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ABSTRACT

A procedure is developed by using Hotelling's one-sample T2
fest to test the validity of a multivariate response trace-driven
simulation model that represents an observable system. The vali-
dity of the simulation model is tested with respect to the mean
behavior under a given experimental frame.

A procedure for cost-risk analysis for the one-sample T2 test
is developed. By using this procedure, a trade—off analysis can
be performed and judgement decisions can be made as to what data
collection budget to allocate, what data collection method to use,
how many paired observations to collect on the model and system re—
sponse variables, and what model builder's risk to choose [or test-
ing the validity under a satisfactory model user's risk.

The procedure for validation and the cost-risk analysis are
illustrated for a trace-driven simulation model that represents

a time—sharing computer system with two performance measures of

interest.

Tndex Terms: Validation, Trace-Driven Medelling, Simulation,
Cost~Risk, Statistical Testing.



1. INTRCDUCTION

A common problem encountered in computer system simulation is
that of determining whether the representation of the computerized
model is sufficiently accurate for the purpose for which the model
is to be used [4]. '"Substantiation that a computerized (simulation)
model within its domain of applicability possesses & satisfactory
range of accuracy consistent with the intended application of the

model! is usually referred to as (simulation) model validation 201

and is the definition used in this paper.
A simulation model should be developed for a specific purpose
or application and its adequacy or validity should be evaluated only

in terms of that purpose with regard to experimental frame(s). As

defined by Zeigler [24], an experimental frame, "... characterizes
a limited set of circumstances under which the real system is to
be observed of experimented with." A model may be valid in one ex-
perimental frame but invalid in another. Hence, the validity of
the model should only be tested with respect to a set of experimen-—
tal frames determined by the purpose for which the model is intended,
and not for all possible experimental frames (or all sets of con-
ditions) [18, 19].

The validity of a simulation model is tested under a given ex-—
perimental frame and for an acceptable range of accuracy related to

the purpose for which the model is intended. The acceptable range

of accuracy is the amount of accuracy that is required for the simu-




lation model to be valid under a given experimental frame. The
range of accuracy or the amount of agreement between the simulation

model and the system is measured by a validity measure [3, 5]. The

acceptable range of accuracy determines a range of the wvalidity

measure and this range is called an acceptable validity range [3, 5}.

It is generally preferable to use some form of objective analy-
sis to perform model validation. A common form of objective analysis
for validating simulation models is statistical hypothesis testing
[4]. 1In using a statistical test for validation, one should consider
the type of the simulation model with regard to the way it is drivenmn
and with regard to the way its output is analyzed.

There are basically two types of simulation models with regard
to the way they are driven: self- and trace-driven simulation models.

Self-driven (distribution-driven or Monte Carlo) simulation [12]

is a technique which uses random numbers in sampling from distribu-

tions or stochastic processes. Trace-driven (or retrospective [16])

gsimulation is a technique which combines measurement and simulation
by using the actual data collected on the system as the model input
[12, 23}].

There are basically two types of simulation models with regard
to analysis of the output: steady-state and terminafing simulation

models [10, 14]. A steady-state simulation "is one for which the

quantity of interest is defined as a limit as the length of the simu-

lation goes to infinity" [14]. A terminating simulation "is one for



which any quantities of interest are defined relative to the inter-—
val of simulated time [O,TE}, where TE’ a possibly degenerate ran-—
dom variable, is the time that a specified event E occurs” [14].
The purpose of this paper is to give a procedure for validat-
ing a multivariate response trace-driven steady-state or terminat-
ing simulation model with respect to its mean behavior by using
Hotelling's one-sample T2 test [15] and the methodology for cost-
risk analysis given in [5]. Cost-risk analysis for the one—-sample
T2 test is presented in section 2, and the assumptions underlying
the test together with some remedial measures are given in section
3. The procedure for validation is given in section 4 and is il-
lustrated in section 5 for a simulation model of a time-shared

computer system. Finally, conclusions are given in section 6.

2. COST-RISK ANALYSIS FOR THE ONE-SAMPLE T2 TEST

. 2 ; L s
In using Hotelling's one-sample T~ test to test the validity
of a trace-driven simulation model under a given experimental frame
and for an acceptable range of accuracy consistent with the intend-

ed application of the model, we have the following hypotheses [5]:

H : Model is valid for the acceptable range of
accuracy under the experimental frame.

