MOON: MapReduce On Opportunistic
eNvironments

Heshan Liri, Jeremy Archuleta Xiaosong Maf, Wu-chun Feng
Zhe Zhang and Mark Gardner

“Department of Computer Science, Virginia Tech
{hlin2, jsarch, fen§@cs.vt.edu, mkg@vt.edu

fDepartment of Computer Science, North Carolina State Usiiye
ma@cs.ncsu.edu, zzhang3@ncsu.edu

fComputer Science and Mathematics Division, Oak Ridge Matibaboratory

Abstract—MapReduce offers a flexible programming simplifies large-scale parallel data processing [5],
model for processing and generating large data sets onbut has been relegated to dedicated computing re-
dedicated resources, where only a small fraction of such go,rces found in high-performance data centers.
resources are every unavailable at any given time. In While the union of MapReduce services with
contrast, when MapReduce is run on volunteer comput- . .
ing systems, which opportunistically harness idle desktop volupteer cor_nput_lng systems is conceptually ap-
computers via frameworks like Condor, it results in poor P€aling, a vital issue needs to be addressed —
performance due to the volatility of the resources, in computing resources in desktop grid systems are
particular, the high rate of node unavailability. significantly more volatile than in dedicated com-

Specifically, the data and task replication scheme puting environments. For example, while Ask.com
adopted by existing MapReduce implementations is woe- har_sarver unavailability rate is an astonishingly low

fully inadequate for resources with high unavailability. To S
address this, we propose MOON, short for MapReduce On 0.000455 [6], availability traces collected from an

Opportunistic eNvironments. MOON extends Hadoop, an €Nterprise volunteer computing system [7] showed
open-source implementation of MapReduce, with adaptive & mMore challenging picture: individual node un-
task and data scheduling algorithms in order to offer availability rates average around 0.4 with as many
reliable MapReduce services on a hybrid resource architec- gs 90% of the resources simultaneously inacces-
ture,wherevolunteerc_omputing systems are su_pplemented sible (Figure 1). Unlike dedicated systems, soft-
gy a small set of dedicated nodes. The adaptive task and, o hardware failure is not the major contributor
ata scheduling algorithms in MOON distinguish between - .
(1) different types of MapReduce data and (2) different to resource volatility on volunteer computing sys-
types of node outages in order to strategically place tasks t€ms. volunteer computing nodes shut down at the
and data on both volatile and dedicated nodes. Our tests owners’ will are unavailable. Also, typical volunteer
demonstrate that MOON can deliver a 3-fold performance computing frameworks such as Condor [1] consider
imp_rovement to Hadoop in volatile, volunteer computing g computer unavailable for running external jobs
environments. whenever keyboard or mouse events are detected. In
such a volatile environment it is unclear how well
existing MapReduce frameworks perform.

The maturation of volunteer computing systems In this work, we evaluated Hadoop, a popular,
with multi-core processors offers a low-cost respen-source MapReduce runtime system[8], on an
source for high-performance computing [1], [2], [3]emulated volunteer computing system and observed
[4]. However, these systems offer limited progranthat the volatility of opportunistic resources cre-
ming models and rely on ad-hoc storage solutiorstes several severe problems. First, the Hadoop
which are insufficient for data-intensive problem®istributed File System (HDFS) provides reliable
MapReduce is an effective programming model thdata storage through replication, which on volatile

I. INTRODUCTION
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Fig. 1. Percentage of unavailable resources measured ey 7- We implemented these three enhancements in
trace from a production volunteer computing system at Sasg®i

Supercomputing Center [7]. The trace of each day was cetlecttiadoop and carried out extensive evaluation work
from 9:00AM to 5:00PM. The average percentage unavaitgbiti ~within an opportunistic environment. Our results
measured in 10-minute intervals. show that MOON can improve the QoS of MapRe-
duce services significantly, with as much as a 3-
I . ... fold speedup, and even finish MapReduce jobs that
systems can have a prohibitively high replication . o .
. : . - ...._could not be completed previously in highly volatile
cost in order to provide high data availability, " °.
. : o environments.
For instance, when machine unavailability rate IS
0.4, eleven replicasare needed to achieve 99.99% Il. BACKGROUND
avallgblllty for a smgle Qatg block, assuming thq&_ Volunteer Computing
machine unavailability is independent. Handling
large-scale correlated resource unavailability re-

quires even more replication.

Many volunteer computing systems have been de-
veloped to harness idle desktop resources for high-
. : . herformance or high-throughput computing [1], [2],

Second, Hadoop does not replicate intermedi " [4]. A common feature shared by these systems

results (the output of Map tasks). When a no on-intrusive deployment. While studies have
becomes inaccessible, the Reduce tasks procesgj ploy :

intermediate results on this node will stall, resultin een conducted on aggressively stealing computer

in Map task re-execution or even livelock. cles [9] and its corresponding impact [10], most

: . r tion volunteer computin tems allow r
Third, Hadoop task scheduling assumes that t eOOIUC on vorunteer computing systems allow Users

majority of the tasks will run smoothly until com- 0 donate their resources in a conservative way by

letion. However, tasks can be frequently sus end@% running external tasks when the machine is
P ' ' q y suspencig ively used. For instance, Condor allows jobs to

or interrupted on volunteer computing systems. Theecute only after 15 minutes of no console activity

o . e
default Hadoop task replication strategy, design
to handle failures, is insufficient to handle the hig%ad a CPU load less than 0.3.

volatility of volunteer computing platforms. B. MapReduce

To mitigate these problems in order to realize MapReduce is a programming model designed to
the computing potential of MapReduce on voluntegfmplify parallel data processing [5]. Google has
computing systems, we have a created a noYflen using MapReduce to handle massive amount of
amalgamation of these two technologies to produggh search data on large-scale commodity clusters.
MOON, “MapReduce On Opportunistic eNvironThis programming model has also been found ef-
ments”. MOON addresses the challenges of presctive in other application areas including machine
viding MapReduce services within the opportunistigarning [11], bioinformatics [12], astrophysics and
environmen'; of volunteer computing systems, iéyber-security [13].
three specific ways: A MapReduce application is implemented

