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ABSTRACT

One.lésson that-has been learned from previous approaches to scene
ana]ysis is that Tlocal methods are insufficient for extracting reliable
information about the contents of a scene. Two different procedures that
have been tried in order to remedy this deficiency are the use of knowledge
via E_Eﬁigti information and internal models and multilevel analysis based
on hierarchies of rebresentations such as conevsystéms. It does not seem
appropriate to drive the very first levels of analysis by a priori know-
ledge. It is doubtful that it will be possible to use knowledge in a way
general and versatile enough to direct low level processing, and there is a
need for some powerful data driven mechanisms that might at a Tater stage
invoké fnternaT models. It would seem more appropriate to obtain some
crude global information through glancing or planning at low resolution
1eve1s.that can drive a more scrutinous analysis at high resolution Tevels.
While hierarchal systems are therefore good, the way they are currently
being constructed is not necessarily good.

| In this context the issue of Tow level representation becomes more and
more_important, and not enough attention has beeﬁ paid to this issue. Even
_ Marr's provocative ideas about his primal sketch do not go to a suffi;ient
level of analysis, and it is felt that more of the workload shou]d be thrown
onto the first processing levels. In this paper is posited a comprehensiﬁe
hierarchal data structure that requires no decisions and therefore no paramé—
ters for its construction. The fechnique does not require preselected
_windows, but rather uses context-depehdent criteria. The data structure is
versatile, easily computed, and invertible in the sense that the original

image is completely recoverable.



- INTRODUCTION

A major problem that has been perplexing computer vision theorists is
that there appear to be so many useful operators for extracting scene infor-
métion from the intensity array and so many ways to represent and combine
this information. Indeed, the multitude of different approaches suggests
that ﬁe may still be looking for the wrong things. An analysis of our pro-
blems should begin with the issues of low level representation, which deal
with the transition from the raw intensity array to the basic internal
representation within the machine. Hanson and Riseman[1] have concluded
that a number of intermediate data structures are necessary for.storing the
information required for semantic processing. For preliminary processing
they use a cone system that provides scene information at varying resolution
levels. Then they propose an RSE data structure [2] that contains hypotheses
abou regions and boundarieslthat have been obtained from the cone system by.
a collage of operators. Marr[3] has proposed dispensing with the intensity

array entirely by forming a primal sketch that contains a record of prelimi-

nary statistical interpretations of directional intensity events 1in the
intensity array. |

Such data structures have many desirable properties. For example, the
upper ]ayers of cone systems provide interpretations of global events, and
both the lower layers of cone systems and the primal sketch provide inter-
pretations of intensity changes similar to those that are known‘to occur at
early stages in the visual system. One particular difficulty with cone
systems, however, is that the information represented in the higher levels
s difficult to use directly. One reality that one has to live with is
that the results will never be better than the represenatation that is

used. In the case of the human visual system, the number of retinal detec-



tors outnumbers the numbeyr of fibers 1ﬁ the optic nerve by at least two
orders of magnitude, though the.numberrof detectors in the foveal region

is comparable to the number of fibers. Whatever the encoding of visual
informatibn, the origina1 scene is completely recoverable Tater in the

visual system. The visual data are stored multiply in differenf lTayers in
the brain, and there are hints that at least some of these representations-
preserve the topology of the retinaj stimuli. Furthermore, whatever the
retina tells the visual cortex about intensity changes in the scene, the
luminance information is é]so transmitted. At this point very few repre-
sentations have been proposed, and the problem of selecting representations
has not even been thoughtfully discussed in the literature. Typically
intensity arrays are transformed into gradient images, numericgl approxi-
.mations, cooccurrence matrices, frequency images, cones, or symbolic arrays.
Unfortunately, the underlying issues about the use of such representations
have rarely been discussed. Instead, much effort has been put into the
evaluation of the results of the technigues that make use of these represen-
tations. In any case, the issue of which scene representations should be used
in computational vision theory is very much open.

In our work we have long been dissatisfied with the performance of
edge ‘and bar shaped filter masks in edge and line detectfon applications.
Curiously, such filters with.discontinuous receptive fields have Fourier
transforms that contain many zeros in thé finite frequency plane. Conse-
quently, if one wished to reconstruct a scene that has been filtered by
such a mask, one would find that the inverse reconstruction filter has many
singularities. Of course,'cne could alter the filter masks so that no
“information is lost, But the idea of requiring the human visual system to

perform deconvolution is unacceptable. Since the human visual system does




not appear to have frequencies of zero transm1ss1on the representat1ons
it uses are probably more complex than: those that are in common use.

