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Abstract

Data assimilation is the process of integrating observational data and
model predictions to obtain an optimal representation of the state of the
atmosphere. As more chemical observations in the troposphere are becoming
available, chemical data assimilation is expected to play an essential role
in air quality forecasting, similar to the role it has in numerical weather
prediction. Considerable progress has been made recently in the development
of variational tools for chemical data assimilation. In this paper we assess
the performance of the ensemble Kalman filter (EnKF) and compare it with
a state of the art 4D-Var approach. We analyze different aspects that affect
the assimilation process, investigate several ways to avoid filter divergence,
and investigate the assimilation of emissions. Results with a real model and
real observations show that EnKF is a promising approach for chemical data
assimilation. The results also point to several issues on which further research

is necessary.




1 Introduction

Data assimilation is the process by which model predictions utilize measurements to obtain
an optimal representation of the state of the atmosphere. Data assimilation is recognized
as essential in weather/climate analysis and forecast activities, and is accomplished by a
mature experience/infrastructure. Both variational [Barkmeijer et al., 1999] and ensemble
based [Molteni et al., 1996, Buizza et al., 2000] approaches to data assimilation are being
successfully employed. As more chemical observations in the troposphere are becoming avail-
able chemical data assimilation is expected to play an essential role in air quality forecasting,
similar to the role it has in numerical weather prediction.

Variational techniques for data assimilation are well-established in numerical weather
prediction (NWP). Building on the early variational approach [Lorenc, 1986, Le Dimet and
Talagrand, 1986, Talagrand and Courtier, 1987], the 4d-Var framework is the current state-
of-the-art in meteorological [Courtier et al., 1994, Rabier et al., 2000] and chemical [Liao
et al., 2005, Sandu et al., 2003, 2005, Sandu and Daescu, 2005] data assimilation. Ensemble
Kalman filter data assimilation [Evensen, 1994, 2003, Burgers et al., 1998] has recently
attracted considerable interest in numerical weather prediction. The cost of applying the
Kalman filter [Kalman, 1960] to “large” models becomes tractable in the Ensemble Kalman
filter approach by using a Monte Carlo approximation to propagate the covariance.

Houtekamer et. al. [Houtekamer et al., 2005] compare 3D-Var and EnKF in an opera-
tional (real) setting. Their results show difficulties for EnKF to match 3D-Var’s solution. To
our knowledge, this is the first comparison between variational and ensemble data assimila-
tion based on real data. Lorenc [Lorenc, 2003], Hamill [Hamill, 2004], and Kalnay [Kalnay
et al., 2005] discuss theoretically the relative merits of the two methods. They conclude that
4D-Var and EnKF have their own particular advantages and disadvantages, neither being a
clear winner, albeit more research needs to be done at least to asses EnKF’s practical merits.

The goal of this paper is to investigate the application of the ensemble Kalman filer
(EnKF) to atmospheric chemical data assimilation. Considerable progress has been made
recently in the development of variational tools for chemical data assimilation [Liao et al.,
2005, Sandu et al., 2003, 2005, Sandu and Daescu, 2005]. However, little work has been done
to date to assimilate chemical observations using nonlinear ensemble filters.

In a previus study [Constantinescu et al., 2006b], we analyzed the performance of EnKF
applied to chemical and transport models in an idealized setting. A reference solution was
considered to be the “truth” and was used both to build an initial unbiased ensemble and
to generate artificial observations. One of the perturbed solutions was considered to be the

“best guess”, and we analyzed how close this solution is to the “truth” without and with data



assimilation. The results indicate that EnKF is able to recover the reference solution with
very good accuracy and to improve the forecast. Moreover, assimilation of the emission rates
and lateral boundary conditions together with the state is beneficial for both the analysis
and the forecast.

We now continue the analysis of EnKF for atmospheric chemical data assimilation and
consider a real scenario. The initial state is the best guess of the system, and we decrease the
uncertainty by assimilating real observations. The “truth” is unknown and the assimilated
solution is validated against observational data. The main contributions of this work are: (1)
a discussion of several methods to inflate the ensemble covariance and avoid filter divergence,
and (2) a comparison between “perturbed observations” EnKF and the state-of-the-art 4D-
Var in an operational-like setting using real data.

The paper is structured as follows. Sections 2.1 and 2.2 briefly review the 4D-Var and
EnKF methods, respectively. Section 3 describes the chemical transport model and the
scenario used in this study, the ensemble initialization and 4D-Var background covariance
formation, and the analysis setting. A comparison between 4D-Var and EnKF data assimila-
tion applied to our atmospheric CTM is shown and discussed in Section 4. Several strategies
to inflate the ensemble covariance and avoid filter divergence are addressed in 5. A validation
of the data assimilation results is carried out in 6. The assimilation of emissions together
the states is discussed in 7. Conclusions and future research directions are given in Section
8.

2 Data Assimilation

In this section we briefly review the 4D-Var approach to data assimilation. More details
on 4D-var can be found in [Courtier et al., 1994, Rabier et al., 2000], and on the ensemble
Kalman filter in our previous study [Constantinescu et al., 2006b].

Consider a nonlinear model ¢; = M, _,+,(co) that advances the state from the initial time
to to future times ¢; (i > 1). The model simulates the evolution of a real system (e.g., the
polluted atmosphere). The model state ¢; at ¢; (i > 0) is an approximation of “true” state
of the system ¢! at ¢; (more exactly c} is the system state projected onto the model space
space).