« adopting a hybrid resource architecture by préhrough two user-supplied primitives: Map and

visioning a small number of dedicated compuReduce. Map tasks take inpkéy-valuepairs and
ers to serve as a system anchor to supplementvert them into intermediaté&ey-value pairs



which are in turn converted to outpley-value are connected with a local area network with rel-
pairs by reduce tasks. atively high bandwidth and low latency. However,
In Google’s MapReduce implementation, th@C availability is ephemeral in such an environment.
high-performance distributed file system, GFS [14Moreover, large-scale, correlated resource inacces-
is used to store the input, intermediate, and outgibility can be normal [15]. For instance, many
data. machines in a computer lab will be occupied si-
multaneously during a lab session.
C. Hadoop Observing that opportunistic PC resources are not
Hadoop is an open-source cluster-based MapRependable enough to offer reliable compute and
duce implementation written in Java [8]. It is logstorage services, MOON supplements a volunteer
ically separated into two subsystems: the Hadoepmputing system wita small number of dedicated
Distributed File System (HDFS), and a MapReduasmmpute resourced=igure 2 illustrates this hybrid
task execution framework. architecture, where a small set of dedicated nodes
HDFS consists of &ameNode process running provide storage and computing resources at a much
on the master and multiplBataNode processes higher reliability level than the existing volatile
running on the workers. To provide scalable datsdes.
access, the NameNode only manages the system
metadatawith the actual file contents stored on
the DataNodes. Each file in the system is stored
as a coIIection of equal -sized data blocks. For 1/0

transfer occurring directly between the client and
the target DataNodes. Like GFS, HDFS achieves
high data availability and reliability through data
replication, with the replication degree specified by
a replication factor (@) Volunteer ~computing (b) MOON
To control task execution, a singl#dobTracker environments
process running on the master manages job sta#igs2. Overview of MOON executing environments. The resesr
and performs task scheduling. On each worker nm@-nodes with a question mark are ephemeral.
chine, aTaskTracker process tracks the available
execution slots. A worker machine can execute upThe MOON hybrid architecture has multiple ad-
to M Map tasks and? Reduce tasks simultaneouslyantages. First, placing a replica on dedicated nodes
(M and R default to 2). A TaskTracker contactgan significantly enhance data availability without
the JobTracker for an assignment when it detedtsposing a high replication cost on the volatile
an empty execution slot on the machine. Task®des, thereby improving overall resource utiliza-
of different jobs are scheduled according to jotoon and reducing job response time. For example,
priorities. Within a job, the JobTracker first tries tahe well-maintained workstations in our research lab
schedule a non-running task, giving high priority tbave had only 10 hours of unscheduled downtime
the recently failed tasks, but if all tasks for this joln the past year (due to an unnotified power out-
have been scheduled, the JobTracker speculativate), which is equivalent to a 0.001 unavailability
issues backup tasks for slow running ones. Theasge. Assuming the average unavailability rate of a
speculative tasks help improve job response timevolunteer computing system is 0.4 and the failure
of each volatile node is independent, achieving
lll. MOON DESIGN RATIONALE AND 99.99% availability only requires a single copy on
ARCHITECTURE OVERVIEW the dedicated node and three copies on the volatile
MOON targets institutional intranet environtodes. Second, long-running tasks with execution
ments, where volunteer personal computers (PG@shes much larger than the mean available interval
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of volunteered machines may be difficult to finisfail'. Similar situations will be experienced with
on purely volatile resources because of frequent itemporary unavailability of intermediate or output
terruptions. Scheduling those long-running tasks oiata. However, these two types of data are more
dedicated resources can guarantee their completimsilient to loss, as they can be reproduced by re-
Finally, with these more predictable nodes dedicatedecuting the Map and/or Reduce tasks involved.
to assist a volunteer computing system, it is easi®n the other hand, once a job has completed, lost
to perform QoS control, especially when the nodeutput data is irrecoverable if the input data have
unavailability rate is high. been removed from the system. In this case, a user
Due to the wide range of scheduling policies usenll have to re-stage the previously removed input
in volunteer computing systems, we have designddta and re-issue the entire job, acting as if the
for the extreme situation where MOON might bénput data was lost. In any of these scenarios the
wrapped inside a virtual machine and distributed tone-to-completion of the MapReduce job can be
each PC, as enabled by Condor [1] and Entropia [3lbstantially elongated.
In this scenario, the volunteer computing system As mentioned in Section I, we found that existing
controls when to pause and resume the virtudlbdoop data management is insufficient to provide
machine according to the policy chosen by th@agh QoS on volatile environments for two main
computer owners. To accommodate such a scenarggsons. First, the replication cost to provide the
MOON assumes that no computation or commuecessary level of data availability for input and out-
nication progress can be made on a PC whenpiit data in HDFS on volunteer computing systems is
is actively used by the owner, and it relies on thgrohibitive when the volatility is high. Additionally,
heartbeat mechanisnm Hadoop to detect when anon-replicated intermediate data can easily become
PC is unavailable. temporarily or permanently unavailable due to user
As we will discuss in Section IV, one desigractivity or software/hardware failures on the worker
assumption of the current MOON solution is thaode where the data is stored, thereby unnecessarily
collectively, the dedicated nodes have enough aggfercing the relevant Map tasks to be re-executed.
gate storage for at least one copy of all active dataTo address these issues, MOON augments
in the system. We argue that this solution is mad¢adoop data management in several ways to lever-
practical by the decreasing price of commoditgge the proposed hybrid resource architecture to
servers and hard drives with large capacity. Foffer a cost-effective and robust storage service.
example, currently a decent desktop computer with o . _ o
1.5 TB of disk space can be acquired for undé Multl-dlmensmnal, Cost-effective Replication
$1,000. In the future, we are going to investigate®"VIc€
scenarios where the above assumption is relaxed. Existing MapReduce frameworks such as Hadoop
are designed for relatively stable environments run-
IV. MOON DATA MANAGEMENT ning on dedicated nodes. In Hadoop, data replication
In this section, we present our enhancementsigocarried out in a rather static and uniform man-
Hadoop to provide a reliable MapReduce servigeer. To extend Hadoop to handle volatile volunteer
from the data management perspective. Withincamputing environments, MOON provides a multi-
MapReduce system there are three types of usmensional, cost-effective replication service.
data — input, intermediate, and output. Input dataFirst, MOON manages two types of resources —
are provided by a user and used by Map taskspplemental dedicated computers and volatile vol-
to produce intermediate data, which are in tunmteer nodes. The number of dedicated computers is
consumed by Reduce tasks to create output datauch smaller than the number of volatile nodes for
The availability of each type of data has differerdost-effectiveness purposes. To support this hybrid
implications on QoS.