There seem to he'a number of reasons why such filter masks have fouﬁd
consideraﬁle fo]]owing. For one, such detectors seem to model the detectors
that are believed to exist in the neural layers behind the retina. For
another, such detectors are reminiscent of some powerful theorems about
matched filters that at first glance would appear to be app]icab]e; Third;
edge and bar detectors are a delight to implement, even though their outputs
might not be easy to interpret. |

Regarding the first point, it is clear that the visual system must
contain differencing circuitry with which to detect intensity changes.
However, Tittle is known about the actual neural implementations, and
equally little is known about how Tuminance information is encoded in the
transmissions from the retina. The second point reguires somewhat more
elaboration. The theorems about matched filters are derived about known
signals in isolation under conditions of disturbances with known statistics.
In Figure la is shown a scan line across an image that containé white lines
normal to the scan direction. One possible method for detecting these lines
is to apply to the scan line bar filters such as those shown in Figures lc
and le. The positive outputs of these filters are given fn Figures 1b and
1c for the two different filter parameterg; these outputs represent two
different interpretations of Figure 1a. The problem with the outputs of these
fi]ters is that they are context dependent in a very complicated way; the
close proximity of two lines substantia]]y affects the filter outputs for
both. Since the smaller filter makes use of less context, its output is a
more_reliable represeﬁtation of the scan line structuﬁe.- In any case, such
fi]térs mdst be used with great care, and their use probably should not be

regarded as an application of matched filtering. A more detailed discussion
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Figure 1 - Scan line (a), filter output (b) for filter mask (c),
and filter output (d) for filter mask (e).

{

of this issue can be found in [4].

The remaining point for discussion is the one abouf the ease with which
bar and edge type filters can be implemented.a It is very easy to become
dogmatic about "nice" techniques with fast running speeds that almost work,
but in a field as difficult as computer vision, one must be prepared to
appreciate the successes of "near misses,"” ehumerate the éhortcomings, and
try éomething else. It is the purpose of this paper to propose a technique
that produces a highly informative scene representation; it is a structural
techniqﬂé in the sense that it analyses the topology of the picture funcfion
without generating interpretations. It finds and repfesents the strﬁctures
that are actually there as opposed to computing a statistical measure of how
c1ose}y the picture fuﬁction resembles the shapes of some preselected masks.
‘Tﬁis is a technique that we believe can achieve many of the results that
have already been achieved while providing a framework for doing with

relative ease some things that were difficult before. Moreover, this paper
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concerns a philosophy about making decisions in hierarchal systems that Marr
~has called the "Principle of Least Committment," hereafter denoted the PLC [3]}

Those of us who have .designed a complex system with hierarchal decision
making are aware of the way in which an insignificant decision at the bottom
of the hierarchy can topple the entire system if made irrevocably but incor-
rectly. The PLC states that one should never make a decision based upon thin
'evidence that will later have to be changed because of the consequences ot
thaf decision farther up the hierarchy. In other words, to the maximum
extent possible, decision making elements should be placed in a feedback
loop so that firm decisions are deferred until the evidence becomes compeliing.
This is an excellent framework for a relaxation process - one keeps all options
open until the system stabi]izes in an optimal configuration. '

The construction of a hierarchal system becomes much more difficult when
highly interpretive processeé are active even at the lowest processing levels
because there is the possibility that a firm but incorrect decision might
contrad1ct the correct response of the system: The PLC provides for the
1nc1uswon of the correct interpretation among the alternatives produced at
each decision stage. To minimize the number of alternatives that must be
explicitly retained, it is essential-to transform the information at the
earliest étages in such a way that the difficulty of making decisions is
“minimized while at the same time no viable alternatives are.removed from con-
sideration. For this reason we consider the early representatioﬁ of scene
information to be a most critical issue in the conceptual design of an
autbmatic scene analysis system.

“Marr forms his primal sketch by.app1ying edge and bar filters to a raw
jmage and including in the sketch a summary of the significant information in

the outputs of these filters. UWhile Marr's illumination of the issues of low



v]evel vision represents an important contribution to the field, we question
the wisdom of using from the outset a representation that appears to violate
 his own PLC. We believe that by using different techniques it is possible to
form a much more accurate-and sophisticated representation of the original
scene deterministically so that the PLC is not violated at the representation

level.




STRUCTURAL PROCESSING OF DIGITAL PICTURE FUNCTIONS

In 1971 at MIT, Krakauer [5] wrote a program to compute contour maps
for digital picture functions: Conceptually, all one need do is move an
imaginary plane downward through the graph of the picture function and for
each intensity, plot the closed curves formed by the intersection of the plane
with the graph. Krakauer noticed that as the plane was lowered, the regions
thus delineated would be contained within one another in a way that could be
conveniently represented by a tree. Aside from the computation of a few
region shape descriptor;, nothing of much interest resulted from thét work.

