# Efficient Uncertainty Quantification with the Polynomial Chaos Method for Stiff Systems

2007) Efficient Uncertainty Quantification with the Polynomial Chaos Method for Stiff Systems. Technical Report TR-07-19, Computer Science, Virginia Polytechnic Institute and State University. (

Full text available as: |

## Abstract

The polynomial chaos method has been widely adopted as a computationally feasible approach for uncertainty quantification. Most studies to date have focused on non-stiff systems. When stiff systems are considered, implicit numerical integration requires the solution of a nonlinear system of equations at every time step. Using the Galerkin approach, the size of the system state increases from $n$ to $S \times n$, where $S$ is the number of the polynomial chaos basis functions. Solving such systems with full linear algebra causes the computational cost to increase from $O(n^3)$ to $O(S^3n^3)$. The $S^3$-fold increase can make the computational cost prohibitive. This paper explores computationally efficient uncertainty quantification techniques for stiff systems using the Galerkin, collocation and collocation least-squares formulations of polynomial chaos. In the Galerkin approach, we propose a modification in the implicit time stepping process using an approximation of the Jacobian matrix to reduce the computational cost. The numerical results show a run time reduction with a small impact on accuracy. In the stochastic collocation formulation, we propose a least-squares approach based on collocation at a low-discrepancy set of points. Numerical experiments illustrate that the collocation least-squares approach for uncertainty quantification has similar accuracy with the Galerkin approach, is more efficient, and does not require any modifications of the original code.

Item Type: | Departmental Technical Report |
---|---|

Keywords: | Uncertainty quantification, polynomial chaos, least-squares collocation, Smolyak algorithm, low-discrepancy data sets |

Subjects: | Computer Science > Numerical Analysis |

ID Code: | 978 |

Deposited By: | Cheng, Haiyan |

Deposited On: | 30 May 2007 |