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Abstract

The polynomial chaos method has been widely adopted as a compu-
tationally feasible approach for uncertainty quantification. Most studies
to date have focused on non-stiff systems. When stiff systems are consid-
ered, implicit numerical integration requires the solution of a nonlinear
system of equations at every time step. Using the Galerkin approach,
the size of the system state increases from n to S × n, where S is the
number of the polynomial chaos basis functions. Solving such systems
with full linear algebra causes the computational cost to increase from
O(n3) to O(S3

n
3). The S

3-fold increase can make the computational
cost prohibitive. This paper explores computationally efficient uncertainty
quantification techniques for stiff systems using the Galerkin, collocation
and collocation least-squares formulations of polynomial chaos. In the
Galerkin approach, we propose a modification in the implicit time step-
ping process using an approximation of the Jacobian matrix to reduce
the computational cost. The numerical results show a run time reduction
with a small impact on accuracy. In the stochastic collocation formu-
lation, we propose a least-squares approach based on collocation at a
low-discrepancy set of points. Numerical experiments illustrate that the
collocation least-squares approach for uncertainty quantification has sim-
ilar accuracy with the Galerkin approach, is more efficient, and does not
require any modifications of the original code.

1 Introduction

With the increase of complexity of physical models used in scientific and en-
gineering studies, it becomes increasingly more important to quantify uncer-
tainties associated with model predictions. In general, these uncertainties are
divided into two categories: aleatory (random) and epistemic (subjective) [1].
The epistemic uncertainties come from the model itself, they can be in the
initial conditions, boundary conditions or model parameters, etc. Many uncer-
tainty quantification techniques have been developed to characterize, propagate
and quantify epistemic uncertainties. These techniques have been successfully
applied in many scientific applications [2, 3, 4, 5, 6, 7].

The traditional statistical approach for uncertainty quantification is the
Monte Carlo method [8, 9]. With the brute force Monte Carlo implementa-
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tion, one first generates an ensemble of random realizations with each parameter
drawn from its uncertainty distribution. Deterministic solvers are then applied
to each member to obtain an ensemble of results. The ensemble of results is
post-processed to obtain the relevant statistical properties of the results such
as the mean and standard deviation, as well as the probability density function
(PDF). Since the estimation of the variance converges with the inverse square
root of the number of runs, the Monte Carlo approach is computationally ex-
pensive. Although techniques such as Latin hypercube sampling [10], the quasi-
Monte Carlo (QMC) method [11], and the Markov Chain Monte Carlo methods
(MCMC) [12] can significantly improve the Monte Carlo convergence rate, their
applications are limited. The advantages of the sampling-based methods are
their conceptual simplicity and the relative ease of implementation, which allow
them to be applied to almost any model regardless of its size and complexity.
The disadvantages are the requirements for a large number of runs to obtain
relatively accurate statistics.

In non-sampling techniques, uncertainties are represented by a spectral ap-
proximation that allows high order representations. The polynomial chaos ap-
proach is one of the most frequently used non-sampling approaches. The polyno-
mial chaos approach originates from the homogeneous chaos concept defined by
Wiener [13]. Ghanem and co-workers [14] have demonstrated that polynomial
chaos is a feasible computational tool for scientific and engineering studies. Kar-
niadakis and Xiu [15] generalized and expanded the concept by using orthogonal
polynomials from the Askey-scheme class as the expansion basis. They further
proposed that if the Wiener-Askey polynomial chaos expansion is chosen ac-
cording to the probability distribution of the random input, then the chaos
expansion can reach the optimal exponential convergence rate. Xiu has applied
those expansions to stochastic differential equations extensively [16, 17, 18].

Consider a complete probability space (Ω,F , P ), in which Ω is a sample
space, F a σ-algebra of subsets of Ω, and P a probability measure. A general
second-order random process X(θ) ∈ L2(Ω,F , P ) can be represented as:

X(θ) =

∞
∑

i=0

ci Φi(ξ(θ))

where θ is a random event, and Φi(ξ(θ)) are polynomial functionals defined in
terms of the multi-dimensional random variable ξ(θ) = (ξ1(θ), . . . , ξd(θ)) with
the joint probability density function of w(ξ). The family {Φi} satisfies the
orthogonality relations:

〈Φi, Φj〉 = 0 for i 6= j.

where the inner product on the Hilbert space of random functionals is the
ensemble average 〈·, ·〉:

〈f, g〉 =

∫

f(ξ) g(ξ)w(ξ)dξ.
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If the uncertainties in the model are independent random variables ξ =
(ξ1, · · · , ξn) with a joint probability distribution w(ξ) = w(1)(ξ1) · · ·w(n)(ξn),
then a multi-dimensional orthogonal basis is constructed from the tensor prod-

ucts of one-dimensional polynomials {P (k)
m }m≥0 orthogonal with respect to the

density w(k) [6]:

Φi(ξ1, · · · ξn) = P
(1)
i1

(ξ1)P
(2)
i2

(ξ2) · · ·P (n)
in

(ξn).