Fdr several years Pavlidis [6] has been interested in approximating

functions such as picture functions by segments of polynomial surfaces using

a fechnique known as split and merge. In split and merge one typically begins
with a tentative segmentation; for each region oné computes the best polynomial
surface and then the correspond1ng figure of merit. Regions with poor matches
are split into sma]]er regions, and adjacent regions that are fit by surfaces
with similar parameters are merged until a satisfactory segmentation has been
determined. The technique fails, however, to represent any relationships
among the.regions of the segmentation and is primarily a means of establishing
a simpler description of the surface topology. The.principa1 drawback of

such a technique in scene analysis is that the coefficient ]ébe]s attached

to the surface segments may not have much meaning in the image domain, although
‘the original image will be recoverable to any desired accuracy. Therefore,
invertibility is not the only requirement for a good scene representation.
The primitives of the representation must have a clearly defined relationship
to the original image and to each other, and the ré]ationships mﬁst themselves
. convey useful information. In this paper a queétion i$-a1so raised about the

sufficiency of simple adjacency relationships.



Other investigators have sensed that significant information can be
obtained directly from the topology'of the picture function, though no
particular theories have evo&ved. For examp]e, Fnomoto and Katayama [7]
have done formal work usinag differential geometry to establish some rigorous
definitions for tobo!ogica] features such as ridges and edges. As is
frequently the case, inherently one-dimensional techniques may be uéed to
_obtain quasi-two-dimensional results. Lozano-Perez [8], noting that a
substantial amount of information about a scene was contained in individual
scan lines or intensity profiles, developed a method for detecting objects
by using a syntactic description of intensity profiles across the object.
The syntax was stored in the form of an ATN (augmented transition network)
grammar for which a scan line parsing algorithm was constructed. Such a
technique does not lead to any useful representafions for general scenes
since it is an object-specific technique, but it reinforces other investi-
gators' suspicions tﬁat the picture function topology can be used airect1y.

Since 1975, Ehrich and Foith [9,10] have been investigating picture
processing a]Qorithms using a scene description based on a data structure

for representing intensity profiles that is called a relational tree or simply,

R-tree. An R-tree is a tree data structure that is a complete description
-of the one-dimensional contextual relationships defined by the peaks and
va11eys of an intensity profile. Pointers from the tree vertices link the
structural elements to attribute 1isis from which the original scene can be
completely reconstructed. Since this data structure is the key concept for
this. entire paper, a brief review of relational trees is given next.

In Figure 2 is shown a simple intensity profile containingra few peaks
and valleys. Notice that peaks appear recursi&ely nested withiﬁ larger and
larger peaks-that mighf be conéatenated with and nested within even 1$rger

- peaks. The peaks themselves are delineated by the highest of the valleys on
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Figure 2 - Sample random waveform.
either slope. For example, the small peak Py is concatenated with the small
- peak Pg» and both together form a larger peak that is delineated by the valiey
at data point 4 and whose width extends from point 4 to point 10. Since Py is
the higher {or dominant) peak, this larger peak is cdnvenient1y labeled b5
Now, this recursive nesting of waveform peaks is convenﬁentTy reflected in a

tree, called a relational tree, that is given for this example in Figure 3.

Figure‘S - Relationai tree for Figure 2.

~In this tree, several vertices are labeled 19:21 due to the fact that the



dominant peaks in part of the waveformAare P19 and Poq since both have the.
same height. Ther vertex withrfour.descendants-is due to the fact that the
valleys at data points 14; 71, and 22 are all at the same height. Each non-
frontier:vertex of the R-tree is physically due to a unique valley of the
intensity profi]e; and it is labeled with that peak among thoSe-indﬁced by
the valley that is dominant. The vertices in the frontier of the tree is al
left to right ordering of all the Tocal intensity maxima of the pkofile.

The R-tree is computed using a fast 3-stack algorithm that processes
an intensity profile fromrleft to right. During processing the aTgorifhm
produces a great deal of information about. the peaks and valleys of the
profile, and this is stored in attribute lists that are attached to the
vertices of the R-tree. In our implementation the widths, heights, and
~locations of peaks are stored together with valley locations and pointers
that permit quick traversal of the tree.

It is easiest to regard the representation of an image aé a 1list of

R-trees as though the represéntation had been produced by a transformation,

Ty> called the tree transformation. Our first concern is with the invertibility
of Tgs since/if the original image cannot be recovered, Tt is interpretive
rather than representational. In Figure 4a is an image of a pile of
capacitors, and in Figure 4b is the reconstruction of.thé image from the
‘data structure. Notice the legibility of the code on the capacitor at left
center and the crisp object boundaries. To give some feeling for fhe algo-
_-rithm itself, Figure 5 shows scan line 136 in Figures 43 and 4b in addition
to the R-tree for that line. | |

While the original concept was developed mainly for intensity modulated
‘textures, it was cleaf that for the representation of‘homogeneous regions o
an extension of the concept would be necessary. The reconstruction in Figure

4b was generated by drawing straight line segments between adjacent peaks
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and valleys. The reason that the reconstruction is so accurate is that
“the digitization noise and small intensity variations in the regions that
appear to be uniform cause the profile to be reconstructed by many more

shorter line segments than would otherwise be used. To illustrate this,

,WWW

LINE 136 ‘ "