For input data, temporary inaccessibility will stal] "In Hadoop. an incomplete Map task (e.g., caused by inadiessi
P P y y ity of the corresponding input data block) will be rescheduup to

Compmat'on_ of correspor\dlng Map taSij W.hereﬁl%mes, after which the Map task will be marked as failed amd i
loss of the input data will cause the entire job t@m the corresponding job will be terminated.



scheme, MOON extends Hadoop’s data managbe dedicated DataNodes as necessary. Furthermore,
ment and defines two types of workededicated only after all data blocks of the output file have
DataNodes andvolatile DataNodes. Accordingly, reached its replication factor, will the job be marked
the replication factor of a file can no longer beas complete and the output file be made available
adequately represented by a single number. Instetdusers.
it is defined by a pair{d,v}, where d and v To maximize the utilization of dedicated comput-
specify the number of data replicas on the dedicatets, MOON will attempt to have dedicated replicas
DataNodes and the volatile DataNodes, respectivefigr opportunistic files when possible. When dedi-
Intuitively, since dedicated nodes have muatated replicas cannot be maintained, the availability
higher availability than volatile nodes, placing replief the opportunistic file is subject to the volatility of
cas on dedicated DataNodes can significantly irthe volunteer PCs, possibly resulting in poor QoS
prove data availability and in turn minimize thedue to forced re-execution of the related Map or
replication cost on volatile nodes. Because of tleduce tasks. While this issue can be addressed by
limited aggregated network and I/O bandwidth oasing a high replication degree on volatile DataN-
dedicated computers, however, the major challengées, such a solution will inevitably incur high
is how to maximize the utilization of the dedicatedetwork and storage overhead.
resources to improve service quality while pre- MOON addresses this issue by adaptively chang-
venting the dedicated computers from becomingirgg the replication requirement to provide the user-
system bottleneck. To this end, MOON’s replicatiodefined QoS. Specifically, consider a write re-
design differentiates between various data typescatest of an opportunistic file with replication factor
the file level and takes into account the load and, v}. If the dedicated replicas are rejected because
volatility levels of the DataNodes. the dedicated DataNodes are saturated, MOON will
MOON characterizes Hadoop data files into twdynamically adjustv to v/, wherev’ is chosen to
categoriesreliable and opportunistic Reliable files guarantee that the file availability meets the user-
are defined as data thaannotbe lost under any defined availability level (e.g., 0.9) pursuant to the
circumstances. One or more dedicated copies ade unavailability rate (i.e., 1 — p* > 0.9). If
always maintained for reliable files so that they cgnchanges before a dedicated replica can be stored,
tolerate potential outage of a large percentage @fwill be recalculated accordingly. Also, no extra
volatile nodes. MOON always stores input data amdplication is needed if an opportunistic file already
system data required by the job as reliable files. has a replication degree higher thah While we
In contrast,opportunistic filescontain transient currently estimate by simply having the NameN-
data that can tolerate a certain level of unavailabiliyde monitor the fraction of unavailable DataNodes
and may or may not have dedicated replicas. Inteluring the past interval, MOON allows for user-
mediate data will always be stored as opportunistiefined models to accurately predictinder a given
files. On the other hand, output data will first bgolunteer computing system.
stored as opportunistic files while the Reduce tasksThe rationale for adaptively changing the replica-
are completing, and once all are completed they dren requirement is that when an opportunistic file
then converted to reliable files. has a dedicated copy, the availability of the file is
The separation of reliable files from opportunistibigh thereby allowing MOON to decrease the repli-
files is critical in controlling the load level ofcation degree on volatile DataNodes. Alternatively,
dedicated DataNodes. When MOON decides theliOON can increase the volatile replication degree
all dedicated DataNodes are nearly saturated, an BOa file as necessary to prevent forced task re-
request to replicate an opportunistic file on a dedexecution caused by unavailability of opportunistic
cated DataNode will be declined (details describethta.
in Section 1V-B). Similar to Hadoop, when any file in the system
Additionally, by allowing output data to be firstfalls below its replication factor this file will be
stored as opportunistic files enables MOON to dyut into a replication queue. The NameNode pe-
namically direct write traffic towards or away fronriodically checks this queue and issues replication



throttling algorithm running on the NameNode com-
pares the updated bandwidth with the average I/O
bandwidth during a past window. If the consumed
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Algorithm 1 1/O throttling on dedicated DataNodes

Let W be the throttling window size

Let T}, be the control threshold

Let bwy be the measured bandwidth at timestep
Input: current I/O bandwidtbw;

requests giving higher priority to reliable files. Output: setting throttling state of the dedicated node

Fig. 3. Decision process to determine where data shoulddvedst

B. Prioritizing I/O Requests avg_bw = (3525 _yy bw;) /W
if bw; > avg_bw then

When a large number of volatile nodes are sup- if (state == unthrottled) and (bw; < avg_bw (1 + Ty))
plemented with a much smaller number of dedicated the“t ro— hrottled
nodes, providing scalable data access is challenging. o4

As such, MOON prioritizes the 1/O requests on theend if

different resources. i b$i(j ivg—bwﬂtlhe;‘tl 2 and ( bos(1—Ty))
. - . IT (state == throttiea) an w; < avg_bwx*(1—"1T4 en
To alleviate read traffic on dedicated nodes, state — unthrottled

MOON factors in the node type in servicing a read end if

request. Specifically, for files with replicas on both end if

volatile and dedicated DataNodes, read requests

from clients on volatile DataNodes will always try _ o

to fetch data from volatile replicas first. By doind~: Handling Ephemeral Unavailability

so, the read request from clients on the volatile Within the original HDFS, fault tolerance is

DataNodes will only reach dedicated DataNodeshieved by periodically monitoring the health of

when none of the volatile replicas are available. each DataNode and replicating files as needed. If a
When a write request occurs, MOON prioritizebeartbeat message from a DataNode has not arrived

I/O traffic to the dedicated DataNodes according & the NameNode within thélodeExpirylnterval

data vulnerability. A write request from a reliabléahe DataNode will be declared dead and its files

file will always be satisfied on dedicated DataNodeeplicated as needed.