In this case, the evaluation of n-dimensional scalar products is reduced to n
independent one-dimensional scalar products.

In practice, we consider a truncated polynomial chaos expansion with S
terms. We denote the number of random variables by n, and the maximum
degree of the polynomials by p. S is given by [14]:

S =
(n + p)!

(n! p!)
. (1)

With the growth of the polynomial order and the number of the random
variables, the total number of terms in the expansion increases rapidly. Using
polynomial chaos expansion, the original ODE is replaced by an ODE for the
polynomial chaos coefficients, and the uncertainty information is embedded in
these coefficients. For example, for the deterministic system

y′ = f(y), t0 ≤ t ≤ T, y(t0) = y0, (2)

we expand the state vector y along the polynomial chaos basis

y =
S
∑

i=1

yiΦi(ξ)

and insert it into the deterministic system to obtain

S
∑

i=1

(yi)′Φi(ξ) = f





S
∑

j=1

yjΦj(ξ)



 . (3)

The evolution equation for the stochastic coefficients can then be obtained
by Galerkin or collocation approaches as explained below.

In the Galerkin polynomial chaos approach, we project the system (3) on
the space spanned by the orthogonal polynomials, i.e, we take the inner product
of (3) with Φi(ξ) to obtain:

(

yi
)′

=
1

〈Φi, Φi〉

〈

Φi(ξ), f





S
∑

j=1

yjΦj(ξ)





〉

, 1 ≤ i ≤ S. (4)
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This system has n × S components and their evolution is coupled. With
this approach, the entire stochastic system needs to be evolved in time, but the
integration is only executed once.

The collocation approach imposes the system (3) to be satisfied at a given
set of points µj (1 ≤ j ≤ Q):

S
∑

i=1

(yi)′Φi(µj) = f

(

S
∑

i=1

yiΦi(µj)

)

, 1 ≤ j ≤ Q (5)

With matrix A defined using the basis function values at the collocation
points

Ai,j = Φj(µi), 1 ≤ i ≤ Q, 1 ≤ j ≤ S. (6)

the collocation points in the system state space are:

Y j(t) =

S
∑

i=1

yi(t)Φi(µj) =

S
∑

i=1

Aj,i yi(t), 1 ≤ j ≤ Q. (7)

With this notation, the equation (5) becomes:

(Y i)′ = f(Y i), 1 ≤ i ≤ Q. (8)

There are Q independent integrations of the deterministic system (2):

Y i(t0) =

S
∑

i=1

Aj,i yi(t0), t0 ≤ t ≤ T. (9)

After integration, we recover the stochastic solution coefficients at the final
time T by solving the linear system of equations for yi:

Y j(T ) =

Q
∑

i=1

Aj,i yi(T ), 1 ≤ j ≤ Q, (10)

which equavalents to:

yj(T ) =

Q
∑

i=1

(

A#
)

j,i
Y i(T ), 1 ≤ j ≤ S, (11)

where A# is the pseudo-inverse (A# = A−1 if Q = S).
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In this paper, we address the uncertainty quantification problem using poly-
nomial chaos for stiff systems. We compare the prevalent uncertainty quan-
tification techniques, and propose an improved algorithm to apply the Galerkin
polynomial chaos method. We show that the Galerkin polynomial chaos and the
collocation method are both superior to the Monte Carlo approach for stiff sys-
tems. With the improved techniques of applying Galerkin polynomial chaos, the
computation time can be further reduced. In the general collocation approach,
even if only Q collocation points are required to solve the exact system with Q
unknown coefficients, we propose a least-squares collocation method that uses
more points than the unknown coefficients, i.e., Q > S.

