# The Pagenumber of k-Trees is 0(k)

1995) The Pagenumber of k-Trees is 0(k). Technical Report ncstrl.vatech_cs//TR-95-17, Computer Science, Virginia Polytechnic Institute and State University. (

Full text available as: |

## Abstract

A k-tree is a graph defined inductively in the following way: the complete graph K(sub-k) is a K-tree, and if G is a k-tree, then the graph resulting from adding a new vertex to k vertices inducing a K(sub-k) in G is also a k-tree. This paper examines the book embedding problem for k-trees. A book embedding of a graph maps the vertices onto a line along the spine of the book and assigns the edges to pages of the book such that no two edges on the same page cross. The pagenumber of a graph is the minimum number of pages in a valid book embedding. In this paper, it is proven that the pagenumber of a k-tree is at most k + 1. Furthermore, it is shown that there exist k-trees that require k pages. The upper bound leads to bounds on the pagenumber of a variety of classes of graphs for which no bounds were previously known.

Item Type: | Departmental Technical Report |
---|---|

Subjects: | Computer Science > Historical Collection(Till Dec 2001) |

ID Code: | 432 |

Deposited By: | User autouser |

Deposited On: | 05 December 2001 |

Alternative Locations: | URL:ftp://ei.cs.vt.edu/pub/TechnicalReports/1995/TR-95-17.ps.gz, URL:http://historical.ncstrl.org/tr/ps/vatech_cs/TR-95-17.ps |