However, a write request from an opportunistic file This fault tolerance mechanism is problematic for

will be declined if all dedicated DataNodes are closgportunistic environments where transient resource

to saturation. As such, write requests for reliablenavailability is common. If thélodeExpiryInterval

files are fulfilled prior to those of opportunistic filess shorter than the mean unavailability interval of the

when the dedicated DataNodes are fully loadedblatile nodes, these nodes may frequently switch

This decision process is shown in Figure 3. betweenlive and dead states, causing replication
To determine whether a dedicated DataNode is #twrashing due to HDFS striving to keep the correct

most saturated, MOON uses a sliding window-basaedmber of replicas. Such thrashing significantly

algorithm as show in Algorithm 1. MOON monitorswastes network and 1/0O resources and should be

the I/0O bandwidth consumed at each dedicatestoided. On the other hand, if tiNodeExpiryInter-

DataNode and sends this information to the NameMal is set too long, the system would incorrectly con-

ode piggybacking on thbeartbeatmessages. Thesider a “dead” DataNode as “alive”. These DataN-




odes will continue to be sent I/0O requests until large percentage of tasks will likely be suspended or
is properly identified as dead, thereby degradingterrupted due to temporary or permanent outages
overall 1/0 performance as the clients experiencé the volatile nodes. Consequently, the existing
timeouts trying to access the nodes. Hadoop solution of identifying stragglers based
To address this issue, MOON introducehkiber- solely on tasks’ progress scores is too optimistic.
natestate. A DataNode enters the hibernate state ifFirst, when the machine unavailability rate is
no heartbeat messages are received for more thamigh, all instances of a task can possibly be sus-
NodeHibernatelntervalwhich is much shorter thanpended simultaneously, allowing no progress to be
the NodeExpiryinterval A hibernated DataNodemade on that task. Second, identifying stragglers
will not be supplied any I/O requests so as to avoida the comparison with average progress score
unnecessary access attempts from clients. Observizggumes that the majority of nodes run smoothly to
that a data block with dedicated replicas alreadympletion. Third, even for an individual node, the
has the necessary availability to tolerate transigmiogress score is not a reliable metric for detecting
unavailability of volatile nodes, only opportunistictalled tasks that have processed a lot of data. In a
files without dedicated replicas will be re-replicatediolunteer computing environment, where computers
This optimization can greatly save the replicatioare turned off or reclaimed by owner activities
traffic in the system while preventing task refrequently independent of the MapReduce work-
executions caused by the compromised availabilityad, fast progressing tasks may be suddenly slowed
of opportunistic files. down. Yet, because of their relatively high progress
scores, it may take a long time for those tasks
V. MOON TASK SCHEDULING to be allowed to have speculative copies issued.
One important mechanism that Hadoop uses KMeanwhile, the natural computational heterogeneity
improve job response time is to speculatively issignong volunteer nodes plus additional productivity
backup tasks for “stragglers”, i.e. slow runningariance caused by node unavailability may cause
tasks. Hadoop considers a task as a straggler if taedoop to issue a large number of speculative tasks
task meets two conditions: 1) it has been runnirfgimilar to an observation made in [16]). The end
for more than one minute, and 2) jpsogress score result is a waste of resources and an increase in job
lags behind the average progress of all tasks of tBgecution time.
same type by 0.2 or more. The per-task progressTherefore, MOON adopts speculative task exe-
score, valued between 0 and 1, is calculated as $igion strategies that are aggressive for individual
fraction of data that has been processed in this tagisks to prepare for high node volatility, yet overall
In Hadoop, all stragglers are treated equally reautious considering the collectively unreliable en-

gardless of the relative differences between theiironment. We describe these techniques in the rest
progress scores. The JobTracker (i.e., the masigfthis section.

simply selects stragglers for speculative execution

according to the order in which they were orlglnalléi Ensuring Sufficient Progress with High Node

scheduled, except that for Map stragglers, priori blatility

will be given to the ones with input data local to
the requesting TaskTracker (i.e., the worker). Theln order to guarantee that sufficient progress is
maximum number of speculative copies (excludingade on all tasks, MOON characterizes stragglers
the original copy) for each task is user-configurableto frozen taskgtasks whereall copies are simul-
but capped at 1 by default. taneously inactive) andlow tasks(tasks that are
Similar to data replication, such static task repliot frozen, but satisfy the Hadoop criteria for spec-
cation becomes inadequate in volatile volunteatative execution). The MOON scheduler composes
computing environments. The assumption that task#o separate lists, containing frozen and slow tasks
run smoothly toward completion, except for a smalespectively, with tasks selected from the frozen list
fraction that may be affected by the abnormal nodésst. In both lists, tasks are sorted by the progress
is easily invalid in opportunistic environments; anade thus far, with lower progress ranked higher.