The rest of the paper is organized as follows: Section 2 describes the dif-
ficulties of applying the Galerkin polynomial chaos to implicit stiff systems.
We implement different orderings of the system Jacobians, and propose a mod-
ification of the Jacobian to improve the computational efficiency. Section 3
discusses the collocation and Lagrange interpolation methods. We propose a
least-squares stochastic collocation approach, and compare the numerical re-
sults against those obtained through the high order Lagrange interpolation using
Smolyak algorithm. The conclusions are made in Section 4.

2 Application of the Galerkin Polynomial Chaos

to Stiff Systems

We illustrate our approach using a stiff system arising from chemical kinetics.
The simple Chapman-like mechanism from stratospheric chemistry is specified
by the following equations:

r1) O2 + hν
k1−→ 2 O

(

k1 = 2.643× 10−10 · σ3
)

r2) O + O2
k2−→ O3

(

k2 = 8.018× 10−17
)

r3) O3 + hν
k3−→ O + O2

(

k3 = 6.120× 10−04 · σ
)

r4) O + O3
k4−→ 2 O2

(

k4 = 1.576× 10−15
)

r5) O3 + hν
k5−→ O1D + O2

(

k5 = 1.070× 10−03 · σ2
)

r6) O1D + M
k6−→ O + M

(

k6 = 7.110× 10−11
)

r7) O1D + O3
k7−→ 2 O2

(

k7 = 1.200× 10−10
)

r8) NO + O3
k8−→ NO2 + O2

(

k8 = 6.062× 10−15
)

r9) NO2 + O
k9−→ NO + O2

(

k9 = 1.069× 10−11
)

r10) NO2 + hν
k10−→ NO + O

(

k10 = 1.289× 10−02 · σ
)

(12)
The model involves five variable chemical species (O, O1D , O3, NO, NO2)

and two fixed species (M, O2). The model predicts the concentration of the
species at a future time from a given initial concentration. The deterministic
model codes are generated with Kinetic Preprocessor (KPP) [19, 20] version
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1.2. KPP parses the chemical mechanism, builds the derivative function and
Jacobian to describe the chemical transformation, and offers support for treating
sparsity. As the chemical system is stiff, meaning the lifetime of some species
involved in the reactions are many orders of magnitude shorter than those of
other species, a Rosenbrock numerical integrator is used for time integration
[21]. For the stochastic model, we assume that the uncertainties only come from
the initial condition. The uncertainties are uniformly distributed in the range
±20% of the reference solution. We expand the uncertain initial concentrations
using polynomial chaos with the Legendre basis. After the expansion, each
species contains S stochastic mode to represent the statistical information. We
re-arrange the expanded five species into a single long state vector to perform
the integration (two different orderings will be explored further in Section 2.2).
After the time integration, we re-assemble the solution to extract the mean and
standard deviation of the final result.
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Figure 1: Comparison of the numerical solutions for deterministic, Monte Carlo
and polynomial chaos approaches after a 24-hour integration

The results of the stochastic solutions are shown in Figure 1. We make
a comparison for the 24-hour integration results among a deterministic run
(solid line), a Monte Carlo run with 500 members (dashed line) and a Galerkin
polynomial chaos order 3 result (dash dot line). The “error bar” result using the
Galerkin polynomial chaos approach is comparable with the Monte Carlo result.
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Figure 2: PDF comparison of Monte Carlo and Galerkin PC approaches

In most cases, the polynomial chaos result gives a smaller standard deviation
compared to the Monte Carlo method. These results show that the Galerkin
polynomial chaos approach works well for stiff systems.

Figure 2 shows a comparison of the probability density function of the Monte
Carlo and Galerkin polynomial chaos results at the final integration time. We
see that the PDF shapes of the two results match well, which means that the
Galerkin polynomial chaos method can be used in place of the Monte Carlo
method to capture the propagation behavior of the uncertainties in the initial
conditions.

2.1 Difficulties of Applying the Galerkin Approach to Stiff

Systems

Using the Galerkin approach, most of the computation time is consumed in
the construction of the right hand side ODE function and its Jacobian matrix.
The increasing computational cost is illustrated using the implicit Euler scheme
applied to (2):

yn+1 = yn + ∆tf(yn+1).