ORIGINAL
PROFILE

RECONSTRUCTED
PROFILE

NO
PLATEAUS

R-TREE

NODES= 65
TWIGS=141

Figurerﬁ - Scan line 136 of Figuré 4 and R-tree.
in_Figure 6a the scan :1ines of the image in Figure 4a have been smoothed
by é special hysteresis algorithm [11] that has é]iminated small peaks and
'val]eys while preserv1ng exactly the shape and locations of all the maaor
intensity maxima and minima. In this case the hysteresis was set at 40
jntensity units out of a possible 256 so that peaks and valleys of amplitude
less than 40 would be removed. The striking similarity of this image with
the original in Figure 4a despife the amount of. processing that this image
‘ has undergone suggests that most of the small amplitude image detail is
irrelevant for the purposes of scene analysis. Figﬁre'ﬁb shows the reéon-

struction from the data structure, and Figure 7 shows scan line 136 in.
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LINE 136"

ORIGINAL
PROFILE

RECONSTRUCTED
PROFILE

NO
© PLATERUS

R-TREE

_ NODESe 6
TWIGS= 11

Figure 7 - Scan 1ine 136 of Figure 6 and R-tree.

Figures 6a and 6b in addition to the R-tree for that line. Since all small
intensity variations have been removed there is insufficient information in
the data structure to accurately determine the boundaried of the larger
regions.

The problem of rebresent{ng homogeneous regions was solved by detecting
regions of zéro slope, called plateaus, and storing them.in the data struc-
~ ture. If one considers the plateaus to be peaks of zero relative height,
the basic algorithm is not changed.' In ?act, one might also consider the
possibility of quantizing slope and storing in the data structure regions of
constant slope. The reconstruction of Figure 6a using the tree a]gofithm
with plateaus is shown in Figure 8. Notice the dramatic improvement in
" the representation. Once again, Figure 9 shows scan line 136 in Figures
6a and 8 in addition to the R-tree for that line. No effort has been made

to aggregate adjacent plateaus at different heights, since such simpie
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A

Figure 6 - Image after hystéresis smoothing of 40 units (a)
and reconstruction from the data structure {(b).-

Figure 8 - Reconstruction of Figure 6a using plateaus.
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LINE 138

.. ORIGINAL
PROFILE

RECONSTRUCTED
1 PROFILE

PLATERUS

" R-TREE

NODES= 38
TWIGS= 76

Figure 9 - Scan line 136 of Figures 6a and 8 and R-tree.
interpretive processes Should occur farther along in the processing sequence.
Instead, every effort has been made to ensure that there are absolutely no
parameters at this stage of visual processinh.

One of the useful properties of R-trees is that large intensity peaks

that correspond to large one-dimensional regions are located near the root
of the R-tree while their substructures are located closer to the frontier,
Therefore one can choose to ignore image substructures that are Jjudged too
insignificant to be of importance in theiprob]em at hand. On the other hand,
the presence of these substructures in the data.strUCture permits very précise
description of 1érge image structures without the loss of resolution that
is characteristic of systéms employing windows.

| Since grouping is the real task of a vision system, it is still necessary

to show the types of processing that can be accomplished with this repre-
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sentation and to show that useful two-dimenéioné] aggregation can be
achieved. In the last seétion'a complete representation based on R-trees
is posited, and it is shown that one of the principal advantages df an
approach that is inherently one-dimensional is the way in which one can .

describe directional information in the picture function.
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GROUPING |
One of the most difficult and important prob1ems is to determine how
picture elements should bé aggregated into fegions. Agaregation procesées
may be entirely data.driven or entirely directed by prior knowledge; typically
they are directed-by both. Although we hardly know anything about.how the
visual system uses prior knowledge, it is a réasonab1e guess that the Towest
level processing algorithms are not modified by prior expectatiohs.
Whether this is the case or not, attempts to construct a hierarchal vision
system would be greatly comp]icated if no knowledge-independent low Teve]
processing was permitted. In our view, the basic scene representation 1is
used precisely to organize the results of knowledge-independent processing.
Later a number of more complex grouping processes are activated simultaneously,
- taking as ihput the basic representation. Their outputs compete and cooper-
ate to produce regions at higher and higher levels of structura1 complexity.
It is almost pertain]y possible to achieve better know1ed§e-independent
results than we have achieved in the past, and it is important to do so to
provide the semantic processing routines with the best possible input. The
primitives of the basi; scene'repfesentation should organize picture elements
of the intensity array into gestalts such as segments of constant slope,
curvature, intensity, or whatever attributes are conside}ed to be important.
 Marr, of course, has made a strong case_for directional microedges and slope
segment boundaries; these, however, are linear primitivés whose oh]y relation-
ships.are concatenation, and they do not account for Tuminance information
: in any useful way. We have selected the next most feasible primitive called
a peak because the gestalt it represents is a se]f-contained intensity region
in the picture function. Peaks have the advantage of representing Tuminancé
information directly, and since they are self-embedding, their relationships