It is worth nothing that Hadoop does offer a tasttetected by the system, and the computation needs
fault-tolerant mechanism to handle node outage. be started all over again. To make it worse, the
The JobTracker considers a TaskTrackkyad if speculative copy may also become inactive before
no heartbeat messages have been received frigencompletion. In the above scenario, the delay in
the TaskTracker for afdrackerExpiryinterval(10 the reactive scheduling approach can elongate the
minutes by default). All task instances on a degdb response time, especially when that scenario
TaskTracker will be killed and rescheduled. Naivelyyappens toward the end of the job.
using a smaltracker expiry intervakan help detect To remedy this, MOON separates job progress
and relaunch inactive tasks faster. However, usingraio two phasesnormal and homestretch where
too small value for theTrackerExpiryintervalwill  the homestretchphase begins once the number of
cause many suspended tasks to be killed prenm@maining tasks for the job falls beloid % of
turely, thus wasting resources. the currently available execution slots. The basic

In contrast, MOON considers a TaskTrackeis- idea of this two-phase design is to alleviate the
pendedif no heartbeat messages have been lgpacts of unexpected task interruptions by proac-
ceived from the TaskTracker for &uspensionin- tively replicating tasks toward the job completion.
terval, which can be set to a value much smallegpecifically, during the homestretch phase, MOON
than TrackerExpirylntervalso that the anomaly canattempts to maintain at least active copies ofany
be detected early. All task instances running onramaining taskregardless the task progress score.
suspended TaskTracker are then flagipedtive in  If the unavailability rate of volunteer PCs jg the
turn triggering frozen task handling. Inactive tasgrobability that a task will become frozen decreases
instances are not killed right away in the hop® p~.
that they may be resumed when the TaskTrackerThe motivation of the two-phase scheduling stems
is returned to normal later. from two observations. First, when the number of

MOON imposes a cap on the number of spegoncurrent jobs in the system is small, computa-
ulative copies for a slow task similar to Hadoopional resources become more underutilized as a job
However, a speculative copy will be issued to gets closer to completion. Second, a suspended task
frozen task regardless of the number of its copi@dll delay the job more toward the completion of
so that progress can always be made for the tagie job. The choosing off and R is important to
To constrain the resources used by task replicatigfthieve a good trade-off between the task replica-
however, MOON enforces a limit on the total contion cost and the performance improvement. In our

current speculative task instances for a job, similakperiments, we found = 20 andR = 2 can yield
to the approach used by a related Hadoop schedyénerally good results.

ing study [16]. Specifically, no more speculative
tasks wi]l be issued if Fhe concurrent number ctf: Leveraging the Hybrid Resources
speculative tasks of a job is above a percentage
of the total currently available execution slots. We MOON attempts to further decrease the impact
found that a threshold of 20% worked well in ouof volatility during both normal and homestretch
experiments. phases by replicating tasks on the dedicated nodes.
o Doing this allows us to take advantage of the
B. Two-phase Task Replication CPU resources available on the dedicated computers
The speculative scheduling approach discuss@$ opposed to using them as pure data servers).
above only issues a backup copy for a tadter We adopt a best-effort approach in augmenting
it is detected as frozen or slow. Such a reactitke MOON scheduling policy to leverage the hy-
approach is insufficient to handle fast progressirgid architecture. The improved policy schedules
tasks that become suddenly inactive. For instaneespeculative task on dedicated computers if there
consider a task that runs normal until 99% completge empty slots available, with tasks prioritized in
and then is suspended. A speculative copy will only similar way as done in task replication on the
be issued for this task after the task suspensionvidunteer computers.



Intuitively, tasks with a dedicated speculativeount , that are shipped with the Hadoop distribu-
copy are giverlower priority in receiving additional tion. The configurations of the two applications are
task replicas, as the backup support from dedicatgiden in Table f. For both applications, the input
computers tends to be much more reliable. Sindata is randomly generated using tools distributed
larly, tasks that already have a dedicated copy @ath Hadoop.
not participate the homestretch phase.

As a side-effect of the above task scheduling
approach, long running tasks that have difficulty

TABLE |
APPLICATION CONFIGURATIONS

in finishing on volunteer PCs because of frequerjtApplication | Input Size | # Maps # Reduces
; ; ; | sort 24 GB 384 | 0.9 x AwvailSlots
interruptions will eventually be scheduled and guar oord count 0 o 220 o0

anteed completion on the dedicate computers.
VI. PERFORMANCE EVALUATION ~A. Speculative Task Scheduling Evaluation
We now present the performance evaluation of First, we evaluate the MOON scheduling algo-

the MOON system. Our experiments_ are executgdn, using job response time as the performance
on System X at Virginia Tech, comprised of Apple,ayic  on opportunistic environments both the

Xserve G5 compute nodes with dual 2.3GHz POWgeqjing algorithm and the data management poli-
erPC 970FX processors, 4GB of RAM, 80 GBYt@jag can Jargely impact this metric. To isolate the
hard drives. System X uses a 10Gbs InfiniBand, ot of speculative task scheduling, we use the
network and a 1Gbs Ethernet for mtgrconnectlon. 9 eep application distributed with Hadoop, which
closely resemble volunteer computing systems, Wgq s ys to simulate our two target applications
only use the Ethernet network in our experimentgy, taithful Map and Reduce task execution times,
Each node is running the GNU/Linux operating, ;+ generating only insignificant amount of inter-
system .W'th kernel version 2.6.21.1. The MOON,qjate and output data (two integers per record of
system is developed based on Hadoop 0.17.2. intermediate and zero output data).

On production volunteer computing Systems, \ye feed the average Map and Reduce execution
machine availability patterns are commonly noRinas fromsort andword count benchmark-

rgpeatable, ma_king it diffic_ult to fairly comparq_ng runs intosl eep. We also configure MOON
d|fferent‘ strategies. Meanwhne, traces canno_t €aSlY replicate the intermediate data as reliable files
be manipulated to create different node availabilityii, one dedicated and one volatile copy, so that
levels. In our experiments, we emulate a voluntegfiermediate data are always available to Reduce
computing system with synthetic node availability, g} s Sinces| eep only deals with a small amount

traces, where node availability Ieve_l can be adj“_St"t‘ﬂ'intermediate data, the impact of data management
We assume that node outage is mutually indgs minimal.

