Search Tool Implementation for Historical Archive

Mike Scarborough
mikescar@vt.edu

Dr. Edward A. Fox
Department of Computer Science

fox@vt.edu

Dr. Linda Arnold
Department of History
redtape@vt.edu

Virginia Polytechnic I nstitute & State Univer sity

Abstract

Dr. Linda Arnold's archival project “MexicanAmerican War and the Medid is an
underutilized resource. Providing contrasting primary sources on the War, it is the only
archive of its kind. In order to make the archivé's massve amount of information more
accessible to researchers and students, | added search functiondity to the ste. Severd
tools were implemented and tested. Perlfect, a Perl-based opensource approach, was
determined to be the best option. This report includes an outline of the steps taken to
implement the search tool, a user's manua, a developer's manual, and options for future

work. The archive may be accessed a www.maghill.vt.eduw/history/mxamwar/index.htm

Table of Contents

TaDIE Of CONEENTS.....cueeeieeeie ettt st re et neeseeenaeeneeneeas 2
Table of Figures and TalIESccccveieeeiceeece e 2
IO 7= o o U o S 3
2. IMPIEMENEBLION. ...ttt b e se e sb e b sn e e s neneas 3
2.1 SChEAUIE........eceeecee ettt e e e e e e e aesnennennens 4
2.2 Preliminary SCrEENING........cuciviereeeeeesesesieseeseeesessessessesseseesessessessessesssssesessessessens 4
2.3 Technical Requirements DOCUMENT.........cccoeirrireirinereseses et 4
24 EVAUAE ThE OPLIONS.......ceeiriieeirie ettt 4
2.5 INStAll TESE VEISIONS.....coviiiiiieisieise sttt e s 5
2.6 TESE EABCN VEISION......ciee e e 5
2.7 Perform Local CUSIOMIZALIONS.........cccrerieerierieeniesesesesieseeesses e sesseseesessessesesssessens 6
2.8 Install the Final PrOAUCL...........ccooiiiriieiee s 7
2.9 Create User and Developer ManUalS...........ccccveeeeieceseseseseseeeeese e 7
210 Present RESUITS........ccu ittt 7

3. USEI'SMANUAEL.......ceeeiceecee ettt e st e nreeneenaeeneeneenne e 8
TRt = o111 o USSR 8
G2 N0 [0 g TE 1 = (o) o SRR PRRR 8
3.2.1 Changing the Perlfect Configuration.............cccceoerrrereeeeennsseeeeseseseeeeeenes 9

3.2.2 Adding & RemMOoViNg SIOPWOITS..........coveeieriereeeeese e 9

3.2.3 Reindexing the DOCUMENt SEL..........coeceveieiie e 9
3.2.3a0Ver the WED.......ccoooee e 10

3.2.30 DireCt EXECULION........civiuierieinieesie et 10

3.2.4 Adding Filesto the ArChIVE.........c.cceciieiceee e 10

4. DeVElOPEr'S MaANUAL.........ccooeeiiiieieiee e 11
5. LESSONS LEAINEM......c.eiiiieeeeesiesieeeeste st et e steste et e e e neesse e eeestesseeneeseeeseeneensennennsnns 13
B. FULUTE WOTK ... ottt et st nbe e 13
7. ACKNOWIEAGEMENLS.......oeiiiiicieeiee ettt e et nre 14
8. REFEIENCES. ...ttt et e nreeae e 14
Appendix A: Technica Requirements DOCUMENLE...........ccccerereereeeenesieereseeeesesseeseeeens 16

Tableof Figuresand Tables

Table 1. Search Tool Feature CompariSoN.oeeuiiieierie e ie e eee e 5
Table2. Perlfect variables...o 9
Figure 1. Perlfect architeCture.c.oi i 11

1. Background

This independent study was conceived in order to provide a search capability for Dr.
Linda Arnold's MexicanrAmerican War and the Media archive project [1]. The god of
the archive is to serve as a resource for teaching and research. It is the only archive of its
kind covering the Mexican- American War.

