until rows do
for j :=1 step 1 until cols do
for k:=1 step 1 until K do

begin

YIIX") — U™
K ..
Z 1/||X(”) _ U(l)||§

=1
% update sums for mean calculations.
num® := num® + w?jka(ij);

2 .
i,k

Wij k = )

denomy, := denomy, + W
end
% update cluster means
for k:=1 step 1 until K do

U® - num®) .
" denomy’

convergence = max |wij ;e — Wij kl;
w = W;

end

% Determine Good Clusters
for k:=1 step 1 until K do

begin

for ¢l :=1 step 1 until C do
> wik

— i,j€EP—1(cl) .
Welk = ———5p 5

) Nl
end
Ck = argmaxwe
(&

rows cols
SWk 1= E E Wij ks
=1 j=1
rows cols
o 2 .
Sswy, 1= E E Wi g
i=1 j=1
SW

Wy i= ————,
rows * cols



s’

SSW — —————
. rows * cols .
Sw,, = )
rows * cols — 1
5 iV nc(mc,k - mk) .
Ly =0
Swy,
end
if any class is not associated with a clugtesn
begin
¢ := first unassociated class;
w,
k := argmax—=~;
k wck,k
K:=K+1;

3w x @

K — €7 e)

Wij,k
ij€p=1(c)
end
eseif (any(Z, < Z(a),k =1,...,K) then
begin
k := argmin, Zy;
K:=K+1;
Z wij_’kx(ij)

[(K) — HE€67 (er)

Wij,k
ij€EP™ (ck)
end
else
exit for loop;
end
end
for k:=1 step 1 until K do
begin
% initialize for covariance calcs.
Y = 0;
denomy, := 0;
end
% IS classification
for i := 1 step 1 until rows do
for j :=1 step 1 until cols do
begin
csum := 0;
for k:=1 step 1 until K do
if (Z,, > Z(a)) then
CSUMye,, = CSUMc,, + Wij k;
for ¢l :=1 step 1 until C do

ISijel = 7Ccsumcl ;
Z cSuUMy,
k=1
% calculate covariance matrices
for k:=1 step 1 until K do
begin
Y =2+ Wij k



(x @) — gy (x @) — gENT,
denomy, = denomj, + wij; i;
end
end
for k:=1 step 1 until K do
Yk = 1/denomy, - Xy;
% DR classification
for i :=1 step 1 until rows do
for j :=1 step 1 until cols do
begin
csum := 0;
for k:=1 step 1 until K do
if (Z, > Z(a)) then

begin
9= 3 (X —UNT 1 (X () _y®)
p-= B2 (5, ;
CSUM, = CSUM, + D;
else
csumy, = 0;
end
for ¢l := 1 step 1 until C do
DR;j o = 7ccsumcl ;
chumk
k=1
end
end

4. Parallel CIGSCR

The shared memory parallel CIGSCR algorithm is similar toapel IGSCR. Both algorithms rely on a
clustering algorithm based oR-means, and various parallel versionsifmeans run well in parallel. The other
expensive portions of both algorithms are the final clasgifios that assign each pixel to a class independently of
other pixels’ assignments. Because the assignment of @gehip independent, this operation can be executed in
parallel.

Kmeans

Fig. 1. Proportion of time devoted to each major operatiorCIGSCR using one processor.
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The most expensive part of CIGSCR (as shown in Figure 1) isstife clustering implemented as fuzzy
K-means. The execution time for fuzzZ¥-means, represented by a wedge in the pie chart in Figure 1, is
the execution time required for multiple iterations of tHeeady iterative clustering algorithm. Each clustering
iteration involves the iterative (soft) assignment of epotel to the clusters and the recalculation of cluster asnte
once the assignment is complete. The parallel version afyfuZ-means performs the assignment of pixels to
clusters in parallel. The mean values of the clusters aratepdbased on the pixel assignments, requiring the
sum of pixel assignments to a cluster over all processorss iEhimplemented as a parallel reduction operation
(a sum). Additionally, the cluster significance test regsiicluster statistics that can be computed using a parallel
sum reduction operation. A custom version of fuzgymeans is implemented specifically for CIGSCR to tally
the sums necessary to calculadtdor each cluster, making the calculation ®fefficient. Each computationally
expensive iteration of fuzzy{-means is implemented in parallel in this manner, and easfation is followed
by the much less expensive cluster evaluation, which cam lads performed in parallel by assigning different
processors to evaluate different clusters.