The initial model state is uncertain (and consequently, future states are also uncertain).
For example, assuming a normal distribution of uncertainty, the initial state is characterized
by its mean cB (the “background” state, or the best initial guess) and its covariance matrix B.

Observations y; of the real system are available at times ¢; and are corrupted by measurement



and representativeness errors ¢; (assumed Gaussian with mean zero and covariance R;)
_ ¢
yi =Hi(c;) +ei -

Here #; is an operator that maps the system/model state to observations.
The data assimilation problem is to find an optimal estimate of the state using both the

information from the model (¢;, ¢ > 0) and from the observations (y;, i > 0).

2.1 4D-Var

In 4D-Var [Courtier et al., 1994, Rabier et al., 2000] the best estimate of the initial state
(conditioned by the observations yq - - - ;) is obtained as the minimizer of the following cost
function (which measures the model-observations misfit)

1 n

(co— CB)T]B%_l (co—c®)+= Z(yZ - ’Hi(ci))T]Ri_l (yi — Hilci)) - (1)

J (o) = 5
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A gradient-based minimization method is typically employed (in our experiments we used
L-BFGS-B [Byrd et al., 1995]). The gradient of the cost function with respect to the initial

state is obtained as

Vcoj = ]Bil (C() — CB) + ZM?;—WOH'LT R;l (y, — Hz(cz)); (2)

i=0
where M = M’ is the tangent linear model associated with M, M* is the adjoint of M,
and H = H' is the linearized observation operator. More information about variational data
assimilation can be found in [Chai et al., 2006], and the adjoint derivation for the model we

used in our numerical experiments can be found in [Sandu et al., 2005].

2.2 The Ensemble Kalman Filter (EnKF)

The Kalman filter estimates the true state ¢! at ¢; using the information from the current best
estimate czf (the “forecast” or the background state) and the observations y;. The optimal
estimate ¢! (the “analysis” state) is obtained as a linear combination of the forecast and

observations that minimize the variance of the analysis (P%)
¢ = ol +PH] (H P H +R)™ (= HileD) =/ + K (=) . @)

The forecast covariance P/ is estimated from an ensemble of runs (which produces an en-
semble of E model states ¢! (e), e = 1,---, E). The analysis formula (3) is applied to each

member to obtain an analyzed ensemble. The working of the filter can be described in a
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compact notation as follows. The model advances the solution from ¢;_; to ¢;, then the filter

formula is used to incorporate the observations at ¢;:
A =M ©) . ¢©=d@+EK(5-1(d@), e=1-E. @

The results presented in this paper are obtained with the practical EnKF implementation

discussed by Evensen [Evensen, 2003].

3 Experiment Setting

We now discuss the chemical and transport model used in our experiments, the particular
scenario simulated, the ensemble initialization and 4D-Var background modeling, and the

setting of the analysis setting.

3.1 The Model

Our data assimilation numerical experiments use the state-of-the-art atmospheric photo-
chemistry and transport model STEM (Sulfur Transport Eulerian Model) [Carmichael et al.,
2003] to solve the mass-balance equations for concentrations of trace species in order to de-
termine the fate of pollutants in the atmosphere [Sandu et al., 2005].

The model can be written compactly as
G = M(Ciq,uiq,cgh Qz‘—l)- (5)

where c is the vector of concentrations (all species at all gridpoints), @ is the rate of surface
emissions, u is the wind field, and ¢ the Dirichlet boundary conditions. Subscripts denote
time indices. The model also depends on other parameters (e.g., the turbulent diffusion, the
air density) which are not explicitly represented here. The complete equations are described
in our previous study [Constantinescu et al., 2006b] and in [Sandu et al., 2005].

A strong constraint for this model is the requirement that c¢; be positive. STEM numer-
ical methods cannot produce or handle negative species concentrations, since they are not
physically possible. This fact plays an important role in both variational and sequential data

assimilation.

3.2 The Case Study

The test case is a real-life simulation of air pollution in North—Eastern United States in

July 2004 as shown in Figure 1 (the dash-dotted line delimits the computational domain).
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Figure 1: Ground measuring stations (a) in support of the ICARTT campaign (340 in total),
and (b) selected stations (#a—#f), two ozonesondes (S1, S2) and the path of a P3-B flight

that will be used for the numerical results/validation illustration.

The observations used for data assimilation are the ground-level ozone (O3) measurements
taken during the ICARTT (International Consortium for Atmospheric Research on Transport
and Transformation) [[CARTT] campaign in summer 2004 (July 5, 19 and 21). A detailed
description of the ICARTT fields and data can be found in [Tang et al., 2006]. Figure 1.a
shows the location of the ground stations (340 in total) that measured ozone concentrations.

The computational domain covers 1500 x 1320 x 20 Km with a horizontal resolution of
60 x 60 Km and a variable vertical resolution (resulting in a 3-dimensional computational
grid of 25 x 22 x 21 points). The initial concentrations, meteorological fields, boundary
values, and emission rates correspond to ICARTT conditions starting at 0 GMT of July
20, 2004.