Dr. Arnold origindly designed the archive to support browsng through large HTML
files which contain transcribed newspaper articles from four newspapers (Martinsburg
Gazette, Richmond Whig, Times of London, and Niles National Register), for the years
1844-1848. The archive is broken into four sections, one for each newspaper. Users may
browse each newspaper by time period. For example, The Times has a subsection for
January-December 1845, January-July 1846, August-December 1846, etc. For each
subsection, a large HTML file (about 513 KB) contains a list of the titles for each article
from that period, followed by the articles themsdves. Some titles in the list contain a link
to the corresponding newspaper article; some do not. In some cases, the HTML file is
divided into a text lis of the articles contained below, and then the articles themsdlves,
but without hyperlinks to connect the content.

Previoudy, if users wanted to search for a term in the archive, they would have to go to
each of the 34 subsections and use their browser's Cirl-F “Find” function to locate thet
term within that page. Alternatively, they could look throughout an index, hoping to find
rlevant terms from the article titles, and follow the link to that article (if available). This
project was meant to provide improved access to the huge amount of information in the
archive and to make improvements to address a critique by Matt Karush of George
Mason Universty [2]. Karush acknowledges the extensve resources the archive
provides, but laments the skeletal nature of the indices and warns teachers not to send
thelr students to the site unprepared.

This independent sudy was meant to achieve two gods 1) to add search functiondity to
the archive and 2) to provide hands-on experience in web programming and in
implementing a search toal.

2. |mplementation

Before providing search functiondity to this archive, | had a good dedl of learning to do.
This was the firg time | had ever used anything other than FTP and HTML for making
content available on the web. After reading Understanding Search Engines by Michad
Berry and Murray Browne [3], | had a better understanding of how the back end works.

My plan for the semester was based upon the procedures followed by the University of
Pennsylvania when they added search functiondity to their webstes [4]. Circumstances
differed though, as U-Penn had six people working on the project and a budget to pay for
a commercialy provided solution; however, the procedures worked well for my Stuation.

My plan conssted of:

1.Create a schedule.

2.Conduct a preliminary screening.

3.Create atechnica requirements document.

4.Evauate the options and sdlect fina candidate solutions.
5.Ingal test versons of each solution.

6.Test each solution. Get Dr. Arnold'sinput and preferences.
7.Perform loca customizations.

8.Inddl the find product in a permanent location.

9.Cresate users manud and developers manud.

10.Present results.

2.1 Schedule

My schedule spaced the work out over the course of the semedter, aming to finish two
weeks before the end of the semester. The implementation and testing phase took more
time than expected. Initidly | planned to have a smple usability study to test each
possible solution, but due to time congtraints this was not possible.

2.2 Prliminary Screening

| did not know much about how to actudly implement the search tool before | did the
preliminary screening. | knew that the solution needed to be free to implement and
operate, which meant ether sarting from scraich or usng an open-source approach. |
conducted the prdiminary screening on the Internet. Most comparative discussons
concerning search engines focus on the differences between the mgor commercia
sarvices (Google, Lycos, Yahoo!, ec). However, numerous search tool listings are
avalable on the Web, with one of the most comprehensive available provided by Search
Tools Consulting [5].

During the prdiminay screening, | identified eight possble open-source solutions:
ASPSeek, MnoGoSearch, Glimpse/WebGlimpse, Ksearch, Lucene, ht/dig, Perlfect,
SwishE, and Zebra [6-14]. | chose these tools based on ther suitability to my most basic
criteria: open-source, free of charge, and the ability to run on aLinux/UNIX server.

2.3 Technicd Requirements Document

The technica requirements for candidate solutions centered on codt, platform, indexing
method, and ease of mantenance. The Technicd Requirements Document is Appendix
A of thisreport.

2.4 Evduate the Options

In order to evauate each option available |1 used a spreadsheet to compare pros and cons
(see Table 1). As a reault, | sdected five fina candidates that seemed best suited for the
task. All were free, with mailing lists and web boards with varying degrees of activity.
Thefind candidates and primary reasons for their selection:

1.Glimpsz web-based adminigtration; Spanish support

2.KSearch: primarily for local server searches; configurable stopwords.
3.MnoGoSearch: good reputation; fast search; SQL backend; UNICODE support.
4.Perlfect: Boolean searches, completely Perl-based; fadt.

5.9wishE: ample to maintain; administration interface available.

| thought it would be best to implement as many test tools as possible, in case any did not
live up to ther hilling. Sometimes the advertised features for a product don't work the
way they should. | did not want to be stuck with one or two implementations that did not
provide the expected functiondity. This was an adaptation of the LOCKSS (“Lots of
Copies Kegps Swuff Safe”) philosophy—in this case, lots of implementations ensured
SuCCess.