Once the clusters have been identified, two classificatiomsjpplied using those clusters. Both classifications,
like their counterparts in IGSCR, are applied to each pimdependently, making the classifications straightforward
to implement in parallel. The pixels are divided evenly amdime processors for both classifications. For the DR
classification, the calculation df; should be performed prior to classification. Pixels are tHsded among
processors to apply the DR classification. The parallel @B Slgorithm is given below.

Algorithm Parallel CIGSCR
Input: X % 3-dimensional multispectral image
{(i,7,6(i,5))} % training data: set of indices and class labels
Kinit % number of initial clusters
Kmaz % maximum number of clusters
C % number of classes
€ % convergence threshold
a % Type-| error for one-sided hypothesis test
Output: DR % decision rule classification
IS % iterative stacked classification
begin
% Initialization
Initialize cluster mean$’ in parallel along the the axis
defined by the mean plus or minus the standard deviation
of the imageX;
K = Kinit;
% Determine number of training samples per class
for ¢ := 1 step 1 until C' do
ne :=| ¢~ (c) |;
% Begin lteration
for iteration := Kinit step 1 until Kmax do
begin
w := 0; convergence := 1;
while convergence > € do
begin
% Cluster Data
num := 0; denom := 0;
private: i, j, k
shared: rows, cols, Kb, w, X,U
reduction: (+, num, denom)
for i := 1 step 1 until rows fork CLUSTER
CLUSTER:
for j :=1 step 1 until cols do
for k:=1 step 1 until K do

begin



1/|IX® — UM
K ..
DR VAI> SR [

=1
% update sums for mean calculations.
num® = num®) 4 w?jka(ij);

2 .
i,k

Wij k = )

denomy, := denomy + W

end
join processes
% update cluster means
private: k
shared: denom, num, U, K
for k:=1 step 1 until K fork UPDATE
UPDATE:

k) ._ .
v = denomy,’
join processes
convergence := Iinjalzi( Wij gk — uA)ijyk ;

num(®)

w = W,
end
% Determine Good Clusters
private: i, j, k, cl
shared: rows, cols, C, Kw, @y, @, 53, Z,
sw, SSW, N, C
for k:=1 step 1 until K fork STAT
STAT:
begin
for ¢l :=1 step 1 until C do
Z Wig,k
i,je€P 1 (cl)

Wel,k -= B TP E—

cr := argmaxu, x;
C

rows cols
SWy, 1= E g Wij ks
i=1 j=1
rows cols
— 2 .
SSwWy, 1= E E Wi ks
i=1 j=1
_ SwW,
W = ———————,
rows * cols
sw?
sswy, — ——2~——
o rows * cols .
ka L )

rows * cols — 1

s vV nc(wc,k - wk) .
Ly = 0— "
Swy,
end
join processes

if any class is not associated with a clustesn

begin
c := first unassociated class;
w,
k := argmax—t;
k wck,k
K:=K+1;



Z wij p X )

() — ij€p~1(c)

Wij,k
ij€p~1(c)
end
dseif (any(Z, < Z(a),k=1,...,K) then
begin
k := argmin, Zx;
K=K+1;
Z wij_’kx(ij)

(K — ijed—1(ck)

Wij k
ijep=(ck)
end
else
exit for loop;
end
end
for k:=1 step 1 until K do
begin
% initialize for covariance calcs.
Y :=0;
denomy, := 0;
end
% IS classification
private: i, j, k, cl, csum
shared: rows, cols, C, K.Z, Z(«a), IS, w, X, U, ¢
reduction: (+, X, denom)
for i :=1 step 1 until rows fork ISCLASS
ISCLASS:
for j:=1 step 1 until cols do
begin
csum = 0;
for k:=1 step 1 until K do
if (Z,, > Z(a)) then
CSUMye,, = CSUMc,, + Wij k;
for ¢l :=1 step 1 until C do