We selected a number of six stations throughout the domain to plot the time evolution
of measured and modeled ozone concentrations and illustrate the effect of different data
assimilation scenarios. The selected stations are shown in Figure 1.b and correspond to the
following ICARTT IDs: "#a’ - 00065001 (close to the Great Lakes), '#b’ - 230310038 (coastal
station, close to Portland, ME), '#c’ - 90070007 (coastal station, close to New York, NY),
'#d’ - 420270100 (center of the continental domain), '#e’ - 510590030 (in Washington DC),
"#17 - 391514005 (inflow boundary). Our study also includes three validation measurements
taken by two ozonesondes and a P3-B flight(all shown in Figure 1.b).

3.3 Modeling the Background Errors

Our current knowledge of the state of the atmosphere (at the beginning of the simulation) is

represented by the “background” field and its error. In practice, little is known about about



the background error; it is typically assumed to be Gaussian and with zero mean (the model
is unbiased) and covariance B. In EnKF the background covariance is used to generate the
initial ensemble, while in 4D-Var the background covariance is used explicitly in formulation
of the cost function. A good approximation of the background error statistics is therefore
essential for the success of both ensemble and variational data assimilation.

In both EnKF and 4D-Var we consider background errors modeled by autoregressive

(AR) processes of the form
ASE = SE, S =diag(oi) . (6)

where £(e) € (M(0,1))" is a vector of N independent normal random variables of mean 0
and standard deviation 1. The AR background accounts for spatial correlations, distance
decay, and chemical lifetime. For more details on the construction of the AR background
model the reader is referred to [Constantinescu et al., 2006a).

The ensemble initialization using AR perturbations was described in detail in the previous
paper [Constantinescu et al., 2006b]. The AR model is particularly advantageous in the 4D-

Var context where the inverse of the AR background covariance
B =A"S52A4,

allows for an elegant formulation of the background term in the cost function (1)

1

z:S_lA(c—cB) = ((:O—CB)TIB_1 (co—cB)zisz.

N | —

This formulation only requires one matrix-vector multiplication by the AR coefficient matrix
A, and one component-wise scaling (multiplication by the diagonal matrix S™'). A more

detailed discussion can be found in [Constantinescu et al., 2006a, Liao et al., 2005].

3.4 Analysis Setting

This section discusses the setting of both 4D-Var and EnKF data assimilation experiments.

All the simulations are started at the same time (0 GMT July 20*") with a four hour
initialization step. This allows the background 4D-Var run and each of the ensemble members
to reach quasi-steady-state before the assimilation window. We will denote the initialization
window as [-4,0] hours. The “best guess” of the state of the atmosphere at 0 GMT July 20
is obtained from a longer simulation over the entire US performed in support of the ICARTT
experiment [Tang et al., 2006]. This best guess is used to initialize the deterministic (non-
assimilated) solution showed in the results section. The best guess evolved to 4 GMT July

20*" represents the background state in 4D-Var. The ensemble members are formed by
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adding a set of unbiased perturbations to the best guess at 0 GMT, then evolving each
member to 4 GMT July 20",

The 24 hours assimilation window starts at 4 GMT July 20** and ends at 4 GMT July
215 (henceforth denoted as [0,24] hours). Observations are available at each integer hour in
this window (i.e., at 0, 1, ..., 24 hours). The ozone O3 observations used in this study are
from the ICARTT ground stations (Figure 1). Not all the stations provide observations each
hour (the number of hourly observations varies between 160 and 326 during the assimilation
window).

EnKF adjusts the concentration fields of 66 “control” chemical species in each grid point
of the domain every hour using (3). The ensemble size was chosen to be 50 and 200 members.
Ensembles of 50 members are typical in numerical weather prediction and they are thought
to provide a good balance between accuracy and computational efficiency. The 200 member
runs were performed mainly for comparison purposes.

4D-Var adjusts the initial concentrations of the 66 control chemical species at each grid
point at the beginning of the assimilation window (4 GMT July 20"). The L-BFGS iterations
are stopped when the cost function is reduced to less than 107 of its initial value (J =
1072J), or when the number of iterations exceeds 25.

The 24 hours forecast window starts at 4 GMT July 21%* and ends at 4 GMT July 22"¢
(the forecast windows will be denoted further as [24,48] hours). The model is initialized at 4
GMT July 22" with the evolved optimal solution in case of 4D-var, and with the ensemble
mean in case of EnKF, and evolved in forecast mode for 24 hours.

An important challenge is raised by the positivity of chemical concentration fields, a
constraint inherent to chemical transport modeling. In 4D-Var positivity can be imposed as
a bound constraint in the optimization procedure (and is easily accommodated by L-BFGS-
B [Byrd et al., 1995]). In EnKF it is difficult to impose the positivity constraint and the
analysis (3) may result in negative concentrations. The simple strategy of setting all negative
concentrations to zero introduces bias in the analysis.

The performance of each data assimilation experiment is measured by the R? correlation
factor between the observations and the model solution (separate R? factors are computed
in the assimilation and in the forecast windows). The R? correlation factor of two series X

and Y of length n is

(n Y XaYi= > X > Y;)Z

T s X - (o) (n o v - ()

(7)

In our experimental setting the deterministic (best guess) solution yields an R? of 0.24

in the analysis and 0.28 in the forecast windows. We aim to improve these results by using
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the two assimilation methods (EnKF and 4D-Var).