Requirements Analysis Table

Criterion ASPseek MnoGoSearch Glimpse Ksearch Lucene ht:/dig Perlfect SwishE Zebra

User Functionality

Optimized local indexing? No No Yes Yes Yes Yes Yes Yes Yes
Crawling capability? Yes Yes Yes No Yes Yes Yes Yes No
Indexes PDF files? No Yes Yes Yes Yes No Yes Yes No
Spanish language support? Yes Yes No Yes Yes Yes Yes Yes No

Cost of Ownership & Operation

Free to implement, run? Yes Yes Yes Yes Yes Yes Yes Yes Yes
Runs on available hardware? Yes Yes Yes Yes Yes Yes Yes Yes Yes
Runs on Linux/UNIX servers? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Administration & Maintenance

Active development communit Yes Yes Yes Somewhat Yes Yes Yes Yes Somewhat
Customizable search interface ves Yes Yes Yes Yes Yes Yes Yes Yes
Customizable results page? Yes Yes Yes Yes Yes Yes Yes Yes Yes
Admin simple for non-techies? No No Yes Maybe No Maybe Yes Yes Maybe

Table 1: Feature Comparison

25 Ingdl Test Versons

This was the mogt time-consuming and important step. | dso learned the most during
this phase of the project. | darted by getting rid of Windows on my home machine, and
inddling RedHat Linux 8. I've never used Linux much, but | thought it would force me
to learn it fagter this way; | dso would be able to develop on an operating system more
gmilar to what most sarvers run. While it was worthwhile to develop in Linux on the
home machine, most of the bugs and problems were introduced once | had space on a
server and began developing the search tools there. Originally the scripts executed
from Ming Luo's utherdibvtedu server; currently they use Yuxin Chen's
tuppence.dlib.vt.edu server.

2.6 Test Each Solution
Extensve pilot testing identified a few bugs, which | fixed.

Dr. Amold dso identified a problem with the SwishE interface when she evauated each
solution. Mogt of the debugging that | did was in the previous phase, however, and so
testing went well.

Out of the five test implementations, Ksearch, SwishE and Perlfect turned out the bedt,
and | kept them as the options to show Dr. Arnold. The MnoGoSearch implementation
ran into some database problems. MnoGoSearch utilizes a mySQL database for its
indexes. Initidly | thought MnoGoSearch would be the best overdl, but this was wrong
on two counts. While it uses UNICODE to represent characters, and while it would
dlow for Spanish texts to be added eadly in the future, most other implementations also
recognize the Spanishlanguage charecters that are absent in English anyhow.
Furthermore, due to the relatively smdl sze of the archive, an SQL backend did not
make for a faster search. So | decided to scrap the MnoGoSearch implementation, and
focus on the others.

For each engine, | condructed various searches that would, if working correctly, return
specific documents with high relevancy. Each engine did quite well, so it came down to
a matter of interface preferences and indexing/search speeds. The Ksearch scripts took
entirdly too long to index the archive—around 40 minutes. It was aso too dow for
searches including common terms (“mexico”, “squadron’, etc). Perlfect and SwishE both
indexed quite quickly, and returned search results equaly well.

| chose Perlfect as the find solution for two reasons. Fird, it is purdy Perl-based—
making code dterations and debugging much dmpler than tha of SwishE, which
includes C, C++, and Perl code. Perlfect scripts have wel-named variables and good
documentation. Second, SwishE's web-based adminidrative GUI has some usability
problems—including the sequencing of tasks and poor feedback—making it a poor
choice for novice, infrequent usars. Setting up Perlfect to periodicaly index usng the
UNIX crontab program is smpler and more rdiable. Any other changes that the
adminigtrator may want to make are discussed in Section 4.

2.7 Perform Locd Customizations

The sze of the HTML files presented the main problem to adding search functiondity to
the gte. Users could get results with pages containing their search terms, but would have
to rely on the Cirl-F browser function to find those terms on the page. Origindly, |
planned to have the search engine recognize the internd anchors a the dart of each
aticle, but this did not work. Dr. Arnold and | devised a new organization scheme to
dedl with the large-file problem.

Each newspaper now has a file for each date of publication. For example, the file
Ti mes1848Jan30. ht m contains dl the aticles from The Times edition published on
January 30, 1848. Some of the files contain one article; others contain multiple articles.