CSUM]
ISZ],C[ =

C ;
Z csumyg
k=1
% calculate covariance matrices
for k:=1 step 1 until K do
begin
Y=Y+ Wij k
(x @) — gy (x @) — gENT,
denomy, 1= denomy, + wyj k;
end
end
join processes
for k:=1 step 1 until K do
Yk = 1/denomy, - Xy;
% DR classification



private: i, j, k, cl, csum, p
shared: rows, cols, C, KZ, Z(a), DR, %, X, U, ¢
for i := 1 step 1 until rows fork DRCLASS

DRCLASS:
for j:=1 step 1 until cols do
begin
csum := 0;

for k:=1 step 1 until K do
if (Z, > Z(a)) then

begin
o 26—%(X(ij)—U(k>)TE;1(X(ij)—U(k>) .
b= 7TB/2|21€|% )
CSUM, = CSUM, + D;
else
csume, =0,
end
for ¢l :=1 step 1 until C do
DRij e = 7;sumcl ;
chumk
k=1
end
join processes

end

5. Experimental Results and Discussion

The classification algorithm is applied to two represematiassification problems in order to demonstrate the
scalability of parallel CIGSCR. First, a two-class classifion is applied to a multispectral image, where the
classes of interest are forest and nonforest. This imagemfeasy rows and columns (millions of pixels), but
only six bands. The second classification problem uses arfiypetral image to determine land cover classes for
three species of pines and a nonpine class. This dataseeWwas fows and columns, but many more bands.
Additionally, the discrimination between spectrally danipine classes requires many clusters. The first dataset is
less computationally expensive than the second datasebriance on a range of problem sizes can be inferred
by testing parallel CIGSCR on this set of problems. The dtlgors described above were implemented using
Fortran 95, LAPACK (Linear Algebra PACKage), and OpenMR] axecuted on a SunFire X4600 M2 with a total
of 64 GB of RAM (2 GB per core) and eight quad-core 2.0 GHz AMDt&®pn Model 8356 processors.

5.1. Multispectral Classification Results

The first image classified using Parallel CIGSCR is a mosdidkendsat Enhanced Thematic Mapper Plus
(ETM+) satellite image taken from Landsat Worldwide Refeee System (WRS) path 17, row 34, located in
Virginia, USA, shown in Figure 2. This image contains appnoately 108 pixels and six bands (six brightness
values per pixel). This image, hereafter referred to asimMiad.7, was obtained on November 2, 2003 and consists
largely of forested, mountainous regions, and a few dewslapgions that are predominantly light blue and light
pink in Figure 2. Figure 2 is a three color representation wfiial7 where the red color band in Figure 2
corresponds to the near infrared wavelength in Virginiathé,green color band in Figure 2 corresponds to the red
wavelength in Virginial7, and the blue color band in Figureo2responds to the green wavelength in Virginial?.

The training data for this image was created by the inteagiat of point locations from a systematic, hexagonal
grid over Virginia Base Mapping Program (VBMP) true cologitkl orthophotographs. A two-class classification
was performed (forest/nonforest) using 25 initial clustand a maximum of 30 clusters (30 clusters were used
in the final classifications). The value for the cluster test was 0.0001. Figures 3 and 4 corka&nlS and
DR classification results, respectively. The serial versib CIGSCR was executed and compared to the parallel
version using up to 32 processors as shown in Table 1. Theawtaunt of time required to run Parallel CIGSCR
on the test image using 32 processors is about four minubesa(f image with approximately0® pixels and six
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Fig. 2. Landsat ETM+ satellite image Virginial7.
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Fig. 3. CIGSCR IS (forest is green, nonforest is brown) d&sdion of Virginial?.

bands). Also note that classification requires 891 secoodsifout 15 minutes) using eight processors. Many

modern desktop computers contain eight cores.
In order to measure parallel speedup, the serial execuitiod 6f CIGSCR was compared to the execution

times of Parallel CIGSCR using two through 32 processorgalleh speedup fop processors is defined as the
serial execution time (using one processor) divided by theeosed parallel execution time usipgprocessors.
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Fig. 4. CIGSCR DR (forest is green, nonforest is brown) dfssion of Virginial?.