4 Comparison between EnKF and 4D-Var

An excellent comparison of the relative merits of EnKF and 4D-Var in the context of numer-
ical weather prediction was given by Lorenc [Lorenc, 2003] and expanded by Kalnay [Kalnay
et al., 2005]. Hamill makes a theoretical analysis of the two approaches in [Hamill, 2004].
A direct comparison of operational systems involving 3D-Var and EnKF can be found in
[Houtekamer et al., 2005], where promising results for ensemble filtering are shown.

Similar arguments for the relative merits of EnKF and 4D-Var can be considered in the
context of CTMs. EnKF is simple to implement, while 4D-var requires the construction
of adjoint models, a non-trivial task in the presence of stiff chemistry [Sandu et al., 2005].
EnKF allows for a simple integration of model errors, whereas 4D-Var assumes a perfect
model. The ensemble propagates the forecast covariance and a very good estimate of the
background covariance is readily available at the beginning of the next assimilation cycle. On
the other hand the 4D-Var optimal solution is consistent with model dynamics throughout
the assimilation window. 4D-Var naturally incorporates asynchronous observations while for
EnKF asynchronous observations require a more involved framework [Hunt et al., 2004]. A
consistent derivation of the initial ensemble in EnKF is difficult [Constantinescu et al., 2006a].
Moreover, in the presence of stiff chemistry, it is likely that each application of the filter will
throw the model state off the quasi-steady-state; consequently, after each assimilation cycle
a new stiff transient will be introduced, and this may considerably impact the computational
time needed to advance the model state for each ensemble member. It is not clear at this
time how does the computational cost of EnKF compare with that of 4D-Var (in order to
obtain similar performance). To the best of our knowledge comprehensive tests of EnKF
versus 4D-Var have not been carried out so far.

The EnKF forecast can be done by evolving each individual member (ensemble forecast)
or by performing a single model integration initialized with the best estimate (the ensemble
average at the end of the assimilation window). In the latter situation the forecast costs
of 4D-Var and EnKF are the same. On the other hand the ensemble forecast provides
an estimate of uncertainty in model predictions over the forecast window. In the results
presented in this paper the forecasts after EnKF assimilation are computed using a single
model integration.

We first performed a “textbook application” of EnKF using 50 and 200 member ensem-
bles. Table 1 shows the R? correlation results between the observations and model values for

all state assimilated numerical experiments. For each scenario the ensemble size, additional



setting information, and R? for the analysis and forecast windows are presented. The results
with the 50 member ensemble are presented as EnKF experiment #1, and the results with
the 200 member ensemble are presented as EnKF experiment #11.

The correlation factor between model and observations in the assimilation window is
R? = 0.24 for the non-assimilated run. It grows to R? = 0.40 for the solution assimilated
with the 50 member ensemble and to R? = 0.49 for the solution assimilated with the 200
member ensemble. The large ensemble solution comes close to the correlation factor of
the 4D-Var assimilated solution (R?> = 0.52). None of the methods, however, is able to
considerably improve the model-observations correlation in the forecast window.

To further understand the behavior of the filter we look at the time evolution of ozone
concentrations at the selected ground stations. Figures 2.a-f show the time series of ozone
observations, and the non-assimilated, EnKF #1, and 4D-Var solutions. After the first
12 hours the EnKF solution comes very close to the non-assimilated one and “ignores”
further observations. Clearly the filter diverges. Without an effective influence of the new
observations the solution is driven by emissions and (lateral) boundary conditions. Another
result in support of the filter divergence is EnKF #11, shown in Figure 5. Increasing the
ensemble size to 200 members doubles the accuracy of the estimated covariances. The
analysis is improved by a small factor in the beginning of the assimilation window when the
ensemble variance is large enough, but after 12 hours the filter diverges as well (and fails to
bring any improvement in the second half of the assimilation window or in the forecast).

A conclusion of this numerical experiment is that both EnKF and 4D-Var methods per-
form well in the beginning of the assimilation window.

We will now look at several ways to prevent the filter divergence by inflating the ensemble

covariance.

5 Preventing Filter Divergence

The previous section shows that the “textbook application” of EnKF [Evensen, 2003] to our
particular scenario leads to filter divergence: EnKF shows a decreasing ability to correct
the ensemble state toward the observations at the end of the assimilation window. Filter
divergence [Houtekamer and Mitchell, 1998, Hamill, 2004] is caused by progressive underes-
timation of the model error covariance magnitude during the integration; the filter becomes
“too confident” in the model and “ignores” the observations in the analysis process. The
cure is to artificially increase the covariance of the ensemble (effectively accounting for model
errors) and therefore decrease the filter’s confidence in the model results.

In this section we investigate several ways to “inflate” the ensemble covariance in or-
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Figure 2: Ozone concentrations measured at the selected stations and predicted by EnKF#1

(50 members, “textbook application”) and 4D-Var (50 iterations). The overall measure shows

comparable results, and in the case of EnKF it shows clearly that the filter divergences after

some time.
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ID | Method Details R? R?
analysis | forecast
- Deterministic | Best guess solution, no assimilation 0.24 0.28
- | 4D-Var 50 iterations w/ AR background 0.52 0.29
EnKF(50) “textbook application” 0.38 0.30

2 | EnKF(50) additive inflation: N(0, 6ppb) white noise | 0.60 0.30
added before filtering if O3 >5ppb

3 | EnKF(50) additive inflation: A(0,6ppb) white noise | 0.71 0.30
added after filtering if O3 >5ppb