These gmdler files are stored on tuppencedlib.vt.edu. They were crested manudly from
the large HTML files using Microsoft Frontpage. In the future, this extra work will not
have to be done. Dr. Arnold recalves the files individudly from students and crestes the

large files harsdf; therefore, cregting smdler files organized by date of publication will
not present much of a problem.

2.8 Ingal the Find Product

Unfortunately, this phase did not go as planed. Origindly, the plan was to Sore the
find tool on mahill.vt.edy the History Depatment's server. The adminigrator for the
sarver, Sanjiv Parikh, was wary of dlowing scripts to be ingtdled that he did not creete.
He had problems in the past with dlowing individuds to execute scripts, and did not
want to revist the Stuation, so he would not dlow me to indal the software there, until
the department moves to a universty server. For now, the search tool executables and
the amdl files will reman a tuppencedib.vt.edy, and the lage files will be on

mabill.vt.edu.

The search tool can be accessed at www.majbill vt.edw/history/mxamwar/index.htm

2.9 Create User Manud and Developer's Manual
The usar's manud is found in Section 3 of this report. The developer's manud is in
Section 4.

210 Present Results

To present my results, | met with Bruce Pencek, the College Librarian for Socid
Sciences. He had worked previoudy with Dr. Arnold on the archive, and was interested
to see the new functiondity and organization. He fdt tha the increased accesshility of
the archive's information would lead to increased usage and exposure. We discussed a
length possble new ways to store and display the information in the future (see Section
6).

3 User'sManual
Thismanud is divided into two sections. searching and adminigtration.

3.1 Searching
The search tool may be accessed at www.mabill.vt.edwhistory/mxamwar/index.htm.

In order to execute a search using Perlfect, type a query into the search box. Choose
whether you want to find documents that contain al of your search terms, or that contain
any of them. The default option is “ALL”. With “ALL”, only documents tha contain
every tem in the query will be returned. With “ANY”, the search engine will return
documents that contain a least one of the terms, but not necessarily any of the other
terms.

You aso can enter phrases that you would like to find. To do this, put quotes around
your phrase (eg., “Presdent Tyle”, “Bdtimore Convention Oregon question”, “June
1846"). The search engine will return documents that contain that exact phrase.

To eadly find the search terms within the documents that contain them, follow the
“highlight matches’ link that corresponds to a search result. By following that link,
Perlfect will place a color background behind each occurrence of the search term, making
it stand out from the rest of the text.

3.2 Adminigration

Adminigration of Perfect is farly smple. Greater detail concerning how Perlfect works
can be found in the Developer's Manua (see Section 5), but the administirator only needs
to perform afew smple tasks to keep the search tool up and running.

As previoudy mentioned, dl files are stored a tuppencedlib.vt.edu. To log in, use an
SSH dient to connect to tuppencedlib.vt.edu with the username “mexamwa” and the
correct password.

All files mentioned bdow can be found in the tuppence directory
/home/mexamwar/public_html/cgi-birn/perlfect/search. This is the directory that contains
al thefilesthat Perlfect needsto run.

3.21 Changing the Perlfect Configuration

Perlfect determines which options to use by looking & the conf.pl file. This file is
actudly a Perl script, but it can be edited the same as any text file. The file is bascdly a
list of variables that can be changed in order to dter Perlfect's behavior. Table 2 lists
variables that could be changed by the adminisirator, and their approximate location in

thefile

Variable Name Line Number W hat to Do

If you change the location of stored files,

DOCUMENT_ROOT 12 update this variable to reflect new
location.
Corresponds to DOCUMENT_ROOT. I f
you change the location of stored files,
BASE_URL 15

update this variable to reflect the correct

URL that points to the files.

This sets the password used by the
indexer_web script which allows the
INDEXER_CGI_PASSWORD 34 admin to execute the indexer over the
web. To disable this feature, leave the

value empty.

Sets the number of results per page that

RESULTS_PER_PAGE 85

are returned to the user.

Enables highlighting of query terms in the
HIGHLIGHT_MATCHES 91 search results. Change value to zero (0)

todisable.

Enables indexing of numbers, which
INDEX_NUMBERS 102 allows users to search for dates. Change

value to zero (0) to disable.