Model is invalid for the acceptable range of
accuracy under the experimental frame.



There are two possibilities for making a wrong decision in
using the one-sample TZ test for the purpose of validating a trace-
driven simulation model, The first one, type I error, is rejecting
the validity of the model when it is actually valid, and the second
one, type I1 error, is accepting the validity of the model when it
is actually invalid. The probability of making the first type of

wrong decision is called model builder's risk (@) and the probability

of making the second type of wrong decision is called model user's

risk (8) [5].

These risks can be decreased at the expense of increasing the
sample sizes of observations. However, increasing the sample sizes
will increase the cost of data collection. Therefore, schedules
and graphs can be constructed by following the methodology developed
in [5]} and the relationships among the model builder's risk,.model
user's risk; acceptable validity range, sample sizes, and cost of
data collection can be determined. The model sponsor, model user,
and model builder, individually of together, can examine the cost-
rigsk trade-offs by using the schedules and graphs and can make
judgement decisions as to what risks to take, what data collection
budget to allocate, what method to use to measure the system and
collect the trace data, and how many observations to collect on
‘each of the model and system response variables.

The methodology in [5] will now be followed to develop a pro-

2
cedure for the one-sample T~ test to construct the schedules. Step



1 of the methodology requires the determination of an appropriate
statistical test for testing the validity of a multivariate re-
sponse trace-driven simulation model.

A diagrammatic concept of a multivariate response trace-driven
simulation model is given in Figure 1. A trace-driven simulation
model is driven by using input sequences that are extracted from
trace data rather than from a random number generator. The trace
data is a stream of significant events that are observed in a real
operational system and recorded with the time of their occurrences.
One trace-data sequence is one observation (that is, one realiza-
tion) from the ensemble (or the sample space) of all possible trace
sequences [12]. The trace-data sequences must be collected in such
a way that they are independent and identically distributed (iid)
so that the system response variables and the model response vari-
ables will each have iid observations.

The trace-driven modeling technique which 1s usually used for
computer performance evaluation has four distinct stages [12, 23]:
(1) the real system is measured and the raw trace data is collected
by a monitor in a real system, (2) the raw trace data is refined
by a trace analysis program until it is suitable as input to the
model and is analyzed to produce performance metrics; (3) the re-
fined trace data is input to the trace-driven simulator which in-
terprets the input data in a deterministic manner, and (4) the
trace-driven model is validated. The four distinct components of

trace-driven modeling are illustrated in Figure 1.
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The validity of a multivariate response simulation model 1is
tested 5y comparing the model response variables with the corres-
ponding system response variables when the simulation model is run
with the "same" input data that drive the real system. Here, the
"same" has different implications depending upon the way the simu-
lation model is driven. 1In validating a trace~-driven simulation
model, the model input data is exactly the same as the system in-
put data and therefore, the simulated data is correlated with the
actual system output data. Due to this correlation, a one-sample
significance test should be used for validation.

The validity of a multivariate response simulation model
should be tested by using a multivariate statistical procedure.
It would not be proper to test the validity of a multivariate re-
sponse simulation model by testing the validity separately for
each of the response variables because of the multiple response
problem mentioned by Burdick and Naylor [71 and emphasized by
Shannon [22].

Hotelling's one-sample T2 test [15] can then be used for
validating multivariate response trace-driven simulation models
since it is a one-sample multivariate significance test.

Step 2 of the methodology requifes the determination of the
test statistic, the decision rule from the test statistic, the

validity measure, and the power function of the test.




Assuming k response variables from the model and from the sys-
m m m s
tem, let (W) = [W]stys--.sip] and ()" = [ui,uz,---,u;} be the

k dimensional vectors containing the population means of the model
mv—-

1) rep-
i'J

and system response variables. Furthermore, let ug (=1
resent the population mean of the differences between the paired
‘obgervations collected from the jth (j = 1,2,...,k) model and sys-
tem response variables.

The acceptable range of accuracy, which is determined with
respect to the purpose for ﬁhich the model is intended, can be

expressed in terms of the allowable differences between the popu-

lation means and can be stated as
d R
lu'] <8 (1)

where Eé is a k dimensional vector containing the elements u? and
§ is a vector of the largest acceptable differences.