4 | EnKF(50) multiplicative inflation: v_ <4, v, =1 0.61 0.30

5 | EnKF(50) multiplicative inflation: v =1, v, <4 0.61 0.29

6 | EnKF(50) multiplicative inflation: v_ <4, v, <4 0.62 0.32

7 | EnKF(50) multiplicative inflation: v_ < 10, v, <8 0.63 0.31

8 | EnKF(50) model-specific inflation: 10% emissions, | 0.58 0.32
10% boundaries, 3% wind

9 | EnKF(50) model-specific inflation: 10% emissions, | 0.59 0.30
10% boundaries, 10% wind

10 | EnKF(50) combined inflation: y_ <10, vy <4, 10% | 0.72 0.33
emissions, 10% boundaries, 5% wind

11 | EnKF(200) “textbook application” 0.49 0.30

12 | EnKF(200) multiplicative inflation: v_ <4, ~, <2 0.82 0.28

13 | EnKF(200) multiplicative inflation: v~ <10, v, <8 0.85 0.23

Table 1: The R? measure of model-observations match in the assimilation and forecast

windows for the EnKF (with different ensemble sizes) and 4D-Var data assimilation.

der to prevent filter divergence. The first method is the additive inflation [Corazza et al.,
2002], where we simulate model errors by adding uncorrelated noise to model results. This
increases the diagonal entries of the ensemble covariance. The second method is the mul-
tiplicative inflation [Anderson, 2001], where each member’s deviation from the ensemble
mean is multiplied by a constant. An “online” estimation of the inflation constant is pos-
sible [Kalnay et al., 2005]. This increases each entry of the ensemble covariance by that
constant squared. Finally we discuss the covariance inflation obtained through perturbing
key model parameters, and we call it model-specific inflation. We note that a better approach

can be obtained by constructing multi-model ensembles [McKeen et al., 2005].
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5.1 Additive Inflation

The additive inflation process [Corazza et al., 2002] consists of adding random noise to the
model solution; the noise can be thought of as a representation of the unknown model error.
With the assumption that the model error is unbiased we add white noise n € N (0, Q) of
mean zero and covariance matrix Q.

The most intuitive way is to add noise to the forecast solution. The net result is to

increment the forecast covariance by Q. With the notation (4)
/€)= M(ct1(e) +n(e) . e=1-- E, = Pl«F/+Q.

In the ideal situation Q should reflect the correlation of the model errors. Since these are very
much unknown one typically chooses white noise, i.e. the covariance matrix @ is diagonal
(n is a vector of independent random variables). The experiment EnKF #2 presented in
Table 1 is an application of the filter with additive inflation, with white noise added before
assimilation (to ch ). An independent random perturbation drawn from a normal distribution
with mean zero and standard deviation of 6 ppb is added to ozone in each grid point. Note
that the perturbations can be negative and large and the perturbed ozone concentration can
become negative; in this case the concentrations are set to zero. In order to avoid excessive
biases induced by the truncations a perturbation is added in a grid point only if the ozone
concentration is larger than 5 ppb.

Another way is to add the noise right after each assimilation step. This noise is evolved
through the model (from ¢; ; to ¢;) and the resulting perturbation in the forecast state will
present appropriate correlations. The forecast covariance is thus added a covariance matrix
that captures at least some of the off-diagonal elements of the model error covariance. With
the notation (4)

(e) = M(cty(e) +m(e)), e=1,---,E.

The experiment EnKF #3 presented in Table 1 adds white noise to ozone after each assim-
ilation step. The noise has a standard deviation of 6 ppb and is added only if the ozone
concentration is larger than 5 ppb to minimize biases resulting from truncation.

Adding white noise before the assimilation has a negative impact on the off diagonal
elements of the background covariance by diminishing their relative weight, while adding
perturbations after the assimilation (and before the integration) allows correlations to rede-
velop, and this is reflected in our results (Figure 3). They both perform well in the analysis
where the increased variation of the background allows the filter to better account for the
observations. The lack of off diagonal correlation and the amount of unstable modes (model

states) render the EnKF #2 to perform poorly in the forecast, while EnKF #3 performs
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better than the textbook EnKF (#1). In our case, EnKF #2 developed oscillations in the

solution, as they can be noticed in the Figs. 3.a-f.

5.2 Multiplicative Inflation

The multiplicative approach to covariance inflation [Anderson, 2001] is to enlarge the spread
of the ensemble about its mean by a scalar factor v > 1. The result is an increase of the
ensemble covariance by v? while the ensemble mean remains unchanged. The filter trust in
the model is thus degraded while the correlations developed through the ensemble evolution
are preserved (both diagonal and off-diagonal entries of the covariance matrix are scaled by
the same amount).

One can inflate the forecast ensemble before filtering

czf(e)<_<czf>+7—(czf(e)_<cf>)7 621,"',E = Pf<_fyzpfa

2

(where (-) denotes the ensemble average) or the analyzed ensemble after filtering:
ct(e) « () + 7 (ct(e) = (), e=1,---,E = P+ 2P".

The inflation of the analysis covariance prepares an ensemble of larger spread for the integra-
tion over the next time interval. Note that the multiplicative covariance inflation procedure
changes the concentrations and may lead to negative concentration values. One needs to set
these negative concentrations to zero, which may change the ensemble mean (and bias the
estimate).