Table 2: Perlfect variables the administrator may want to change

3.2.2 Adding or Removing Stopwords

Perlfect uses a list of “stopwords’ to prevent common words (e.g., “the’, “a,” “those’)
from being indexed. This lig is a text file, found a conf/sopwordstxt. The file contains
oneword per line, and words can be added or removed from the li<t.

3.2.3 Reindexing the Document Set

Whenever you add or remove documents from the directory that you want to be able to
search, you must run the indexer. The indexer creates a database, which keeps track of
what words and phrases are contained in each file. 'When files are ddeted, the indexer
will gill point to missing files. When files are added, the indexer won't know they exid,
unless it is run agan. Running the indexer whenever you make changes ensures that
users will be searching the correct set of documents.

There are two ways to run the indexer. It may be run over the web, or directly by using
an SSH dlient.

3.2.3a Over the Web

To run the indexer over the web, dSmply enter the URL
tuppence.dlib.vt.edu/~mexamwar/cgi- bin/perlfect/search/indexer.pl password= into your
web browser location bar, and complete the URL by adding the indexer password
(INDEXER_CGI_PASSWORD, st in conf.pl as noted in Section 3.2.1). For example, if
the password was “greatday”, you would enter the URL
tuppence.dlib.vt.edu/~mexamwar/cgi- bin/perlfect/search/indexer.pl Ypassword=grestday.
Thiswill tell the indexer to index dl the documents in the directory specified in conf.pl.

The script will display the indexing progress while you wait. Fird, a lig of every file
being indexed will be generated. Next, a progress indicator will track the script while it
is writing the find database files You should not exit your browser, go to a different
page, or click the stop button until indexing is completely finished. Ingead, wait until the
message “Indexer finished” is printed a the bottom of the browser window.

3.2.3b Direct Execution

To run the indexer directly, SSH or Tenet into tuppencedlib.vt.edu Change into the
Pelfect inddlation directory (public_htm /cgi-bin/perlfect/search/).
Tdl theindexertorun by typing“. / i ndexer . pl ”.

You can make the indexer run rdigbly at certain intervals by adding i ndexer . pl to
your cront ab file Cront ab isaUNIX program tha dlows users to specify intervas

in between automatic execution of programs. For more information on cr ont ab, see
[15]. On tuppence.dlib.vt.edu, theindexer is set to run every Friday a 4 AM.

3.24 Adding Filesto the Archive

To add files to the archive, use an SSH file trander client to login tuppence.dlib.vt.edu.
Your username is mexamwar, and enter the correct password. Change into the
public_htm drectory. Tha is where the aticle files are sored, and this is the
directory that is crawled by the indexer. There are four subdirectories, one for each
newspaper. Change into a subdirectory to add more articles from a particular paper, or
make a new directory to store articles from a new newspaper. If a new directory is added
within the public_htm directory, there is no need to change the Perlfect
configuration. The scripts will index the new directory automaticdly the next time the
indexer runs. When finished uploading, terminate the connection. Run the indexer again
using either method outlined above, so that the new documents may be searched.

10

4. Developer'sManual

Pelfect is a completdy Perl-based search tool implementation, avalable at
http://www.perlfect.com It is an open source product under the GNU Genera Public
License. To generate results rankings, Perlfect uses a document vector modd. Perlfect
requires a Perl interpreter (5.004 or later) and the DB_File Perl module (1.72 or later). It
can run on Linux, UNIX, and Windows servers. This implementation runs under Linux
on tuppence.dlib.vt.edu.

Perlfect conssts of severd Perl scripts, HTML template files, and database files. Figure
1 below provides a basic overview of component interaction. For more details than are
provided in this report, please see the Perlfect developer's page [19].

Database Files

Searches

conf.pl
indexer.pl @:I: b search.pl

S tools.pl /

ForNocal retrieval Template Files

indexer_web.pl indexer_filesystem.pl

For HTTP retrieval

Figure 1: Perlfect architecture

4.1 Indexer.pl

Thei ndexer . pl soipt contains most of the code that powers the indexer. The indexer
uses varigbles defined within conf . pl to determine what directories to index as well as
what indexing options should be endbled (specid characters to index, file extensons to
index, etc). The indexer relies on three other scripts to provide necessary modules.
i ndexer _web. pl ,i ndexer _fil esystem pl,andtool s. pl.