The implicit system is solved using the modified Newton formula which uses
the Jacobian matrix evaluated at time tn. We solve the equation

z − yn − ∆tf(z) = 0
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for z using iterations of the form:

z[m] = z[m−1] −
(

I − ∆tJ(yn)
)−1 (

z[m−1] − yn − ∆tf(z)
)

.

z[0] = yn, m = 1, 2, · · ·

To solve this system of equations with n unknowns, the complexity is O(n3)
if full linear algebra is used. Using Galerkin polynomial chaos approach, the size
of the stochastic system is S × n, and the complexity of the linear algebra will
be O(S3n3)–an increase by a factor of S3. In our experiment, the original state
variable has length n = 5. With order 3 polynomial chaos expansion, the number
of the stochastic modes is S = 56, as computed by (1). The deterministic
Jacobian is a 5× 5 matrix as shown in Figure 3 (a). However, in the stochastic
system, by introducing the additional stochastic dimension, the system state is
expanded to n × S = 5 × 56 = 280. The Jacobian size increases to 280 × 280,
and the computational complexity associated with the full linear algebra solver
increases by 563 ≈ 176 000 times! The solution process can become infeasible.

In order to overcome this difficulty, we explore different orderings of the
polynomial chaos coefficients, and propose an approximation to the Jacobian
matrix.

2.2 Orderings of the Polynomial Chaos Coefficients

There are two different ways to order the polynomial chaos coefficients into a
one-dimensional vector. One method is to use the polynomial chaos index first,
the other uses the system index first.

We refer to the first method as the S ×n ordering of the Galerkin Jacobian.
After the arrangement, the index (i, j) in the S × n space with 1 ≤ i ≤ S
and 1 ≤ j ≤ n corresponds to k = (j − 1)n + i in the 1-dimentional vector.
The corresponding Jacobian matrix of the S ×n ordering has the same sparsity
structure as the deterministic Jacobian matrix. Figure 3 (b) shows the Jacobian
sparsity structure of the polynomial chaos order 3 model. Comparing with (a),
we can see that each entry in the deterministic Jacobian matrix corresponds to
a S × S block in the Galerkin Jacobian matrix.

The second ordering is referred to as the n × S ordering (the system index
first, followed by the polynomial chaos index). The index (i, j) in the n × S
space with 1 ≤ i ≤ n and 1 ≤ j ≤ S corresponds to index k = (j − 1)S + i in
1-dimensional ordering. The sparsity structure of the Jacobian matrix is shown
in Figure 3 (c). The Jacobian is now a S × S block matrix, with each n × n
block having the structure of the deterministic Jacobian.

Compared with using the Monte Carlo method, which requires solving a
5 × 5 system repeatedly, using Galerkin polynomial chaos, we solve one big
linear system of dimension 280 × 280 once. However, it takes much longer to
solve such a large system than solving the small system repeatedly.
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Figure 3: The Jacobian sparsity structure for (a) deterministic, and for (b) S×n
ordering, (c) n × S ordering and (d) the approximated stochastic Jacobian.
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Figure 4: Eigenvalue comparison of the full Jacobian and the approximated
Jacobian.

2.3 Approximation of the Jacobian Matrix

Using the exact Jacobian matrix requires its evaluation at every time step,
which is computationally costly. An eigenvalue analysis of the Jacobian matrix
provides additional information. We find that in our stochastic system (with n
states, S stochastic modes), the eigenvalues of the full Galerkin Jacobian matrix
are similar to the eigenvalues of the deterministic Jacobian matrix repeated S
times, as shown in Figure 4.

We consider the n × S ordering. With the eigenvalue information, we ap-
proximate the stochastic Jacobian by a block diagonal matrix with the blocks on
the diagonal being the n×n deterministic Jacobian repeated S times. Starting
from the polynomial chaos stochastic formulation (4), we obtain the Galerkin
Jacobian for each n × n block (i, j) with 1 ≤ i, j ≤ S as follows:

Let

Y =

S
∑

k=1

ykΦk(ξ).

Then,

∂(yi)′

∂yj
=

〈

Φi, ∂f(Y )
∂yj

〉

〈Φi, Φi〉

=

〈

Φi, ∂f(Y )
∂Y

· ∂Y
∂yj

〉

〈Φi, Φi〉
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=

〈

Φi, ∂f(Y )
∂Y

· Φj
〉

〈Φi, Φi〉

=

〈

Φi, J(Y ) · Φj
〉

〈Φi, Φi〉

=
1

〈Φi, Φi〉 ·
〈

Φi, J
(

S
∑

k=1

ykΦk(ξ)
)

· Φj

〉

.

Justified by the above eigenvalue analysis, we use the approximation:

J

(

S
∑

k=1

ykΦk(ξ)

)

≈ J(ȳ), with ȳ =

〈

S
∑

k=1

ykΦk(ξ)

〉

.