pendent and generate unavailable intervals usinGrhe test environment is configured with 60

a normal distribution, with the mean node-outagg,|atile nodes and 6 dedicated nodes, resulting in
interval (409 seconds) extracted from the aforemen-10-1 of volatile-to-dedicated (V-to-D) node ratio

tioned Entropia volunteer computing node trace [7degyits with higher V-to-D node ratio will be shown
The unavailable intervals are then inserted into

: _ A 1 Section VI-C). We compare the original Hadoop
hour traces following a Poisson distribution su

. : sk scheduling policy and two versions of the
that in each trace, the percentage of unavailallgyop two-phase scheduling algorithm described

time is equal to a given node unavailability rate. Al section V: with and without awareness of the

runtime of each experiment, a monitoring ProCe$s hrid architecure (MOON and MOON-Hybrid re-
on each node reads in the assigned availability trag ectively).

and suspends and resumes all the Hadoop/MOONpg control how quickly the Hadoop fault-tolerant

related processes on the node accordingly. _mechanism reacts to node outages by using 1, 5,
Our experiments focus on two representative

MapReduce applications, i.esort and word  2Note by default, Hadoop runs 2 reduce tasks per node.



and 10 (default) minutes fofrackerExpiryinterval relatively well. However, at the 0.5 unavailability
With even largerTrackerExpirylntervals Hadoop rate, the MOON scheduling policy significantly
performance gets worse and hence those resultgperforms HadooplMin, by 45% without even
are not shown here. For MOON, as discussed leing aware of the hybrid architecture. This is
Section V-B, the task suspension detection alloiegcause the MOON two-phase scheduling algorithm
using largerTrackerExpirylntervalgo avoid killing can handle task suspension without killing tasks
tasks prematurely. We use 1 minute fuspension- prematurely, and reduce the occurrence of tasks
Interval, and 30 minutes follrackerExpirylnterval failing towards the end of job execution. Finally,
when leveraging the hybrid resources, MOON can
: : further improve performance, especially when the

Hadoo|plOMin —

2500 |- * Hadoop5Min £ T 1 unavailability rate is high.
HadooplMin Exzzzza i . i
2000 | MOON o o i Figure 4(b) shows similar results witlvor d

count . While the MOON scheduler still outper-
forms HadooplMin, the improvement is smaller.
This is due to the fact themord count has

a smaller number of Reduce tasks, providing
less room for improvement. Nonetheless, MOON-
Hybrid outperforms the best alternative Hadoop

1500

Execution Time(s)

1000

500 -

. Machine Unav.ailable Rate . pOllcy (HadOOleln) by 24% and 35% at 0.3 and
(a) sort 0.5 unavailability rates, respectively. Note that the
. . . efficacy of leveraging the hybrid nodes imor d
2500 | "iagoopoMin = i count is slightly different than that insort.
Hadoop1 22 ‘I‘ MOON-Hybrid does not show a performance im-
2000 |7 MOON-Hybrid £ I provement when the unavailability rates are 0.1 and
1500 | : 0.3, mainly because the number of reduce tasks of

wor d count is small, and the speculative tasks
issued by the two-phase algorithm on volatile nodes
are sufficient to handle the node outage. How-
ever, at the 0.5 unavailability rate, the reduce tasks
on volatile nodes are interrupted more frequently,
in which case placing reduce tasks on dedicated
nodes can deliver considerable performance im-
Fig. 4. Execution time with Hadoop and MOON scheduling geic provements.
Another important metric to evaluate is the total

Figure 4 shows the execution times on variousumber of duplicated tasks issued, as extra tasks
average node unavailability rates. Overall, the jakill consume system resources as well as energy.
execution time with the default Hadoop schedulingigure 5 plots the number of duplicated tasks (in-
policy reduces a3rackerExpirylntervaldecreases. cluding both Map and Reduce) issued with different

For the sort application (Figure 4(a)), scheduling policies. For Hadoop, with a smaller
HadooplMin (Hadoop  with 1  minute TrackerExpirylntervalthe JobTracker is more likely
TrackerExpiryInterval outperformsHadoopl0Min to consider a suspended TaskTracker as dead and
by 48% andHadoop5Minby 35%, on average.in turn increase the number of duplicated tasks
When node unavailability rate is low, theby re-executing tasks. Meanwhile, a smalleack-
performance with the MOON schedulingerExpirylnterval can decrease the execution time
policies are comparable to or slightly better thaoy reacting to the task suspension more quickly.
HadooplMin. This is because in these scenari@gdpnversely, a reduction in the execution time can
a high percentage of tasks run normally, and thdecrease the probability of a task being suspended.
the default Hadoop speculative algorithm perfornBdecause of these two complementary factors, we

Execution Time(s)

1000 - q

500 -

0.3 0.5
Machine Unavailable Rate

(b) word count



observe that generally, the Hadoop scheduler creaBesReplication of Intermediate Data

larger numbers of speculative tasks as a smallerI ical Had iob. thehufflenh h
TrackerExpirylntervals used, with a few exceptions, n a typical Hadoop job, thehuffiephase, where
for sort at 0.1 and 0.3 unavailability rates intermediate data are copied to Reduce tasks, is

The basic MOON algorithm significanthgduces time-consuming even in dedicated environments.
duplicated tasks chrorgt it issugs 14%. 2204 andon opportunistic environments, achieving efficient
44% fewer such tasks, at the three unavailability rat Q;ﬁilr?tgr?rzz)c;irgfencc?altz rré%rj dCht?geir;gggésgsl\i/;g tzfﬁa
levels respectively. Similar improvements can bto frequent machine outage. In this section, we
observed fomor d count . With hybrid-resource- : N S
aware optimizations, MOON achieves further imgvaluate the impact of MOON'S intermediate data

provement averaging 29% gains, and peaking r Iicatiqn policy on sr_lufﬂe efficiency and conse-
44% in these tests. guently, job response time.