are much richer and more descriptive. Once a primitive has been selected,
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~ - the remaining issue invo]veg the way in which it is computed. Here again-
we differ Qith Marr because, as was stated earlier, we believe that the
actual insfances of the prfmitives should be recorded rather than correla-
tions with a set of-ideal primitives. .
Almost all previous work on edge detection is based upon the use of
edge models, which in many applications is a most reasonable approach.
Howevef, one obtains different representations by using different models;
since in a general System.one cannot make assumptions about the néture of
the data, the need for preselecting a set of models is distressing. A better
approach would be to provide a representation in which any particular model
can be tested directly, and we believe that our representation is éspecia]?y
suited for that. From our pofnt of view, edges are derived structures rather
than primitives and are a consequénce of the ordering of picture element
intensities on the sides of peaks and valleys. ‘Moreovér, a great deal of
contextual information is available that would, for.example, make it easy
to determine that a given edge bounds a telephone pole rather than a house.
To demonstrate the viability of the representation, let us consider
one of the simplest possible structural edge détection algorithms. In Figure
10a is shown a well known house scene that contains both sharp boundaries
and heavy texture. For comparison, the output of the Sobel operator is
given in Figure 10b thresholded at intensity 40 which is close to the level
at which the roof-sky boundary begins to disintegrate. ngure 10c shows
the result of applying a simplé structural edge detector 1ndependent1y to
fow and column profiles of the image and then merging the results into é
new ﬁseudo—image. The edge detector functions in the fo]loWing'way. From
the R-tree of each profile the slope segments between each pair of adjacent
plateaus, peaks, and valleys are tocated. Suppose that p1={x,,y:} and

p2=(x2,y2} are the endpoints of such a slope segment on a given intensity

LY
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F1gure 10 - House scene {a), Sobel operator with threshold 40
(b}, structural edge detector with threshold 40 (c},
and structural edge detector with 3 pixel blur-
ring normal to the profiles and with threshold 40 (d}.

profile. A file is generated that contains the value |y,-y,| at an arbi-
trarily selected coordinate x=(x,+x,)/2, and in Figure 10c are shown thbse
edge.points that exceeded a threshold of 40.

One might argue against thé advisability of making decisioﬁs about
the presence of edge points using context only in the profile diréctiﬁn

because one is ignoring the usual semantic requirement of edge continuity.

£
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There are several possibilities here. One would be to check adjacent
profiles before making the edge assertion. Another way of introducing
context normal to the profile haS some of the spirit of the Sobel operator
itself. -One blurs vértiCaI]y before detecting horizontal edges and hori-
zontally before detecting vertical edges so that when a slope §egmént is
located in the R-tree for a given profile it already implies that the s!ope-
segment is continued in the adjacent profiles. Since the b1urring ocecurs -
before the computation of the R;trees, this process-is extefha] to the
basic representation that has been discussed up to this point; however, it
is fundamental to the total representation to be discussed in the next
section because the R-trees of directionally blurred images contain direct
representations of directional image structures. The resu1t of edge detec-
. tion after directional blurring is shown in Figure 10d for blurring with a
sliding average of 3 picture elements out of a total scan line length of
256 elements. Once again, a threshold of 40 has been selected.

This structural edge detector produces edges that-do-not appear quite
so straight as those of the Sobel operator because they are so thin and
because the edge elements are always located half way between extrema. On
the other hand, a greater responsibility has been given to the system de-
signer to specify what he means by an edge -- in fact, ai] options are left
" open.  For example, in this implementation, a long slope that is interrupted
by a short plateau will be interpreted as two smaller edges. sufficient
information is present in the R-trees to facilitate much more complex inter-
pretations, and adjacency of multiple edges does not confuse the detector in
the least. Notice how the Sobel operator glues the window boundaries and
~;porgh supports into ambiguous aggregates, while the structural detector
prdduces rather clear separation of the significant slopes. Notice also

that as anticipated, the contextual algorithm produces fewer noise points
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than the line by line algorithm.
In another éxperiment we have ana]yzed the magnitudes of the slopes
rof the $1ope segments detected by the structural edge detector and have ‘not
found the inforhation to be of any value. It may be that slope information
will be helpful for identifying shadings produced by cufved objects, but
apparentTy the edges occurring in a scene 1ike this are all quite sharp.
In such images it is purely edge contrast that fs critical to interpretation.
In the work that we have done to date we have concentrated much more
on region growing than on edge detection becauée the peak gestalt embodfes
simultaneous1y the notions of region and edge boundary. In fact, if it
were possible to achieve proper aggregation of peaks into regions, edge
boundaries could be determined easily after aggregation rather than before.
The first step is to consider the one-dimensional region strucfure within
an intensity préfiie, sfnce RQtrees contain a compiete record of the con-
textual relationships of peaks and valleys within individual profiles. As
was previously noted, an R-tree segments an intensity profile into recur-
sively nested regions according to the relationships among the intensity
maxima and minima within the profile. These ére tentative region components
whose jdentity will depend in large part upon the presence or absence of
correspondfng structures in adjaceﬁt propiles. In [9] we investigated the
_possibility that there were fundamental structural transformations that map
R-trees into R-trees with simpler structure by grouping peak substructures_
“in a useful way. Two of particular significance are the splinter and trunk
traﬁsformations, so named after the particu1ar subtrees required to generate
transformed R-trees directly from the original R-trees. Omitting the theo-
retical discussion of these transformations, the effect these transforma-
tions have on the surféce structures of intensity profiles can be rather

easily described.
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'A1gor1thm 1 - Splinter Rule