Independent observations can be collected from a steady-state
[9] trace-driven simulation model by using the method of replica-
tions or the method of batch means with sufficient batch size.
The method of replications can be used for collecting independent
observations from a terminating [14] trace-driven simulation model.
Let X, s and yij represent the ith independent paired observations
of the jth steady-state or terminating model and system response

variables. The paired observations Xij and yij represent the ith



independent paired replication values when the method of replica-
tions is used, and the ith independent paired bhatch mean values
when the method of batch means is used. 'The one-sample T2 test

requires that
n, = N and Nj =N for j =1,...,k. (2)

Thus, we can obtain the following paired data matrices which are

correlated with each other.

. . . . . . (3)

Lle N2 v XNk_J NI Ywz e le_c_|

MODFEL DATA MATRIX SYSTEM DATA MATRIX

Let the difference between the paired observations Xij and yij be

denoted as dij’ that is, let

dij = Xij - yij’ i=1,...,N; 4= I,...,k . (4)
Then, the matrix of differences between the paired observations
collected from the model and System response variables is given

as




dp dyy e 4
d),  dy, ... d
21 Y22 2k
- - (5)
dy gy e g
L -l

MATRIX OF DIFFERENCES

Let Eﬁ and Sd be the estimates of u? and the variance-covari-

ance matrix of the differences between the paired observations on

the model and system response variables , respectively, where
d v

d. == zd,.,, j=1,...,k {(6)
JooN a1
1 - -
= — _ —_ T
Pl L CT ARG TR 7
i=1
where
T _ i =
4l = [dgpd e ndgl, 1= 10N (8)
and
d' = [dg,dy,.eesdp] 9)

. 2 .
Then, the test statistic of the one—sample T~ test is computed as (151}
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-y 357l (10)

The T2 statistic has the central T2 distribution when Eé =0
is true. For T2 to have an F distribution, the expression for T
must be weighted by the factor (N-k)/k(N-1) so that

Nk 2
F TP ek (11)

T k@-1)
where Fk,Nmk is the F distribution with degrees of freedom k and
N-k. Thus, the decision rule for testing the validity of the
model with specified maximum model user's risk of B* for the accept-
able range of accuracy (1) and with the minimum model builder's risk
of a* is the following: Accept the validity of the model with re-

spect to the validity measure under the given experimental frame if

2 k(N~1) F (12)

T N-k a¥ sk, N-k

and reject otherwise, where Fu*-k Nek is the upper a percentage
b 3
point of F distribution with degrees of freedom k and N-k.
When Hﬁ = 0 is not true, the quantity F in (11) has the non-

central F distribution with noncentrality parameter

= NeH (13)




and degrees of freedom k and N~k [15]. When the noncentrality para—
meter A is equal to zero, Eé = 0 helds perfectly and it implies that
the model is a perfect representation of the system with respect to
its mean behavior. Any difference between Eé and 0 will result in
a value for A which is greater than zero. As the difference between
Eé and 0 increases, the value of A will also increase. Hence, the
noncentrality parémeter A 1s a validity measure for the one-sample
T2 test.

Substituting the acceptable range of accuracy (1) into (13), we

obtain the upper bound of the acceptable validity range as

V= Ng'j::ilg . | (14)

The variance-covariance matrix $d should be estimated from a pilet

run and/or earlier data.
The power function of the one-sample T2 test is given by

1 - B(Ay = Pr(F' > F ) (15)

o* 3k, N-k
where F' has the noncentral F distribution with the prescribed para-

meters. From (15) we obtain the model user's risk B as a function

of A as

B =1 - PeGF' > F 1) (16)

12
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#
B(X) is tabulated in [11] for several values of o ,k,N-k, and vari-

ous values of ¢, where

2\
b = ol (17)

The maximum model user's risk B“ is given by B(A*).

We now proceed to Step 3 of the methodology. We must first
obtain an cbjective function in terms of the sample size N for the
optimization problem in [5]. Recognizing that the power of the one-
sample T2 test 1s a monotonically increasing function of the non-
centrality parameter A [15], we can maximize the power or minimize
the model user's risk p by maximizing the noncentrality parameter A.
The noncentrality parameter A can be maximized by maximizing N since
in its expression (13), (Ed)'$£l(gd) is a constant. Therefore, we

have

maximize(l) = maximize(N) .

minimize(model user's risk g)

Noting that the degree of freedom N-k must be greater than or equal

to 1, the optimization problem can be stated as

Maximize: N

Subject to: C,N < B - Cq = CO (18)

N > ktl

N integer

i
i
i
|
i
i
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k
where Cd = I (c, +0C,); Cj and Cj are the unit costs of collecting
3=1
one observation from the jth model and system response variables,
respectively, B is the budget for data collection from the model and

system, and c, and CO are the overhead data collection costs on the

0
model and oun the system.