Then we have that the approximated Jacobian has a diagonal block struc-
ture:

∂(yi)′

∂yj
≈
{

J(ȳ) if i = j
0 otherwise

.

The approximated Jacobian can be used in implicit time stepping in two
ways. First, the modified Newton method (13) can use the simplified Jacobian
for fully implicit numerical methods. Second, we consider Rosenbrock-Wanner
methods [22] that maintain the order of accuracy when inexact Jacobians are
employed. The particular scheme we are using is the Ros-2 integrator [23, 24]
formulated as follows:

yn+1 = yn +
3

2
k1 +

1

2
k2

(I − γ∆tJ)k1 = ∆tf(yn)

(I − γ∆tJ)k2 = ∆tf(yn + k1) − 2k2

in which the matrix J is the approximated Jacobian. The method is second-
order consistent for γ = 1 + 1/

√
2.

The sparsity structure of the approximated Jacobian is shown in Figure 3
(d). As a result, instead of solving the large Sn × Sn system required by full
Galerkin Jacobian at each time iteration, we repeatedly solve S smaller systems
with the fixed deterministic Jacobian and corresponding stochastic mode on the
right-hand side of the stochastic system. Since we have the same n × n matrix
for all S systems, we can use the same LU decomposition for each stochastic
mode.
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2.4 Numerical Results

We now compare the accuracy of the solutions with the full and the approxi-
mated Jacobians. We use the numerical results obtained by Monte Carlo with
10 000 runs as our reference solution. We implement the S × n ordering, the
n × S ordering, and the approximated diagonal Jacobian with the Ros-2 inte-
grator and Rtol = 1.0d− 2, Atol = 1.0d + 4 (molec/cm

3
) as tolerances.

Table 1 lists the error comparison for S×n ordering, n×S ordering and the
approximated diagonal Jacobian against the Monte Carlo 10 000 reference runs.
The single values in the last row are computed by taking the maximum entry of
the relative errors in the covariance matrix. The relative errors are computed
by dividing the norm of the error by the norm of the reference solution:

relative error =
||PC solution − reference solution||

||reference solution|| .

S × n order n × S order Approximation
Mean 2.400e-04 2.400e-04 8.307e-04
Std 1.827e-03 1.827e-03 2.472e-03

Covariance 4.628e-04 4.628e-04 1.633e-03

Table 1: Error in PC order 3 solution compared with MC reference solution of
10 000 runs. The PC solutions are obtained with different orderings of the full
Galerkin Jacobian and with the block diagonal approximation.

We can see from Table 1 that both S×n and n×S orderings have the same
errors, while the approximated Jacobian has a slightly larger error compared
with the reference solution.

Next we compare the run times for the different orderings. Table 2 shows
the run time (in seconds) for polynomial chaos order 2 and order 3 compared
with Monte Carlo method.

S × n order n × S order Approximation
PC-order 3 15.80 17.30 10.50
PC-order 2 1.03 1.22 0.89
MC-10000 989.7

Table 2: Run time comparison of PC order 2, PC order 3 and MC (time is given
in seconds for FORTRAN implementation)

From the results in Table 1 and 2, we conclude that with a reduced run
time, the approximation using the diagonal Jacobian generates a satisfactory
numerical solution for our chemical system. A run time profiling check provides
us additional information as where the most of the computing time is spent. The
total CPU time is used in the function evaluation, Jacobian computation and
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the linear algebra. The computation time we reduced is only in the Jacobian
and the linear algebra part. The function evaluation on the right-hand side
function of the equation (4) remains the main contributor to the total CPU
time.

3 Collocation Methods

From the above discussion, we conclude that Monte Carlo implementation is
straightforward, but requires many sample runs to generate the response in
order to form a histogram of the final PDF. While polynomial chaos takes
less run time, the derivation of the stochastic model is both time consuming
and complicated for large nonlinear models. The increase of the number of
uncertainties will greatly affect the size of the stochastic system.

The general collocation method uses polynomial chaos expansion (3). In-
stead of taking the Galerkin projection to derive the equations for the stochas-
tic coefficients, the equations are imposed to hold at a given set of collocation
points. The deterministic system needs to be integrated several times instead of
running the larger system once. An algebraic equation system (11) is formed and
solved to compute the coefficients. This approach is similar to the Stochastic
Response Surface Method (SRSM) and the Deterministic Equivalent Modeling
Method (DEMM) [25, 26].