An important decision in the multiplicative covariance inflation is the choice of the infla-
tion factors y4. Small inflation factors do not prevent filter divergence. Large values lead to
overconfidence in measurements, may amplify spurious correlations, and may lead to large
biases after the negative concentrations are set to zero. The inflation factors are usually es-
timated by trial and error. Typical values found in the meteorological literature [Anderson,
2001] are small (1.01 < 7 < 1.2). Values in this range did not bring any noticeable im-
provement to the analysis in our tests. Therefore we have implemented an adaptive scheme
to determine the magnitude of the apriori (7_) and aposteriori (v, ) inflation factors. We
estimate the variance of the observed species (O3), and balanced it against the observation
variance, while allowing the ensemble variance to have “reasonable” values (> 1%). Upper
bounds are imposed on the choice of 7. to prevent over-inflation.

Multiplicative inflation results are shown in Table 1 (experiments EnKF #4 to EnKF
#7). For each example we present the upper bound of the inflation factors (the lower bound
is always 1). In all examples (EnKF #4 to EnKF #7) the multiplicative inflation leads to
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a better R? agreement of model predictions and data than the textbook EnKF application
(EnKF #1). The combination of apriori and aposteriori inflation (EnKF #6) leads to a
better agreement with data than either apriori only (EnKF #4) or aposteriori only (EnKF
#5) inflations. The best R? agreement (in analysis and forecast) is obtained with moderate
bounds for the inflation factors (y- < 4 and y; < 4 in EnKF #6). The effects of covariance
over-inflation can be noticed for EnKF #7 (y_ < 10 and v, < 8), where the forecast R? is
degraded, albeit the analysis R? proves to be the largest.

Figure 4 presents the time series of ozone concentrations at the six selected ground
stations. The assimilated ozone series follow the observations much closer than the non-
assimilated ones in the analysis window. However, the improvements in the forecast capa-
bilities are modest.

The effects of over-inflating the covariance can be seen in experiments EnKF #12 and
EnKF #13 which use 200 member ensembles. The results of EnKF #13 presented in Figure
5 show that the assimilated results become oscillatory (effects also noticed for EnKF #7,
but not shown in this study). The R? agreement between the assimilated solutions and
the data is remarkable in the assimilation window, but the forecast skill is deteriorated
when compared to the non-assimilated solution. By decreasing too much the confidence in
the model the solution is overconstrained by the observations and reflects less and less the

model dynamics.

5.3 Model-Specific Inflation

While the additive and multiplicative covariance inflation algorithms are general, we now
focus on the sources of uncertainty that are specific to CTMs: boundary conditions, emis-
sions, and meteorological fields. We account for these uncertainties by perturbing the model
parameters (i.e., creating an ensemble of model parameters that mimics the appropriate dis-
tribution of parameter space uncertainty). Each ensemble member then runs with a different
set of model parameter values. This leads naturally to an increased spread of the ensemble

of states, i.e., to covariance inflation. With the notation (5)
c/(e) = M(c(e), oty (€) uinr, 0 (e) dty, a2 (e) Qin) , e=1,---,E,

where aV2¢™(e) € N (1, 0VB“*™) are random perturbation factors of the model parameters.

This approach is well grounded in our intuition - the main sources of uncertainty in CTMs
are treated explicitly. Moreover the state subspace spanned by the ensemble is consistent
with model dynamics and the state errors are correlated according to model dynamics. The
violations of the positivity constraint arising from the additive and multiplicative inflation

procedures are avoided.
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The numerical results for model-specific covariance inflation are presented in Table 1
(examples EnKF #8 and #9). In both examples the boundary conditions and emissions are
added normal random perturbations with a standard deviation equal to 10% of their nominal
values, i.e., a®"™ € N(1,0.1). The perturbation of the wind fields is 3% in example EnKF
#8 (a¥ € N'(1,0.03)) and 10% in example EnKF #9 (a¥ € N (1,0.1)).

The model-observations agreement of the results of experiment EnKF #8 are similar to
those of experiment EnKF #6 (which uses multiplicative inflation), but the model-specific
inflation is easier to implement and its solution is in better agreement with model dynamics.
A comparison between the results of EnKF #6 and #8 at the selected ground stations is
shown in Figure 4 and confirms that model-specific inflation lead to similar performance as
the multiplicative inflation.

Further inflation through the wind fields leads to a degradation of both the analysis
and forecast results, as seen in example EnKF #9 in Table 1. The experiment EnKF #10
represents a hybrid strategy where both model-specific and multiplicative inflation yield good
results.

Note that a more sophisticated method to account for model errors (and consequently
inflate the ensemble covariance and avoid filter divergence) is to use a multi-model ensemble
[McKeen et al., 2005]. Another approach to prevent filter divergence is to prevent the
ensemble inbreeding [Houtekamer and Mitchell, 2001] by breaking the filter into two parts

that cross act on the other’s input. These approaches are not discussed in this paper.

6 Validation of the Assimilation Results

The data assimilation experiments in this paper use only ground ozone observations. While
the ground stations provide a rich data set, the concentration fields are not constrained at
any of the upper levels. Moreover, no chemical species except ozone is constrained. This
section presents a validation of the assimilation results against three independent vertically
distributed observations. These data sets were obtained by the two ozonesondes S1 and S2
and during the P3-B flight (Figure 1.b). The ozonesondes were launched at 14 GMT (S1)
and at 22 GMT (S2) July 20"". The NOAA P3-B plane was flown between 14-22 GMT
along the trajectory shown in Figure 1.b at different altitudes (corresponding to grid vertical
levels 3-16 in our model).