Let the largest integer less than or equal to x be denoted by
bd . If L(B—CO—CO)/CdJ » ktl, then the optimal solution to problem
(18) is given as N* = L(Bucouco)/CdJ; otherwise (18) is infeasible.

We now have completed Step 3 of the methodology. Using the
first three steps and following the remaining Steps 4 through 9, we
present the following procedure for the one-sample T2 test to con-
struct the schedules in Table 1 for "a" values of (c, cyo C, CO),

%
for "b" values of (B}, for "c¢" values of (A ), and for "d" values

%
of (o ).

Procedure for the One-Sample T2 Test to Comstruct the
Schedules in Table 1.
Step 1: Initialize the counts, e R 0 and input
X, id, a, b, c, and d. Go to Step 2.
Step 2:  Imput ¢, C, ¢4, and C,. Compute C4 =c¢'l+C'l. Go to
Step 3.

Step 3: Input B and compute B' = B - ¢o = Cye Go to Step 4.

Step 4

*
If LB'/CdJ < k+l, go to Step 1l; otherwise set N = Lﬁ'/CdJ

and go to Step 5.



TABLE 1. The Schedules.
.}
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* *
Step 5: Compute CDC = g + CO + ch s Vg T k and vy = N -k. Go

to Step 6.

% & T % .
Step 6: Input § and compute A= N d' dlé and ¢ = ZAX/(k+l) .

Go to Step 7.

5 *
Step 7: Input o and retrieve f from the tables [11] for the

Pt

" *
values of a , v 99 and ¢=. Go to Step 8.

1
* *
Step 8:  Output (c,c.), (Q;CO), B, N, CDC, 0 < A <4,

ota

% * *
o <a<1-B, and 0 < B <8 . Go to Step 9.

Step 9

e

Compute u, = u4+l. If U, < d, go to Step 7; otherwise

set u, = 0 and go to Step 10.

Step 10: Compute u, = u3+l. Lf U, < ¢, go to Step 6; otherwise

3
set u,y = 0 and go to Step 1ll1.
Step 11: Compute u, = u2+1. If u, < b, go to Step 3; otherwise
set u, = 0 and go to Step 12:
Step 12: Compute uy = ul+l. If ul:< a, go to Step 2; otherwise
terminate.

The model sponsor, model user, and medel builder, individually
or together, can perform a cost-risk analysis for the one-sample T
test by using the schedules in Table 1 constructed by following the
above procedure. By examining the schedules and/or the graphs of
the data contained in the schedules, cost—risk trade-offs can be
determined and judgement decisions can be made as to what risks to
take, what budget to allocate, what method to use to measure the sys-—

tem and collect the trace data, and how many paired observations to

15



collect for testing the validity of a steady-state or terminating
trace-driven simulation model by using the one-sample T2 test. Con-
struction of the schedules and graphs will be illustrated by the
example of section 5.

In those cases where the data collection cost is not a rela-
tively important factor to consider, a sample size-risk analysis
can be performed without considering the data collection cost. In
this case, the schedules in Table 1 are constructed with no cost
parameters for several enumerated values of the sample size N. Then,
by examining the schedules and/or the graphs of the data contained
in the schedules, sample size-risk trade-offs can be determined and
Jjudgement decisions can be made as to what risks to take with re-

spect to how many paired observations to collect.

3. ASSUMPTIONS OF THE TEST AND REMEDIAIL MEASURES

Two assumptions are fundamental to the statistical theory under-

lying the one-sample T2 test: (1) independence, and (2) multivariate

normality.

3.1 Independence

The observation vectors (gi, i=1,...,N) in the matrix of dif-

ferences (5) must be independent from each other in using the one-—

17
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sample T2 test. This implies the independence among the observa-
tion vectors in the model data matrix (3) and the independence
among the observation vectors in the system data matrix (3).