Locate in the intensity prof11e all max1ma1 sets of consecutive peaks
whose valleys strictly ascend in height from Teft to right and then strictly
déscend. The peaks in eéch such set are merged into a new peak whose height
and location is that of the dominant (highest) peak in fhat set.

Algorithm 2 - Trunk Rule

As in the splinter rule, locate all maximal sets of consecutive peaks
whdse valleys strictly ascend in height from left to right and theh strictly
descend. For each such set, mark the peak, po, between the ascending and
descending valleys. For each such set, move one by one from the highest
valley to the lowest, marking the peaks for each ﬁew valley until either
all peaks in the set are marked or dominance changes from p, to another
peak. For each set, merge the marked peaks into a new peak whose height and
location is that of po. |

' The effects of the splinter and trunk rules are demonstrated in Figure
11 for line 9 of the smoothed image in FiQUﬁe 6a. Notice that the trunk
rule results in less aggressive aggregation because the groups of peéks to
be merged are split by dominance changes. Notice also that these grouping
rules act on peaks, leaving valleys unchanged. Thus these rules act to
aggregaté white figures on a black background, and if one wished to aggregate
black figures on a white background, one would first form the negative of
the image. Trivial modifications can be made to the sp?inter and trunk
~rules so that after grouping the resu]tfng profiles more closely resemble
the shapé of the original profiles. These modified ruiles, called the modi-
figd.sp]inter and trunk rules, are shown in Figures 1le and 11f. The modi-
-fication requires that in the reconstruttion of the profile the new profile
follows the tops of the peaks that ére being merged; since additional

- yalleys are being introduced, the modified profiles have different trees
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Figure'll - Stan line 9 of Figure 6a (a), reconstruction (b},
trunk rule {c), splinter rule (d), modified trunk
rule (e), and modified splinter rule (f).
than do the profiles produced by the original splinter and trunk rules.
'_The remarkable thing about these grouping transformations is that they
can achieve limited but usefu]htwo-dimensional results even when applied

to intensity profiles .independently. In actual use one would constrain

the grouping by imposing semantic constraints. The results of applying
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Figure 12 - Splinter rule (a) and trunk rule (b) applied to
inverted capacitor scene, splinter rule (c) and
trunk rule (d) applied to smoothed, inverted
capacitor scene.

the splinter and trunk rules to the scan lines of the inverted capacitor
image in Figure 4a are shown in Figures 12a and 12b. Aggregation is rela-
tively slight (notice the blurring of the characters on fhe capacitors)
"beqause the small peéks and noise points in the raw fmage are removed first,
Ifrthe splinter and trunk rules are applied to the smoothed imagefof,Figure
6a, the results in Figures 12c and 12d are obtained. The severe blurring
is due to the procedure of reconstructing a profile by connecting peaks
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and valleys with straight line segments. This is the motivation for using
the modified splinter and trunk rules, which’construct more acceptable
profiles. _ , | |

In Figure 13 is shown a collage of scenes obtained by iteratively apply-
ing the modified splinter rule of the inverted, smoothed capacitor scene of
Figure 6a. Notice in the capacitor at the lower right how the white holes -
dué to reflections gradually fill in. " Since in the inverted image the black
capacitors are figure, the black regions gradually take over the white regions,
filling in first the smaller and then the ]argef holes. For comparison,
consider a similar collage in Figure 14 generated by the modified splinter
rule on the uninverted scene. In this case the white background is consi-
dered by the algorithm to be figure, and gradua11y the capacitor in the
lower right is being absorbed by the white area. To ensure that the grouping
rules act on tHe percebtib1e kegions, both experiments were run by starting
with the smoothed image. |

While these simple aggregation mechanisms are inadequate in themse1vés
for region growing, they demonstrate that simple hypotheses about regioﬁs can
be formed accordingrto criterea that are ent{rety structural in nature. As
mentioned, planning will be heTpful.for determining how many peaks should
be grouped at each merge step, and‘as the regions grow more complex, semantiés
- will surely have to be applied to the process. Most important, grouping must
also make use of context in the dfrectidn normal to the intensity profiles,
and later on some methods are explored for accomp]ishing.this. For the |
moment, however, let us explore some.of the other properties of peaks and
valleys.