Table 1
Parallel CIGSCR execution times in seconds—Virginial?.

no. processorsk-means 1S DR Total

1 7467 516 528 8524
2 3013 244 243 3611
4 1510 138 117 1776
6 1007 89 77 1184
8 756 67 58 891
10 605 53 46 714
12 504 44 38 596
14 432 37 32 512
16 378 37 28 454
18 337 35 26 408
20 303 33 24 370
22 276 33 24 343
24 253 31 22 316
26 233 34 24 302
28 217 36 24 287
30 202 35 23 271
32 190 38 24 262

Ideal speedup fop processors i, indicating thatp processors can evenly divide the work of one processor.
Observed speedup is rarely ideal as most parallel algosittontain some serial sections, and even algorithms that
parallelize perfectly incur parallel overhead when impdeted. Computed speedup results are shown in Figure 5.
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Table 2

Parallel CIGSCR execution times in seconds—ABpines.

no. processorskK-means IS DR  Total
1 18630 20 316 18971
2 8677 10 159 8850
4 4046 5 79 4133
6 2624 3 53 2685
8 1912 2 41 1960
10 1508 2 33 1548
12 1242 2 28 1276
14 1059 1 25 1089
16 905 1 22 932
18 798 1 20 823
20 718 1 18 741
22 642 1 16 663
24 585 1 15 605
26 538 1 14 557
28 502 1 13 520
30 464 1 12 482
32 434 1 12 450
35
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5.2. Hyperspectral Classification Results
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Fig. 5. CIGSCR parallel speedup compared to execution timgenal IGSCR, Virginial?.

The second image was collected using the airborne AVIRIS@enver the Appomattox-Buckingham state
forest, hereafter referred to as ABpines and shown in Figurkn situ surveys were conducted to acquire ground
truth for three different species of pines, loblolly pinetortleaf pines, and Virginia pines. In addition to these
ground truth, known tree stand maps and a region growingritthgo were used to generate additional training
data. An “other” class was created using all of these datacesuto encompass regions in the scene that did
not fall into the pine categories, namely deciduous forest aonforest. The final training set has 5257 points
in loblolly, 439 points in shortleaf, 1920 in Virginia pineand 7357 in other. The final CIGSCR classification
is shown in Figure 7. The CIGSCR parameters used to gendrase tresults are 100 clusters amd= .0001.

Speedup is shown in Figure 8.
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Fig. 6. Landsat ETM+ satellite image, ABpines.

Fig. 7. Final CIGSCR classification, ABpines.

6. Discussion

This implementation of parallel CIGSCR efficiently uses arsld memory architecture to achieve better than
ideal parallel speedup. The measured speedup in Figuresl B ds higher than ideal speedup and is called
superlinear speedup. Ideal speedup indicates that yspr@cessors instead of one should reduce the execution
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Fig. 8. CIGSCR parallel speedup compared to execution timgedal IGSCR, ABpines.

time by a factor ofp. Speedup that is better than ideal is caused by factors ttharadditional processors such
as memory. The SunFire X4600 M2 has a nonuniform memory agq®¢dMA) architecture, meaning that even
though there is global memory that is accessible from eaobgssor, there are physical sections of memory that
are closest to each processor, which can affect memory satioess. Furthermore, each processor has local cache
memory, and additional processors used for classificationtribute additional cache memory.

In order to take advantage of nonuniform global memory ardlvidual processors’ cache memory, it is
necessary to consider the physical data layout when impigngean algorithm. This consideration is mandatory
in distributed memory programming as data is manually églidnd distributed across processors. One advantage
of shared memory programming is that consideration of daailolition is not required. However, using shared
memory effectively often requires understanding how th& ds divided and placed into memory. In distributed
memory programming, this is explicit. On most shared memsystems including the SunFire X4600, data is
physically stored closest to the processor that first aeseds Good memory access requires that shared data
is accessed each time in code using the same data accesmiqatted each process/local memory is bound
to a particular processor. The superlinear speedup achievéhis paper results from leveraging these coding
techniques. Namely, the parallel processes that fork ferGhUSTER, ISCLASS, AND DRCLASS loops access
X, 1S, and DR the same way. Finally, in order to take full advantage of eactemory, all multidimensional data
such as the imagd&’ is accessed in the order it is stored in memory.