This assumption can be satisfied by using one of the two major
approaches for obtaining independent observations, namely, the method
éf replications and the method of batch means with sufficient batch
size. In using the method of batch means, the batch size must be
chosen appropriately to obtain independence. Both of the two methods
can be used for steady-state trace-driven simulations and the method

of replications can be used for terminating trace-driven simulatioms.

3.2 Multivariate Normality

Everitt [8] investigated the effects of departures from normal-
ity on the one-sample T2 test. For situations involving from two to
ten variables and with respect to the significance level, he reported
that "Hotelling's one-sample T2 test is badly affected by departures
from multivariate normality due to skewness, but 1s fairly robust
against departures due to kurtosis." The multivariate normality must
be tested since the power of the test is a matter of éoncern in
model validation and the test is sensitive to the departures from
multivariate normality due to skewness.

Univariate normality of the response variables of a steady-
state simulation model may be achieved by increasing the batch size

when the method of batch means is used and by increasing the run



length when the method of replications is used. The effects of
the size and the number of batches on the normality, in the method
of batch means, are discussed in [13, 21]. In a similar manner,
the system response varisbles can be observed by using one of the
aforementioned two methods to try to achieve univariate normality,
The paired observations Xij and yij represent the averages of
the jth response variables in the ith replication when the method
of replications is used and the averages of the jth response vari-
ables in the ith paired batch when the method of batch means is
used. As Box, Hunter and Hunter [6] point out, the distribution
of the differences between sample averagés (gj, j=1,...,k) would
be expected to be nearly normal because of the central limit effect
even 1f the distribqtions of the original observations had been
moderately-nOnnormal. Univariate normality of the differences be—
tween sample averages may then be achieved for steady-state and
terminating simulations by increasing the sample size of differences.
Andrews et al. [2] indicate that although univariate normality
of each variable does not imply multivariate normality of all the
variables, the presence of many types of nonnormality is often re-
flected in the distribution of each variable as well. Hence, uni-
variate normality of each variable Should first be tested and then,
upon the achievement of univariate normality, the multivariate
normality should be tested. Univariate normality can be tested

by using the Box-Cox transformation test [2] given in Table 2 or

19




TABLE 2. Box-Cox Transformation Test for
Univariate Normality.

(a) Numerically find 6 to maxlimize Lmax(e) where

n

(1) L (0) = - %&ngg + (0-1) 3 fn(x))
i=]
"2 2(8)  =(8).2
(11) o = (1/n) L {xi - X 7]
i=1

T
i) 1 - (/my v 2O
i=1 *

(xi - 1)/86 for 8 # 0,

(iv) xie) -

Rn(xi) for 8 = 0.

= 1,...,n; x, >0

[N

(v) X,

(b) Obtain the significance level y from

o 2
2“'max(e) - Lmax(l)} E-Xl(Y)

where xi(y) denotes the upper 100v% point of the chi-squared

distribution with one degree of freedom.

20



(a)

(b)

21

TABLE 3, The Transformaton Test for
Multivariate Normality.

Numerically find & to maximize Lmax(g) where

~ ~

(i) E' = [615829"',8 } and _Qf = [61362)"'361{]'
n n n
(11) Lmax(g) - §£n1$f * jil[(ej_l)iilgnyij]
(iii) 3:\ = (l/n) (Y(E) - l.il)T(Y(__e_) — _l_._]-l')
() w= mr®' .y
(v) Y(E) = (Yé?})
.
(v.7 - 1)/6. for 0. ¢ 0,
(vi) ygg) = + . I
1] in v, for 6, =0

(vil) v = (y.j), i=1,...,n; J=1,...,k; v,., >0

Obtain the significance level v from

~

2
2{Lmax@-) - Lmax(é)} E'Xk(Y)

where xi(y) denotes the upper 100vZ% point of the chi~squared

distribution with k degrees of freedom.
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by using the Shapiro-Wilk test described in [9]. Multivariate
normality can be tested by using the power transformation test

[2] presented in Table 3.

4. PROCEDURE FOR VALIDATION

The steps in using the one-sample T2 test, for validating multi-
variate response steady-state or terminating trace-driven simulation
models with respect to the validity measure for an acceptable range
of accuracy under a given experimental frame, are presented below.
For the univariate case, the procedure can easily be modified for

the use of the one-sample t test.

1: Determine the experimentalrframe under which the validity
of the simulation model is going to be tested. Go to Z.