We compare aolatile-only (VO) replication ap-
. proach that statically replicates intermediate data
10 I R oM 1 only on volatile nodes, and theybrid-aware(HA)
120 - MacopRll o replication approach described in Section IV-A. For
| MOON-Hybnd == T the VO approach, we increase the number of volatile

copies gradually from IMO- V1) to 5 (VO V5). For

the HA approach, we have MOON store one copy
on dedicated nodes when possible, and increase the
minimum volatile copies from from 1HA- V1) to
3 (HA- V3). Recall that in the HA approach, if the
data block does not yet have a dedicated copy, then
the number of volatile copies of a data block is
dynamically adjusted such that the availability of

100
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40

Number of Duplicated Tasks

20

Machine Unavailable Rate

(a) sort

140 [ HadgoIp10Min — ] a file reaches 0.9.
Hadoop5Min EX== . .
120 | Hadoopilin Emmm - These experiments use 60 volatile nodes and 6

| MOON-Hybrid ez dedicated nodes. To focus solely on intermediate

data, we configure the input/output data to use a
fixed replication factor of{1,3} across all experi-
ments. Also, the task scheduling algorithm is fixed
at MOON-Hybrid, which was shown to be the best
in the previous section.

In Hadoop, a Reduce task reports a fetch failure if
the intermediate data of a Map task is inaccessible.
The JobTracker will reschedule a new copy of a
Fig. 5. Number of duplicated tasks issued with differentestting Map task if more than 50% of the running Reduce
policies. tasks report fetching failures for the Map task. We

observe that with this approach, the reaction to the

Overall, we found that the default Hadooposs of Map output is too slow, and as a result, a
scheduling policy may enhance its capability dfpical job runs for hours. We remedy this by allows
handling task suspensions in opportunistic envirothe JobTracker to query the MOON file system to
ments, but often at the cost of shortenifrgckerEx- see whether there aractive replicasfor a Map
pirylnterval and issuing more speculative tasks. Theutput, once it observes three fetch failures from
MOON scheduling policies, however, can delivahis task, it immediately reissues a new copy of the
significant performance improvement over Hadodgap task to regenerate the data.
native algorithms while creating fewer speculative Figure 6(a) shows the results ofort. As
tasks, especially when the resource volatility is higkxpected, enhanced intermediate data availability
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through the VO replication clearly reduces the ovepartially affected by the increasing Map execution
all execution time. When the unavailability rate iime, given that the shuffle time is measured from
low, the HA replication does not exhibit much adthe start of a reduce task till the end of copying all
ditional performance gain. However, HA replicatiomelated Map results. Fosor d count , the shuffle
significantly outperforms VO replication when theéimes with different policies are relatively close
node unavailability level is high. While increasingxcept withVO- V1, again because of the smaller
the number of volatile replicas can help improvetermediate data size.

data availability on a highly volatile system, this Finally, since the fetch failures of Map results
incurs a high performance cost. As a result, therewisll trigger the re-execution of corresponding Map
no further execution time improvement frovi®- V3 tasks, the average number of killed Map tasks is a
to VO V4, and fromVO- V4 to VO V5, the per- good indication of the intermediate data availability.
formance actually degrades. With HA replication/Vhile the number of killed Map tasks decreases
having at least one copy written to dedicated nodas the VO replication degree increases, the HA
substantially improves data availability, with a lowereplication approach in general results in a lower
overall replication cost. More specificallifA- V1  number of Map task re-executions.

outperforms the best VO configuration, i.€¢Q- V3
by 61% at the 0.5 unavailability rate.

With word count, the gap between the best To evaluate the impact of MOON strategies on
HA configuration and the best VO configuration isverall MapReduce performance, we establish a
small. This is not surprising, agor d count gen- base line by augmenting Hadoop to replicate the
erates much smaller intermediate/final output amatermediate data and configure Hadoop to store six
has much fewer Reduce tasks, thus the cost of fetchplicas for both input and output data, to attain a
ing intermediate results can be largely hidden 88.5% data availability when the average machine
Map tasks. Also, increasing the number of replicamavailability is0.4 (selected according to the real
does not incur significant overhead. Nonethelesgde availability trace shown in Figure 1). For
at the 0.5 unavailability rate, the HA replicatioMOON, we assume the availability of a dedicated
approach still outperforms the best VO replicationode is at least as high as that of three volatile
configuration by about 32.5%. nodes together with independent failure probability.

To further understand the cause of performanddat is, the unavailability of dedicated node is less
variances of different policies, Table Il shows ththan 0.43, which is not hard to achieve for well
execution profile collected from the Hadoop jolnaintained workstations. As such, we configure
log for tests at 0.5 unavailability rate. We do nd¥ilOON with a replication factor of 1,3} for both
include all policies due to space limit. Feiort, input and output data.
the average Map execution time increases rapidlyln testing the native Hadoop system, 60 volatile
as higher replication degrees are used in the @des and 6 dedicated nodes are used. These nodes,
replication approach. In contrast, the Map executidrowever are all treated as volatile in the Hadoop
time does not change much across different policitests as Hadoop cannot differentiate between volatile
for wor d count, due to reasons discussed earlieand dedicated. For each test, we use the VO repli-

The most noticeable factor causing performancation configuration that can deliver the best per-
differences is the averagshuffletime. Forsort, formance under a given unavailability rate. It worth
the average shuffle time &fO- V1 is much higher noting that we do not show the performance of the
than other policies due to the low availability oflefault Hadoop system (without intermediate data
intermediate data. In fact, the average shuffle time i@plication), which wasunable to finish the jobs
VO V1 is about 5 times longer than thatldA- V1. under high machine unavailability levels, due to
For VO replication, increasing the replication degraatermediate data losses and high task failure rate.
from 1 to 3 results in a 54% improvement in the The MOON tests are executed on 60 volatile
shuffle time, but no further improvement is observatbdes with 3, 4 and 6 dedicated nodes, corre-
beyond this point. This is because the shuffle timesponding to a 20:1, 15:1 and 10:1 V-to-D ratios.

C. Overall Performance Impacts of MOON
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Fig. 6. Compare impacts of different replication policies intermediate data on execution time.