The stochastic collocation method [27, 28, 29] is a hybrid of Monte Carlo
method and polynomial chaos approach. It uses the traditional collocation
method with random variables to represent the uncertainties. We present the
stochastic collocation method with Lagrange interpolation in Section 3.2.

An important issue when applying the collocation approach is the selection
of the collocation points. A necessary criterion for selecting these points is that
the system coefficients matrix Aj,i in equation (10) is well conditioned. We first
test the random data sets by restricting the magnitude of the condition number
when selecting the random collocation points. Although it is convenient to use
the random numbers as the collocation points, an accurate solution generated
by the randomly chosen collocation points can not be guaranteed for each run.
Moreover, the alignment or clustering of the data points can easily cause the
rank deficiency for the system matrix. Therefore, we consider other sets of
collocation points as discussed next.

3.1 Low-Discrepancy Data Sets As Collocation Points

The low discrepancy sequences [30] have been explored in the area of the quasi-
Monte Carlo integration with large number of variables. The commonly used
data sets include Hammersley points [31], Halton points [32] and Sobol points
[33]. The Hammersley points and Halton points are closely related. A compari-
son of these data sets has been made in [34] for numerical integration purposes.
We use the Hammersley data set due to its uniformity.
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The Hammersley-Sequence-Sampling (HSS) provides a way of generating
samples of any distribution based on an evenly distributed set of points. It has
been used in many applications [35]. The Hammersley points are generated as
follows. In radix-R notation, any integer i can be represented as:

i =

v
∑

j=0

ijR
j

where R is an integer that is greater than 1, v = floor{logRi}, and ij is an
integer between 0 and R − 1 for each j = 0, 1, · · · , v. The inverse radix number
of i is given by:

φR(i) =

v
∑

j=0

ij
Rj+1

.

The S Hammersley sequence points mi in a k-dimensional unit hypercube
can be computed using:

mi = 1 − [i/S, φr1
(i), φR2

(i), · · · , φRk−1
(i)]T

where i = 1, 2, · · · , S and Rj is the jth prime number.
After the generation of the S Hammersley points, the Hammersley sampling

sequence pi can be generated by transforming the Hammersley points through
the inverse Cumulative Density Function (CDF) of the uncertain parameter

pi = F−1
p (mi).

In general, for the same sample size, HSS sample is more representative of
the random distribution than the random generated sample. In the case of a
different distribution, such as the Gaussian distribution, the points are more
clustered to represent the PDF of the associated random variable. Figure 5 (a)
and 5 (b) show the comparison of the random points and the uniformly dis-
tributed Hammersley points. The Hammersley points for Gaussian distribution
is shown in Figure 5 (c).

Another possible data set is the Smolyak sparse grids [36, 37] generated
with the Smolyak algorithm. However, there are some restrictions of using the
Smolyak data set as collocation points. We discuss the details in Section 3.2.

We present the numerical results comparison for general collocation method
using different data sets in Section 3.3.

3.2 Smolyak Algorithm and Lagrange Interpolation

The stochastic collocation method is based on the polynomial interpolation
in the multi-dimensional random space. Since we are not interpolating the
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Figure 5: Comparison of random points, uniform Hammersley points and Gaus-
sian Hammersley points

derivative, but only the function itself, Lagrange interpolation is usually chosen
[16]:

I(f)(x(ξ)) =

Q
∑

i=1

f(xi)Li(x(ξ)).

By construction, the Lagrange polynomial associated with the i-th node xi

is defined in terms of all the nodes xj with j = 1, 2, . . . , N +1. The value of the
Lagrange polynomial Li associated with xi equals to zero at all data points xj

except at xi, where it equals 1.
The Chebyshev points are the optimal choice for 1-dimensional interpolation:

Y i
j = −cos

π · (j − 1)

mi − 1
, j = 1, . . . , mi
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with m1 = 1 and mi = 2i−1 for i > 1. Here i is the grid index (with grid
i having mi points) and j is the node index within the grid. The Chebyshev
grids are naturally nested.

We construct the 1-dimensional interpolation as:

U i(f) =

mi
∑

k=1

f(Y i
k ) · Li

k,

where Li
k are the 1-dimensional Lagrange polynomials associated with mode

k on grid level i. The multi-dimensional interpolant based on the full tensor
product is constructed as [16]:

I(f) ≡ (U i1 ⊗ · · · ⊗ U iN )(f)

=

mi1
∑

k1=1

· · ·
miN
∑

kN=1

f(Y i1
k1

, · · · , Y iN

kN
) · (Li1

k1
⊗ · · · ⊗ LiN

kN
).