2 Specify the acceptable range of accuracy for the population
means with respect to the intended application of the model

as

d .
I IE PR R

where 6. is the largest acceptable difference between the
population means of the jth model and system response

variables. Go to 3.

3: If a trade-off analysis among the model builder’'s risk,



10:

model user's risk, cost of data collection, sample size,
and validity measure isg desired, go to 4; otherwise

select a data collection method and go to 5.

Perform the procedure given in section 2 to construct

the schedules in Table 1. Select a data collection method
and choose appropriate values for the model builder’s risk,
model user's risk, sample size of paired observations, and
data collection budget by examining the schedules and/or
the graphs of the data contained in the schedules. Go to
6.

Determine the sample size of paired observations, model
builder's risk, and model user's risk. Go to 6.

Collect N independent paired observations on the model and
System response variables. Set j=1, I=46¢, and g0 to

7.

Test the univariate normality of the differences between
the paired observations on the jth model and system re-
sponse variables. If it is found rYeasonably normal, go

to 8; otherwise store J in I and go to 8.

Compute j = j+1. If j < k, go to 7; otherwise go to 9.

If T = @, go to 12; otherwise go to 10,
If the lack of reasonable normality in the distribution of
the differences between the paired observations on the jth

(i € I) model and System response variables is believed

23



13:

14:

24

to be created hecause of the values chosen for the sample
size of paired observations, model builder's risk, and/or
model user's risk, then go back to 3 to choose new values;
otherwise go to 11.

1f there is a remedial measure to correct the nonnormality,
such as increasing the batch size or the ruan length, go to
3;=0therwise choose another statistical test or validation
technique. Terminate.

Test the multivariate normality of the differences between
the paired observations on the model and system response
variables. If multivariate normality is achieved, go to
13; otherwise go to 1l.

Apply the one-sample T2 test to test the validity of the
model with rgspect to the validity measure for the accept-
able range of accuracy under the given experimental frame.
1f the model is found valid, go to 15; otherwise go to 14.
Determine, due to which variable(s) the invalidity occurs
by testing uq = 0 for the gilven acceptable range of
accuracy, separately, for each of the response variables
[15] or by comstructing simultaneous confidence intervals
for u?, j=1,...,k. If the invalidity is believed to be
created because of the values chosen for the sample size,
risks, and/or the estimate  of the variance-covariance

matrix, then go back to 3 to choose new values; otherwise



conclude that the model is invalid under the experimental
frame considered, revise the model, and go to 3.

15: Conclude that the model is valid with respect to the vali-
dity measure for the acceptable range of accuracy under

the given experimental frame. Terminate.

5. EXAMPLE

In this section, construction of the schedules and graphs for
cost-risk analysis, assessment of multivariate normality, and the
one—sample T2 test together with the validation procedure are illus-
trated for the validation of a time-shared computer model [1, 17] in
steady-state,

The model, as shown in Figure 2, consists of NT = 25 terminals
and a single central processing unit (CPU). The user of each termi-
nal "thinks" for an amount of time which is an independent and ex-—
ponentially distributed random variable with a mean of 25 seconds.
Then, the job produced at the terminal after the think time is sent
to the CPU with a service time which is an independent and exponen-
tially distributed random variable with a mean of 0.8 second. The
arriving jobs join a single queue, with first come first serve (FCFS)
discipline, in front of the CPU and are served in a round-robin

manner. That is, the CPU allocates to each job a maximum service
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quantum of length ¢ = 0.1 second (not including overhead). If
the job is finished within this service time period, it is return-
ed back to its terminal after spending a fixed overhead time of

0.015 second at the CPU. If the job is not finished within

-
i

it

q 0.1 second of service time, its remaining service time is dec-
‘remented by g seconds and it is placed at the end of the queue

after spending a fixed overhead time of T = 0.015 second at the

CPU.
FIGURE 2., A Time-Shared Computer Model with
Round-Robin Service Discipline.
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The time-shared computef model has two response variables
(performance measures) of interest. The first response variable
is the utilization of the CPU and the second one is the average
fesponse time which is the average time elapsed between the time
the job leaves its terminal and the time it is finished being pro-
cessed at the CPU.