TABLE I
EXECUTION PROFILE OF DIFFERENT REPLICATION POLICIES AD.5 UNAVAILABILITY RATE .

sort word count
Policy VO-V1 | VO-V3 | VO-V5 | HA-V1 | VO-V1 | VO-V3 | VO-V5 | HA-V1
Avg Map Time (s) 21.25 42 71.5 41.5 100 | 110.75 113.5 112
Avg Shuffle Time (s) | 1150.25 528 563 210.5 752.5| 596.25 584 559
Avg Reduce Time (s)| 155.25 84.75| 116.25 74.5 50.25 28 28.5 31
Avg #Killed Maps 1389 55.75 31.25 18.75| 292.25 32.5 30.5 23
Avg #Killed Reduces 59 47.75 55.25 34.25 18.25 18 15.5 12.5

The intermediate data is replicated with the HA
approach usind1, 1} as the replication factor. As Méoﬂ‘fﬂ?ﬁﬁa%% = J[ :

3000

shown in Figure 7, MOON clearly outperforms 2500 |- MIOON HybridD4 £
Hadoop-VO for 0.3 and 0.5 unavailable rates and is 2000 - i
competitive at a 0.1 unavailability rate, even for a

20:1 V-to-D ratia Forsort, MOON outperforms
Hadoop-VO by a factor of 1.8, 2.2 and 3 with 3,
4 and 6 dedicated nodes, respectively, when the
unavailability rate is 0.5. Fomord count, the
MOON performance is slightly better than aug-

1500 -
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Execution Time(s)

mented HadOOp, de“vering a Speedup factor of 1.5 Machine Unavailable Rate
compared to Hadoop-VO. The only case where (a) sort

MOON performs worse than Hadoop-VO is for the 3000 e .
sort application at the 0.1 unavailability rate and 2500 |- MOON-TybIDg e 1
the V-to-D node ratio is 20:1. This is due to the MOON-HybridD6 ez

2000 E

fact that the aggregate /O bandwidth on dedicated
nodes is insufficient to quickly absorb all of the
intermediate and output data.
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Execution Time(s)
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VIl. RELATED WORK 500
Several storage systems have been designed to T . 05
aggregate idle disk spaces on desktop computers Machine Unavailable Rate
within local area network environments [18], [19], (b) word count

[20], [21]. Farsite [18] aims at building a secure fil;e_ig_ 7
system service equivalent to centralized file systesplication
on top of untrusted PCs. It adopts replication to en-

Overall performance of MOON vs. Hadoop with VO



sure high data reliability, and is designed to reduéequently suspended or interrupted, and in turn
the replication cost by placing data replicas basé#ue task progress rate is not constant on a node.
on the knowledge of failure correlation between ircurrently, the MOON design focuses on environ-
dividual machines. Glacier [19] is a storage systements with homogeneous computers. In the future,
that can deliver high data availability under largewve plan to explore the possibility of combining the
scale correlated failures. It does not assume alWfODON scheduling principles with LATE to support
knowledge of the machine failure patterns and usksterogeneous, opportunistic environments.
erasure code to reduce the data replication overhead-inally, Ko et al. discovered that the loss of
Both Farsite and Glacier are designed for typicaitermediate data may result in considerable per-
I/O activities on desktop computers and are n@drmance penalty in Hadoop even under dedi-
sufficient for high-performance data-intensive contated computing environments [24]. Their prelim-
puting. Freeloader [20] provides a high-performandeary studies suggested that simple replication ap-
storage system. However, it aims at providing groaches, such as relying on HDFS's replication
read-only caching space and is not suitable feervice used in our paper, could incur high repli-
storing mission critical data. The BitDew frameeation overhead and is impractical in dedicated,
work [21] intends to provide data managememiuster environments. In our study, we show that
for computational grids, but is currently limited tdn opportunistic environments, the replication over-
applications with little or zero data dependencidsead for intermediate data can be well paid off by
between tasks. the performance gain resulted from the increased
There have been studies in executing MapRedug#ta availability. Future studies in more efficient
on grid systems, such as GridGain [22]. Theiatermediate data replication will of course well
are two major differences between GridGain argbmplement the MOON design.
MOON. First, GridGain only provides computing
service and relies on other data grid systems for \/|||. CconcLUSION AND FUTURE WORK
its storage solution, whereas MOON provides an
integrated computing and data solution by extendingIn this paper, we presented MOON, an adaptive
Hadoop. Second, unlike MOON, GridGain is nagystem that supports MapReduce jobs on oppor-
designed to provide high QoS on opportunisti¢inistic environments, where existing MapReduce
environments where machines will be frequentiun-time policies fail to handle frequent node out-
unavailable. Sun Microsystems’ Compute Servages. In particular, we demonstrated the benefit of
technology is also capable of executing MapRedub#OON's data and task replication design to greatly
jobs on a grid by creating a master-worker task powhprove the QoS of MapReduce when running on
where workers iteratively grab tasks to execute [23]. hybrid resource architecture, where a large group
However, based on information gleaned from [23pf volatile, volunteer resources is supplemented by
it appears that this technology is intended for usesmall set of dedicated nodes.
on large dedicated resources, similarly to Hadoop. Due to testbed limitations in our experiments, we
When executing Hadoop in heterogenous enwised homogeneous configurations across the nodes
ronments, Zaharia et. al. discovered several limitased. Although node unavailability creates natural
tions of the Hadoop speculative scheduling algbeterogeneity, it did not create disparity in hardware
rithm and developed the LATE (Longest Approxispeed (such as disk and network bandwidth speeds).
mate Time to End) scheduling algorithm [16]. LATHn our future work, we plan to evaluate and further
aims at minimizing Hadoop’s job response time bgnhance MOON in heterogeneous environments.
always issuing a speculative copy for the task thadditionally, we would like to deploy MOON on
is expected to finish last. LATE was designed ovarious production systems with different degrees
heterogeneousjedicatedresources, assuming thef volatility and evaluate a variety of applications in
task progress rate is constant on a node. LATUESe on these systems. Lastly, this paper investigated
is not directly applicable to opportunistic environsingle-job execution, and it would be interesting
ments where a high percentage of tasks can foure work to study the scheduling and QoS issues



of concurrent MapReduce jobs on opportunistics]
environments.
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