In higher dimensions, however, the full tensor product becomes infeasible,
since the number of interpolation points grows exponentially fast with the in-
crease in the number of dimensions. This is the so-called “curse of dimension-
ality”.

The Smolyak algorithm [38] is designed to handle the “curse of dimensional-
ity”. Instead of using a full tensor product for multi-dimensional interpolation,
the algorithm chooses the representative polynomials from the lower dimensions
to form the higher-order interpolation polynomial.

There are two implementations of the Smolyak algorithm. One uses the
Chebyshev points in 1-dimension, which generates the Clenshaw-Curtis formula.
The other option uses Gaussian points (zeros of the orthogonal polynomials with
respect to a weight ρ), which leads to the Gaussian formula. The optimality of
these constructions over the traditional tensor product is discussed in [39].

Using the Smolyak algorithm, a polynomial interpolation of a d-dimensional
function is given by a linear combination of the tensor product polynomials:

I(f) ≡ A(q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i|1

(

d − 1

q − |i|

)

· (U i1 ⊗ · · · ⊗ U id)

in which d is the number of dimensions, q is the order of the algorithm, and
q − d is called the level of interpolation.

The nested data set is used to guarantee that the higher degree polynomials
reproduce all polynomials of the lower degrees.

Figure 6 illustrates the 2-dimensional Clenshaw-Curtise sparse grids for level
2 and level 5 constructions.

The Smolyak sparse grids can be used in both the general collocation method
and the stochastic high-order interpolation approaches. However, there are two
disadvantages of using the Smolyak sparse grids as the collocation points in the
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Figure 6: 2-D Smolyak points

general collocation approach. First, the number of the points is restricted by the
algorithm, as can be seen in Table 3. For example, for order 3 PC expansion,
we need to solve for 56 unknown coefficients, but with the 5 dimensional, level
1 construction, we obtain 11 Smolyak points, with the level 2 construction, 61
points are obtained. We end up with solving a least-squares problem. Second,
the alignment of the data points can easily cause the system matrix to become
rank deficient. In this case, a higher level of Smolyak construction is required.
For example, for PC order 3 expansion, in order to avoid the rank deficiency
problem, we have to use Smolyak level 3 construction, i.e. using 241 points to
solve for 56 unknown coefficients.

Dimension level No. of Smolyak points
2 1 5

2 13
3 29

5 1 11
2 61
3 241

Table 3: Number of Smolyak points for different construction levels

3.3 Collocation Least-squares Method

As illustrated in (13), in order to solve for S unknowns, we need to generate S
equations with Q chosen collocation points. If the number of collocation points
is greater than the number of unknowns, i.e, Q > S, we obtain a least-squares
system.

We assess the accuracy of the collocation least-squares method on a 2-
dimensional problem and compare the results with the Lagrange interpolation
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results using the Smolyak grids.
For collocation and collocation least-squares implementation, we use the

Clenshaw-Curtis formulation. We implement the Lagrange interpolation with
the Clenshaw-Curtis points in our stiff system with two uncertainties. We as-
sume two independent uncertainties ξ1 and ξ2 in the initial concentrations as
follows:

O3 = O3 + 0.5 × ξ1 × O3

NO = NO + 0.25 × ξ2 × (NO + NO2)

NO2 = NO2 + 0.25 × ξ2 × (NO + NO2)

We compare the results of the Lagrange interpolation, the collocation ap-
proach, and the collocation least-squares approach for different numbers of col-
location points. Figure 7 shows the error mesh plot for species O3 in each
implementation. All errors are computed by dividing the absolute point-wise
error by the maximum value in the Galerkin polynomial chaos reference solution.
For example, the O3 collocation error is computed by the following formula:

O3 error(ξ1 , ξ2) =
|Ocolloc

3 (ξ1, ξ2) − OGalerkin
3 (ξ1, ξ2)|

max
ξ1,ξ2

|OGalerkin
3 (ξ1, ξ2)|

We experimented with 10, 15, 20 and 40 points. Collocation least-squares
with both Halton and Hammersley points generates smaller errors than the
regular collocation approach. The Hammersley solution is more accurate than
Halton solution.