For the purpose of illustration, the real system is represent-—
ed by the.same time-shared computer model with the same values
stated above except that the fixed overhead time for the system is
considered to be an independent random variable having an Erlang
distribution with parameter 5 and a mean value of 0.015 second.
Two simulation programs are coded in GPSS/H; one to represent the
model and the other ome to represent the real system. The GPSS/H
program representing the real system is run and during the course
of simulation the interarrival and service times of jobs with re-
spect to each terminal are stored in a data-base with the help of
a FORTRAN subroutine called in the GPSS/H program. The initial
(starting) conditions are assumed to be all terminals being in
the think state at time zero. Then, the GPSS/H program represent-
ing the model is driven by the interarrival and service fimes of
jobs in the data-base and the simulation is carried out until run-
ning out of jobs from a terminal. The method of replications is

used for data collection. The model and the system response vari-
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ables are observed in pairs by running the model with the same
trace-data that drive the real system.

The steps of the procedure given in section 4 will be follow-
ed for validating the time-~shared computer model. The experimental
frame under which the validity of the model is going to be tested
with respect to its mean behavier is determined by the exponential-
ly distributed think times and service time requests, one CPU with
round-robin service discipline, and a single queue with first come
first serve queue discipline. Assuming that the intended applica-
tion of the model is to analyze the mean steady state behavior of
the system with respect to the performance measures chosen, the ac-—

ceptable range of accuracy is specified as

1ui[ < 0.02
(19)
[u‘zi < 0.03

where uf

the paired observations on the first and second model and system

and ug are the population means of the differences between

response variables, respectively.

The overhead costs for statistical data collection by way of
replication for the model and for the system are estimated to be
$200 and $1,400, respectively. It is estimated that the unit cost

of collecting one independent observation (one replication) from



each model response variable is $50 and from the first and second
system respounse variables it is $150 and $200, respectively.

The model sponsor, model user, and model builder are willing
to examine the trade-offs among the model user's risk, model build-
er's risk, acceptable validity range, sample size of observations,
and data collection budget to determine appropriate values for these
parameters. This will be done in two stages., 1In the first stage,
schedules and graphs showing the relationships among the parameters
will be constructed using the procedure of section 2. Ia the second
stage, the trade-offs among the parameters will be examined by
studying the relationships constructed and appropriate values for
the parameters will be determined with respect to the intended ap-
plication of the model.

In order to construct the schedules in Table 1, the variance-
covariance matrix must be estimated first. According to a study
performed by Sargent [17], it has been found that the time-shared
computer model considered here reaches the steady-state conditions
after the first 200 to 300 observations. Hence, alter deleting
the first 250 observations and each system run being compqsed of
500 observations in steady-state, five independent paired obser-
vations are obtained in pilot runs. The observations are given

in Table 4 and the variance-covariance matrix is estimated to be

- 0.000659  0.000272

F=10.000272 0.265486 | * (20)
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TABLE 4. Pilot Data.

1{ODEL SYSTEM DIFFERENCE

Variable 1 Variable 2 Variabie 1 Variable 2 Variable 1 Variable 2

0.81 3.48 0.82 2.80 -0.01 0.68
0.80 3.06 0.78 3.25 0.02 -0.19
0.82 3.61 0.83 3.1t - -0.01 (.50
0.72 2.68 0.76 3.21 -0.04 ~0.53
0.86 3.84 0.84 4.06 .02 -0.22

The schedules in Table 1 are constructed by using the procedure
of section 2 for o = 3200 CO = §1,400; Cm = $100; CS = $350; Bi =
$2,950 + 450i, i = 1,2,...,12;_§'$;¥§ = 0.609 (as calculated from
the values given in (19) and (20));_g'$£l§_= 0.03 + 0.05i, i = 0,1,
...,18; and o = 0.01, 0.05, 0.10.

The tréde—offs among Lhe parameters can be examined by study-
ing the schedules and/or the graphs of the data contained in the
schedules, and judgement decisions can be made to determine appro-
priate values for the maximum model user's risk (B*), minimam and
maximum model builder's risks (a* < a irl—B*), acceptable validity
range (0 < A 5_1*), sample size of observations (N*), and data
collection budget (B).