Although superlinear speedup is desirable, it can obscoaalsility issues. In order to determine if the
algorithm will scale beyond 32 processors, compare exatutimes onp processors to execution times for two
processors. The intuition behind this analysis is that twacessors have more cache than one processor, and
therefore speedup is due to the increased processing poerda increased cache memory. Once the number of
processors used has enough cache to efficiently access @respithe data, adding more cache does not decrease
execution times. The comparison of execution times to whatiserved using two processors is shown in Figures
9 and 10 for the data sets Virginial7 and ABpines, respdgtive

The parallel scalability (defined as the speedup jfgrrocessors with respect to two processors, divided by
p/2) of parallel CIGSCR depends on clustering scalability, ahutering scalability in turn depends on data size.
Notice in Figure 9 that scalability (compared to two procesyis ideal through 24 processors, but then tapers
off through 32 processors. However, scalability in FiguBeid superideal ¥ 1) through 32 processors with no
indication of a dropoff. The main differences between these datasets is that ABpines corresponding to Figure
10 has many more bands and the resulting classification uaeg more clusters. The increases the dimensionality
of both the input imageX, and the cluster memberships, Modest increases in either the number of input bands
or the number of clusters require additional memory. The iABp classification problem requires large amounts

15



16 ——
o
VIS o 1
@
0 K
S 12} o .
°
& o
< ,
S 100 o 1
- o
[8] P
L st O )
¢ o
2
< 6f O g
E o
S af y-) 1
© o
o P
5 2t o §
2 CIGSCR speedup
o 0 |deal speedup
0 ‘ ‘ ‘ ‘ : :
0 5 10 15 20 25 30 35

Number of Processors

Fig. 9. CIGSCR parallel speedup compared to execution tifneve processors, Virginial?.

20

181 g

16} o
o o
£
@ 141 () 9
2
: o
EEIS o i
2 o
o \U
& 10- 0 R
=
8 K
£ st o g
z
a 5]
=3 \U
B e o g
& ‘o

ar < 1

no‘\
2r P CIGSCR speedup |
o 0 |deal speedup
0 Il Il Il Il T T
0 5 10 15 20 25 30 35

Number of Processors
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of RAM and cache, fully utilizing this kind of shared memorychitecture. Parallel CIGSCR is likely to scale
efficiently for many more processors for any representaltiyperspectral classification problem. Furthermore,
as spectral and spatial resolution of sensors will contittuancrease and the number of processors included in
computers will increase, parallel CIGSCR will continue ® rielevant.

Perhaps more important than potential speedup beyond 32gsors is the potential scientific value of Parallel
CIGSCR on a modest multicore computer. 32 processors peoduiwvo class soft classification in about four
minutes, but as few as eight processors bring the executmdown to 15 minutes (see Table 1) from 2.5 hours.
This drastic time reduction will allow scientists to perfomore classifications with different parameter values to
gain better insight into the classification. Scientists spand more time analyzing results rather than waiting for
results.
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Fig. 11. Proportion of time devoted to each main operatiolfCiIESCR with 32 processors.

6. Conclusions

This work introduced a parallel version of the CIGSCR clication algorithm. CIGSCR uses soft clustering
to produce soft classifications, which are more computatiprexpensive than hard classifications but provide
more information. This parallel version of CIGSCR achiegegperlinear (better than ideal) speedup using up to
32 processors, bringing the execution time required forxaband image containing approximatelp® pixels
from over 2 hours to about 4 minutes. Additional processoesliaely to reduce the execution time even more.
Regardless, 32 processors substantially reduce the éxedume required to produce a soft classification of such
a large image, enabling scientists to spend more time omaeiand less time waiting for classification results.
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