From the results of Figure 7, we see that both Lagrange interpolation and
collocation least-squares methods generate similar results with the Galerkin
polynomial chaos approach. The run time of both approaches are much faster
than the Galerkin polynomial chaos. We further compare the collocation least-
squares approach for different numbers of collocation points. We find that for
our 2-dimensional test problem, with the increase of the number of the colloca-
tion points, the error can be further reduced. But at the same time, the compu-
tation time is increased due to the increase of the number of the deterministic
runs. We appreciate that a practical choice for the number of collocation points
should be about 1.5 times the unknown coefficients considering the accuracy of
the solution and the computation time.

For the stiff system with 5 uncertainties, we compare the numerical solution
of the general collocation approach using different data sets and the Galerkin
polynomial chaos solution against the Monte Carlo implementation. The nu-
merical results are listed in Table 4. These results are obtained by a 24 hour
integration using polynomial chaos of order 3 with a Legendre basis. In the
table, the collocation with 56 points is the regular collocation that solves the
exact system. The one with 85 and 120 points are the collocation least-squares
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solution, in which we imposed the equation to hold at more points than the
unknown coefficients. From the numerical test results, we conclude that al-
though using more collocation points desensitizes the error with respect to the
particular choice of the points in the computation, the error in solution does
not decrease in general.

Galerkin HSS (56) HSS (85) HSS (120) Smolyak (241)
Mean 2.60e-04 8.67e-05 2.94-04 3.02e-04 2.88e-04
Std 1.11e-03 9.80e-03 3.30e-04 1.40e-03 8.00e-04

Time 532.45 22.82 34.48 49.08 109.27

Table 4: Error and run time (in seconds) comparison of collocation and collo-
cation least-squares with different collocation sets against MC reference run.

Between collocation least-squares and the Lagrange interpolation approach,
we favor collocation least-squares method although both of them generate simi-
lar errors. The collocation least-squares method is easy to implement. The key
is choosing good collocation points, like the ones we are considering (Hammer-
sley points). The Lagrange interpolation approach requires the construction
of both sparse grids and the high order Lagrange interpolation polynomials.
Although by using Smolyak algorithm to replace the full tensor product, the
computational cost is greatly reduced, the implementation is not a trivial work.
We found that it is better to pre-compute the Lagrange sparse grids as well as
the high order, multi-dimensional interpolation polynomials corresponding to
the sparse grids, save them to a file and use them later on.

4 Conclusions

Stiff numerical integration requires the solution of a nonlinear system of equa-
tions at each step. The cost of full linear algebra grows from O(n3) in the
deterministic case to O(S3n3) in the Galerkin polynomial chaos case. The focus
of this paper is to find alternative simulation methods to reduce this cost for
stiff systems with uncertainties.

We implement and compare several uncertainty quantification techniques
that include the traditional Monte Carlo method, the Galerkin polynomial chaos
method, the collocation and collocation least-squares approaches, and finally the
stochastic high-order interpolation approach.

We propose a block-diagonal approximation to the Jacobian matrix in the
Galerkin polynomial chaos formulation, and use a special numerical integrator
Ros-2 to accommodate the inexact Jacobian. The numerical results demonstrate
that by using the modified approach, the Galerkin polynomial chaos run time
can be reduced without compromising the accuracy.

We propose a least-squares collocation approach with the Hammersley data
set as collocation points. This method generates satisfactory numerical results
at lower computational cost than either the Galerkin polynomial chaos or the
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Monte Carlo method. We implement a 2-dimensional test case using the stochas-
tic collocation method with Lagrange interpolation on Smolyak sparse grids. We
conclude that the stochastic collocation/interpolation approach has a similiar
accuracy as the Galerkin polynomial chaos, but is considerably more efficient.
Compared with the collocation/interpolation approach, the collocation least-
squares approach is more flexible and easier to implement.

In the future, we will apply the collocation method with Hammersley colloca-
tion points in the 3D STEM atmospheric chemistry and transportation model
to account for the combined effects of uncertainties in the initial conditions,
boundary conditions, as well as in the emissions. These uncertainties will be
propagated through the stiff chamical reactions using the techniques developed
in this paper. This improved model that incorporates the uncertainties will
provide more realistic predictions for policy decision making.
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Figure 7: O3 errors for the 2-D problem. Results are shown for the Lagrange in-
terpolation, collocation and collocation least-squares (using Hammersley points)
with the Galerkin solution as reference.
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