In an earlier investigation of a set of texture.samples [9] it was dis-._
covered that the'histograms of dne-dimensional extrema (peaks andfvalieyé of

row and column profiles) tended to be nearly identical to the histograms for
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Figure 13 - Iteratively applied modified splinter rule
(clockwise). Black regions are treated as

figure.

Figure 14 - Iteratively applied modiffed splinter rule
- {clockwise). White regions are treated as

figure.

inserted

a]T'picture elements, almost as though the picture elements had been

- for cosmetic effect. However, the histograms for peaks alone or for valleys

alone tended to differ considerably both. from each other and from the histo-
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gram for all picture'e1emeﬁts. It occurred to us that it might be possible
to segment_regions of heavy texture on the basis of peak and valley attri-
butes, and while we had evidence that this was indeed the case, we never
looked at the results that might be achieved when working with a complex

scene. In Figure 15 are slices from four pseudo-images generated from the
house scene in Figqure ]Oaf Figures 15a and 15b contain all one-dimensional
peaks and all one-djmensiona] valleys, respectively. To obtain a simple
measure of texture contrast we plotted in Figure 15¢ the relative heights
of peaks on the frontier of the R-trees. Relative peak height is the verti-
cal distance between the top of a peak and the valley that induces it, and
this information is part of the R-tree'data struéture. Figure 15d is a
plot of the relative peak heights (ie., valley depths) in the negative image.

There is a vast amount of information in Figure 15 about textured re-
gions. Most of the important regions form an isolated point cluster in one
or another of the four slices. Linear featuresrsuch as tree trunks, branches,
and house boundaries are strongly visible and supplement edge detection
results. One should compare carefully the cloud regions in figure 10a with
those in Figure 15a. It appears that many textures may be characterized
by point clusters in three-dimensional (x,y,intensity) space where the peaks
and valleys fall. What is rea]iy needed are some good algorithms for detec-

~ ting colinearities and for bounding these point clusters. All the necessary
feature measurements are readi1y accessible in the R-trees.

Let us now turn briefly to one final topic. The.theory-that has been
discussed is fundamentally a two-dimensional theory, whereas the implementation
is strictly one-dimensional. While two-dimensional information is not lost

" in the data structure, it is not there explicitly; one reason for not using
a data structure that describes two-dimensional regioné directly is the
potential coﬁp]exity of such a structure. For example, it would be necessary

Y
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and 1D relative valley

to describe saddle points as well as regions that contain holes. It is

possible, however, to link the vertices of the R-trees of adjacent scan
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lines to generate two-dimensional regions.
In Figure 16, four sequential scan lines have been plotted from an
inverted, low resolution (64 x 64 element) copy of the capacitor scene in

Figure 4a. Lines 17 to 20 in that scene fall across the capacitor in the

Figure 16 - Scan lines from Figure 6a.

upper center of the photo, and the three majpr neaks correspond to capaci-
tor bodies. The R-trees for scan lines 17-20 have been plotted in Figure

. 17. In each of these four scan lines, the largest region that covers the
entire scene is represented at the root of each correspénding tree. Moving
oup eacﬁ tree one now finds verticés that correspond to smaller regions
labeled 1, 5, and 6. These correspond Qith the outlines of the_three capa-
citors cfossed by the scan lines. Moving still higher in the trees one
finds.the vertices of still smaller subregions that correspond with specular
reflections from the capacitor surfaces. The process of'region growing in

" the direction normal to the scan lines involves linking vertices of

corresponding structures.
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Figure 17 - Coupled relational trees for scan 1ines 17-20.

Clearly not all vertices in all trees will 1ink to adjacent scan lines,
and it is necessary to decide not only how a vertex 1inks but whether or
not it links at all. The procedure is to match scan line surface struc-
tures by a discréte relaxation process as shown in the example in Figqure
18. Establishing a link between peaks establishes a Tink between the fron-
tiers of the corresponding R-trees. On the other hand, estab]iéhing a link
between valleys induces a link between vertices in the deep structure of
the R-trees. Fortunately, the information in the R-tree data structure

prqvides all the necessary feature measurements on peaks and valleys on

which the relaxation can be based.

The linked list of R-trees is an approximation to a data structure

“that describes the exact two-dimensional topology of the picture function.
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For example, the regions are recursively nested in the scan line direction,
whereas they are only concatenated in the normal direction. Nevertheless,
true twordimensiona1'region growing seems eminently practical, and

structural grouping mechanisms can be devised to operate on the linked

r‘ﬁ\r«-’ﬂ |

regions, rather than on the independent scan lines.

Figure 18 - Linked surface structures.
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SCENE REPRESENTATIONS

The purpose of a viable scene representation is to provide a data

structure that_describes-in a ‘useful way the intensity changes in a scene

and their interrelationships. There are at least five criterea by which

such a representation should be selected.

1)

2)

3)

4)

5)

What should be the primitives of the representation? One must decide
what kinds of information will be essential to the analysis tasks later
on and what supplementary information will facilitate those tasks.

