Computer Science Technical Reports
CS at VT

Algorithms for Storytelling

Kumar, Deept and Ramakrishnan, Naren and Helm, Richard and Potts, Malcolm (2006) Algorithms for Storytelling. Technical Report TR-06-09, Computer Science, Virginia Tech.

Full text available as:
PDF - Requires Adobe Acrobat Reader or other PDF viewer.
story.pdf (533762)


We formulate a new data mining problem called "storytelling" as a generalization of redescription mining. In traditional redescription mining, we are given a set of objects and a collection of subsets defined over these objects. The goal is to view the set system as a vocabulary and identify two expressions in this vocabulary that induce the same set of objects. Storytelling, on the other hand, aims to explicitly relate object sets that are disjoint (and hence, maximally dissimilar) by finding a chain of (approximate) redescriptions between the sets. This problem finds applications in bioinformatics, for instance, where the biologist is trying to relate a set of genes expressed in one experiment to another set, implicated in a different pathway. We outline an efficient storytelling implementation that embeds the CARTwheels redescription mining algorithm in an A* search procedure, using the former to supply next move operators on search branches to the latter. This approach is practical and effective for mining large datasets and, at the same time, exploits the structure of partitions imposed by the given vocabulary. Three application case studies are presented: a study of word overlaps in large English dictionaries, exploring connections between genesets in a bioinformatics dataset, and relating publications in the PubMed index of abstracts.

Item Type:Departmental Technical Report
Subjects:Computer Science > Artificial Intelligence
Computer Science > Bioinformatics
Computer Science > Algorithms and Data Structure
ID Code:747
Deposited By:Ramakrishnan, Naren
Deposited On:11 April 2006