Figure 6 represents the vertical profile of the ozone concentrations measured by the two
ozonesondes (S1 and S2) together with the concentrations predicted by the model after
assimilating data with 4D-Var, EnKF #2 (additive inflation), EnKF #6 (multiplicative
inflation), and EnKF #8 (model-specific inflation).
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The EnKF solutions are very close to observations near the observation sites (on or close
to the ground level where the solution is constrained). At higher altitudes, however, the
assimilated ozone fields are very different for different assimilation methods. For additive
(EnKF #2) and multiplicative (EnKF #6) inflation tests the vertical ozone profile is oscil-
latory, with the peaks taking unreasonable values. The vertical profiles obtained with the
model-specific inflation (EnKF #8) have reasonable values. The 4D-Var profiles are close to
observations and close to the EnKF solution near the observation sites. At high altitudes
the 4D-var profiles come closer to the non-assimilated solution and show no oscillations.

The oscillatory behavior of the EnKF solutions at higher levels is likely due to spurious
correlations between these levels and the ground. Spurious long-range correlations imply
that the ensemble is strongly correcting the ozone in the upper levels in response to model-
observations mismatch at the ground level. The spurious correlations are due to the limited
size of the ensemble. They are the strongest for the multiplicative inflation experiment (where
all the correlations, including the spurious ones, are increased every cycle) and very mild for
the model-specific inflation (which better captures the real correlations). To alleviate the
spurious correlations inherent with limited size ensembles one should consider techniques to
explicitly localize the correlations [Houtekamer and Mitchell, 2001, Ott et al., 2002]. This
approach forces the correction that each observation site exerts on the concentration field to
decrease with the distance from the observation site. Limiting the spatial influence in EnKF
will be considered in future work.

Figure 7 represents the ozone concentrations measured during the P3-B plane flight to-
gether with the concentrations predicted after data assimilation with 4D-Var, EnKF #2
(additive inflation), EnKF #6 (multiplicative inflation), and EnKF #8 (model-specific in-
flation). The conclusions closely parallel those of the ozonesondes. EnKF data assimilation
with additive and multiplicative covariance inflation (and no localization) is not performing
very well in the upper levels of the atmosphere due to over-corrections required by spurious
correlations. The solution obtained with the model-specific inflation as well as the 4D-Var
solution follow the observations well, although no visible improvement is obtained when
compared to the non-assimilated concentrations. Clearly, to fully constrain the ozone field

one needs to include in the assimilation measurements of the vertical ozone profiles as well.

7 Assimilation of Emissions

In regional chemistry and transport modeling the influence of the initial conditions is rapidly
diminishing with time, and the concentration fields are “driven” by emissions and by lat-

eral boundary conditions. Since both emissions and lateral boundaries are in general poorly
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Figure 6: Ozone concentrations measured by ozonesondes and predicted by the model after
data assimilation with 4D-Var, EnKF #2 (additive inflation), EnKF #6 (multiplicative
inflation with v < 4 and v, < 4), and EnKF #8 (model-specific inflation with 10%

perturbations on the emissions and boundary conditions and 3% perturbations of the wind).

known it is of considerable interest to improve their values using information from observa-
tions through data assimilation. In this setting we have to solve a state-parameter assimila-
tion problem [Derber, 1989, Annan et al., 2005, Evensen, 2005]. Our study of EnKF in an ide-
alized setting [Constantinescu et al., 2006b] has revealed that the combined state-parameter
assimilation has the potential to further improve both the analysis and the forecast. In this
section we discuss the state-parameter assimilation in the case where real observations are
available.

In the numerical experiments we follow the approach discussed in our previous study
[Constantinescu et al., 2006b]. The emission rates are multiplied by specific correction co-
efficients. These correction coefficients are appended to the model state (more exactly, to

the vector of control variables). The EnKF data assimilation is then carried out with the
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4D-Var and EnKF #8 solutions are in better agreement with the observations.
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extended model state. With the notation (5)

l sz ] . l M (C?_laui—laciril’ (1+04§E—N1[) Qi—l)

EM | EM
Q; o]

We considered two cases for the parameters «. In the first one scalar correction parameter is
considered per chemical species for all ground-level gridpoints (coarse parameter resolution).
In the second a different correction parameter is considered for each species and each ground-
level gridpoint (finest parameter resolution). In practice one may consider intermediate
resolutions, e.g., one correction factor per species per geographic area. The initial ensemble
of correction factors is an independent set of normal variables oy € N (0, 0.3), that produces
a perturbation of +£100% of the initial value.

Table 2 shows the model-observations agreement (R2?) after EnKF data assimilation for
only the state and for the combined state and emission correction coefficients. We only
consider multiplicative inflation scenarios. Table 2 presents the results obtained with one
correction factor per gridpoint; the results with one correction factor for all gridpoints are
similar and are not presented. The results show no improvement of either the forecast or
the analysis when emissions are assimilated. It is likely that due to the small ensemble
size spurious (stronger-than-real) correlations are being developed between emissions and
ozone concentrations. The filter tries to compensate the model-observations mismatch by
over-adjusting the emission rates. This de facto introduces model errors which have a neg-
ative impact on the quality of the analysis and forecast. While in the idealized setting the
assimilation of emission was beneficial, in the real case under consideration it degrades the
assimilated solution. Considerably more research is needed to understand the use of EnKF

data assimilation to correct for emissions in chemical transport models.