By which techniques sﬁou]d the primitives be extracted? There appéar
to be two major classes of techniques here -- those that are statistical
(interpretational) in nature and those that are structural (representational).
What kind of data structure is required? The data structure determines
the ease with which scene information can be retrieved and expresses the
essential interrelationships among the primitives.

What are the aggregation modh]es for which the scene representation is
to serve as input? If, for example, the formation of é line ‘drawing of
the region boundaries is to be fundamental to the analysis, then the
representétion ought to facilitate the formation of the boundaries. If,
on the other hand, fegion growing is to be the primary goal, one ought
tb consider representing the informatioh that is esseﬁtia1 for deciding
region composition.

How are the aggregation modules going to function? This has been one of
the most difficult problems associated with Tow Tevel processing. We
simpTé.don't know the best way to form boundaries or the best way to
bound regions of heavy texture, and man} investigators believe that

each aggregation module will really consist of a éet-of submodules that

'-produces a rich collage of alternative interpretations. On the other

hand, the types of submodules that can be.imp1emented, or at least the
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—diffiéulty with which they.can be implemented, depends a great deal uponr
the repreéentation.

Asidé from the arguménts in favor of our particular choices and imple-
‘mentation, it is fé]t that at this 1eve1‘the data structure should be repre-
sentational and not interpretational. It should have a form that is useful
for the processing steps that follow, and, in order to make scene analysis

less of an art and more of a science, it should not be necessary to use a
different-representation for each different application, as seems to be the
case at the present time. While computational expediency may dictate the
use of a simpler representation for tracking bubble chamber traéks than
for analyzing a LANDSAT frame, the theory, at least, should be thé same.

We would 1ike to include here a few remarks on our choice of peaks
as the primitives for the represéntation. Since a peak is basically a two-
dimensional region, the use of such a representation ieads to a region-
orjented as opposed to a boundary-oriented theory. However, as we have
demonstrated, boundaries are part of the concept of a peak, and they can
be determined explicitly from the data structure. When one looks at a°
gfadient jmage the brain deceives us into believing that we have found the
object boundaries by aggregating edge assertions for us. The represen-
tationand, for that matter, the edge image in Figure 10c are merely reports
about what is in the data, and the really hard job, which is what we under-
stand least, is to use this 1nformat1on for aggregation. ~ As to the impor-
tance of local intensity maxima and minima, it is unknown whether they
p]ay roles of corresponding importance in the human visual system.

There are a few other cons1derat1ons that have not yet been discussed.
For example, while directional intensity changes can be tracked in the trees,
it is not at all clear that this would be the best approach. The reason
that R-trees do not record direcfiona1 information is simply that thgy are
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computed from one-dimensional data. Additiona] information can be obtained
- by blurring the image directionally first and then computing its R~tfees.
Since in a blurred image the R-trees are ndt independent, not all of thém
need to be stored. Directional blurring is identical to the concept of

directional averaging functions[12] that were used for detecting very subtle

lines and edges in remotb reconnaissance, and this is the same process that.
was used to obtain the'edge detection results in Figure 10d. ‘

Another issue that has not been resolved cbncerns figuré—ground decisions.
Peaks and valleys are dual structures, although they have not been giﬁen
identical treatment. If figure-ground issues are considered to be resolved
at the time when region labels are attached, then it would be desirable to
keep simultaneously the competing figure-ground assertions. In that case
- one would have a data structure that contains not only R-trees of the
original and directionally blurred images, but also the corresponding ones
for the inverted image. Of course, all the information is implicit in the
original list of R-trees, but one should nét neglect the amount of compu-
tation required to retrieve it.

The most general form of:the representation we propose is therefore a
set of R-trees, not only for the row and column profiles and their comple-
ments, but also for the image after it has been'se1ect1vé1y blurred in
~ various directions. The number of b]urfing directions and the degreezof
blurring required is determined by how difficult the analysis tasks are, but
the concebt underlying the representation is application independent. The
R-trees for the blurred images will provide a very sharp and precise de-
scription of long lines or edges whose gradients are norﬁa] to the b1urrihg
| direction. The number of orientations required for ihe~b1urring process is
refated to the degree of blurring, and that relationship is defined more

precisely in [12].
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After the computation of the tree representations, an interpretive
phase 1is initiated whose resﬁlt will be a numbef of competing and coope-
rating results that_Wii] be stored in a layered data structure. Here the
sorting of information and the resolution of conflicts begins. The inter-
pretations stored here are the result of analysis of the trees for edges,
Tines, atomic regions, and so on, tracking for extension to two dimensions,
aggregation by mechanismé such as splinters and trunks, and aggregation
- of heavy textures. Evidence has been shown that operations like edge-
detection, region growing, texture analysis, and even glancing (by tooking
at deeper tree vertices) can be accomplished by using the R-trees. However,
there is much work to be done in developing effective mechanisms for these
specific tasks, and it is felt that the selection of a proper representation

will be a solid advance toward these goals.
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