A question of particular interest is "what would be the maxi-

mum model user's risk, maximum model builder's risk, and acceptable

b
validity range for the given values of Cq» CO’ Cm, Cs’ B, a , and



$?" In order to answer this question, assuming ¢y = §200, C0 =
$1,400, Cm = 5100, CS = $350, B = $8,350, u* = 0.05, and &' = [0.02,
0.03], first the optimal sample size N* is read from the schedules
corresponding to B = 88,350 as 15 and then Figures 3 and 4 are con-
structed by using the data contained in the schedules. In Figure 3,
the relationships among maximum model user's risk (8*), minimum

model builder's risk (a*), and data collection cost (CDC) are shown
for the given values of the parameters. In Figure 4, operating
characteristic curves are given for the specified values of the para-
meters to determine the probability of accepting the simulation model
as valid for various values of the validity measure A and to allow

%
the determination of B for a given value of the upper bound of the

®
acceptable validity range A .

%
The upper bound of the acceptable validity range () ) is calcu-
% 7 mm
lated as N-§'$dl§'= 9.135. Then, the value of the maximum model
X %
user's risk B“ is read from Figure 4 {(or from the schedules) for o =

%*
0.05 and A4 = 9.135 as 0.075. Thus, we get 0 < B < 0.075,

0.05 < a <0.925, and 0 < A < 9.135. Assuming that these values

.

are satisfactory, we choose N = 15.

ks
~

After choosing N = 15 as a result of the cost-risk analysis,
15 independent and identically distributed paired observations are
cbtained by deleting the first 250 observations and running the
system for 500 observations in steady-state. The paired observa-

tions obtained and the differences between them are presented in

Table 5.
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.00
.96

.84

.72

.80

.48

.36

MAXIMUM MODEL USER'S RISK (g*)

.24

.00
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Co=$ 200 Co=$1400

C,=$ 100 C.=$ 350
| &
3 3'5-0609

1 1

340 475 6.10 7.45 8.80 10.15 11.50
DATA COLLECTION COST IN 1000 DOLLARS (CDC)

FIGURE 3.

Cost Versus Maximum Model User's Risk.
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TABLE 5. Data Collected for Validation.

MODEL ' SYSTEM DIFFERENCE
Variable 1 Variable 2 |Variable 1 Variable 2{Variable 1 Variable 2
0.76 2.57 E 0.77 2.70 -0.01 -0.13
0.77 2.95 0.77 2.88 0.00 0.07
0.84 2.76 0.82 2.70 0.02 0.06
0.89 4.17 1 0.88 4,02 0.01 0.15
0.76 2.52 | 0.75 2.60 0.01 ~0.08
0.79 3.62 E 0.81 3.88 -0.02 -0.26
0.86 3.37 0.86 3.17 0.00 0.20
0.79 3.37 . 0.78 3.38 0.01 ~0.01
0.82 3.45 0.82 3.63 0.00 -0.18
0.77 2,54 0.77 2.76 0.00 ~0.22
0.80 3.31 1 0.79 3.18 0.01 0.13
0.85 3.70 § 0.87 3.71 -0.02 ~0.01
0.84 3.90 E 0.85 3.96 -0.01 -0.06
0.87 3.89 | 0.89 3.70 ~0.02 0.19
0.73 2.68 5 0.75 2.67 -0.02 0.01
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We are now in Step 6 of the validation Procedure. Setting
j=1and 1= #, we go to Step 7 and apply the univariate normal-—
ity test in Table 2 to the differences between the paired obser-
vations on the first model and system response variables and we
repeat this for j = 2, Tﬁe results of the tests are presented in
Table 6.

After achieving reasonable univariate normality, we go to
Step 12 and apply the multivariate normality test in Table 3. The
results of this test are also given in Table 6. Multivariate nor-
mality is achieved at an approximate significance level of 0.953,

In Step 13, the one-sample T2 test is applied to test the
validity. As a result, the test statistie T2 is found to be 0.877
which is less than (28/13)}7‘0_1;2513 {see (12)). Thus, in Step 15,
it is concluded that the model is valid with Yespect to the wvali-
dity measure for the acceptable range of accuracy under the given

experimental frame.
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6. CONCLUSIONS

A procedure using Hotelling's one-sample T2 test is presented
for validating a multivariate response trace~driven simulation model
of an observable system with respect to its mean behavior.

Construction of the schedules and graphs for cost-risk analysis,
assessment of multivariate normality, and the one-sample T2 test
together with the validation procedure are illustrated by an example.
In this example, a steady-state trace-driven simulation model repre-
senting a time-sharing computer system with 25 terminals and two

performance measures is considered.
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