8 Conclusions and Future Work

This paper presents a comparison between “perturbed observations” EnKF and state-of-the-
art variational data assimilation (4D-Var) applied to the assimilation of real observations into
an atmospheric photochemical and transport model. Our previous study [Constantinescu
et al., 2006b] considered an idealized setting for data assimilation and showed a very promis-
ing performance of EnKF. The experiments discussed in this paper reveal the difficulties and
challenges of assimilating real data.

Experiments showed that the filter diverges quickly (after about 12 hours of assimilation)
with both 50 and 200 member ensembles. In regional air quality simulations the influence

of the initial conditions fades in time, as the fields are largely determined by emissions

23



Method Details R? analysis | R? forecast
State | Em. | State | Em.
Deterministic | — 0.24 |0.24 | 0.28 | 0.28
EnKF(50) “textbook application” 0.40 | 0.38 | 0.30 | 0.31
EnKF(50) multiplicative inflation: v_ < 4, | 0.62 | 0.62 | 0.32 | 0.31
7+ <4
EnKF(50) multiplicative inflation: . < | 0.63 | 0.65| 0.35 | 0.26
10, 74 <8

Table 2: Model-observations agreement for the EnKF data assimilation of only the state and
of the combined state and emissions parameters (Em). No visible improvements in either

the analysis or the forecast are obtained by adjusting the emissions.

and by lateral boundary conditions. Consequently, the initial spread of the ensemble is
diminished in time. Moreover, stiff systems (like chemistry) are stable - small perturbations
are damped out quickly in time since fast transients are quickly “attracted” to a (slow) low
dimensional manifold. Without simulating the atmospheric dynamics (meteorological fields
are prescribed) this stiff effects are important.

In order to prevent filter divergence the spread of the ensemble needs to be explicitly
increased. We investigated three different approaches to ensemble covariance inflation: ad-
ditive, multiplicative, and model-specific. Additive inflation reduces the relative magnitude
of the off-diagonal correlations and limits the potential of the subsequent analysis. Mul-
tiplicative inflation allows for a very good agreement of model predictions and data in the
assimilation window, but amplifies spurious correlations inherent with small-sized ensembles,
and greatly deteriorates the concentration fields away from the observations sites. Model-
specific covariance inflation was obtained by perturbing the meteorological fields, emissions,
and lateral boundary conditions. The agreement of model predictions and observations is
similar to the one obtained with the multiplicative inflation. However, model-specific covari-
ance inflation does not overly-amplify spurious correlations and seems to be the best choice
for chemical and transport modeling.

Experimental results show that 4D-Var and EnKF (without over-constraining the solu-
tion) produce similar quality results. By inflating the covariance we were able to better
constrain the EnKF solution near the ground level, and obtain a very good match of model
predictions and observations in the assimilation window. This, however, sharply deteriorates
the analysis quality at high levels (away from the observations). In our validation results,

4D-Var does not produce spurious corrections far from the observation sites. In 4D-Var, as

24



expected, the analysis effects are smaller away from the observation sites. To obtain similar
results with EnKF one needs to consider limiting the correlation distances explicitly, using
ideas similar to the localized EnKF [Ott et al., 2002].

Since the solution of a regional CTM is largely influenced by uncertain lateral boundary
conditions and by uncertain emissions it is of great importance to adjust these parameters
through data assimilation. In the idealized setting [Constantinescu et al., 2006b] the assimi-
lation of emissions and boundary conditions has visibly improved the quality of the analysis.
In the real case under consideration assimilation of emissions does not improve the analysis
and degrades the forecast solution. The correct assimilation of states and emissions using
EnKF is a challenging problem, and considerably more research is needed to fully understand
it.

The numerical experiments in the idealized setting [Constantinescu et al., 2006b] used ver-
tically distributed observations. The numerical experiments with real data (this paper) used
only ground level observations, and the validation results show that the improvements in the
vertical profiles are small (even with 4D-Var). It is likely that information on the vertical dis-
tribution of the concentration fields is very important to properly constrain three-dimensional
concentration fields. In the current experiments we have used only ozone observations to
adjust the concentration fields of 66 different chemical species. The only assimilation results
presented are for the ozone fields; to further understand the behavior of EnKF the discussion
should encompass the correction of other chemical fields as well.

Several research directions emerge from the analysis carried out in this paper. The
localized versions of the ensemble filter need to be studied to alleviate spurious corrections
of the chemical fields far away from the observation sites. Considerable work is required to
use ensemble data assimilation to reduce uncertainties in emission inventories. Finally, to
fully understand the ensemble data assimilation one needs to fully understand the capability
of the ensemble to capture correlations due to chemical interactions. Specifically, one needs to
consider observations of several different chemical species, and to asses the impact of these
observations to the correction of other chemical fields. In this paper we have considered
the “perturbed observations” version of EnKF. The performance of the “square root” EnKF
variants will need to be assessed. On the longer term we would like to develop hybrid methods
that combine the advantages of the 4D-Var and EnKF data assimilation approaches. We

plan to pursue these questions in the near future.
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