During the indexing process, i ndexer . pl writes to temporary database files in the
dat a directory of the Perlfect inddlaion. When the indexing is complete, the files lose
their _tmp suffix, and are ready for access by search.pl.

To diminae worries about whether the indexer is up to dae, you may insert

11

i ndexer. pl into your crontab file on your server, dlowing you to specify an
interval between automatic executions of the indexer script. On tuppencedlib.vt.edu, the
indexer is setup to run every Friday at 4AM.

4.2 Indexer_web.pl

| ndexer web. pl dlows the indexer to gather files usng HTTP. This should only be
used to index files on the loca server that are dynamicaly created, such as PHP files.

4.3 Indexer_filesystem.pl

| ndexer _fil esystem pl dlows the indexer to crawl the loca filesysem to index
files

4.4 Toolspl

Tool s. pl manly provides functions for gring manipuletion error checking, and error
avoidance. Also incuded in this script ae functions for parang files deding with

specid characters, and building ligts. Itisused by bothi ndexer . pl andsear ch. pl .

4.5 Search.pl

Sear ch. pl takes a search query, checks the database files, and returns results to the
user's web browser. It makes use of template files found in the t enpl at e/ directory to
generate the results. There should be no need to modify sear ch. pl , as options it uses
are secified in conf. pl. Furthemore, the results pages can be customized by
modifying the templatefiles

Results rankings are ca culated by search.pl using the following formula:

score = word occurrences in document * log (# of documents/ # of docurrents containing thisword)

4.6 Conf.pl

Conf . pl is the backbone of Perlfect. Options regarding dl aspects of Perlfect operation

ae Hected in this configuretion filee Both search. pl and i ndexer . pl require

conf. pl to operae. Each varidble is wdl-explaned within the file. Changing some

variadbles may require the indexer to be run before the changes will take effect. For

variables fitting this special case, the tag [re-i ndex] is at the end of the

variables description. If you change any of these variables, be sure to run the indexer afterwards.

4.7 Database Files

The database files used by Perlfect are created and accessed using Berkeley DB, a type of
lightweight database that requires the Perl module DB_File verson 1.72 or laer. The
database files are sored in the dat a/ directory. The files conast of multiple tables that
hold key/value pars. Each indexed document has a document identification number.
There is one table each for the following atributes. the URL, title, and description for
esch document indexed. In esch of these tables, the document identification number
dlows the search script to identify documents reevant to the search query and to
construct the search results page.

12

4.8 Template Files

The template files used by ®arch.pl to generate the search results pages can be found in
the t enpl at es/ directory. These files include templates for not returning any
matches (ho_mat ch. ht m), for successful search queries (sear ch. ht m), aswell as
templates for Itdian, German, and French. Perlfect has been configured to automatically
return the results in the language of the user's browser. The templaies may be dtered to
change the look and fed of the results pages.

5. Lessons L earned

| learned a great deal this semester about programming for the Web. While | am ill far
from being an expert or even intermediate web programmer, my experience was vauable
as an introduction to the area. It is a different world than making C++ programs for
undergraduate classes. | learned a lot about working in Linux environments, and now |
prefer it to programming in Windows. Numerous books were a great help in this project,
most notably [15-18].

| now have good, but basc, familiarity with Perl, and this project motivated me to pursue
this Throughout the course of the semester, debugging and modifying .cgi and .pl scripts
was a good way to learn. | now have a good understanding about how scripting and CGl
programming works, about which | knew nothing before. | am now quite familiar with
Apache eror logs, . htaccess files seting permissons, and debugging Internd
Saver Errors. | worked with mySQL for the firgt time in order to g8 MnoGoSearch
working correctly.

6. FutureWork

This project made me intereted in web programming, and has resulted in another
practicad application of digitd libraries. | am interested in continuing my work on this
project, and teking the archive to the next leve. Working with Dr. Arnold to modify the
gte dructure and organization will do much towards this god. Currently, even with the
search functiondity, the system is il somewhat rudimentary.

Now that the Ste can be searched, | would like to improve the efficacy of the search
engine. The many smdler files now in use, while meking it eader for the user to find
where the desred keywords occur within the text, ae not ided. | have discussed
converting dl the large files to PDF with both Dr. Arnold and Bruce Pencek. That way,
users could browse and search on the same files. It may be possble to index the PDF
files by page, and return links to certain pages in the PDF asresults.

Initid research into converting the large files into PDF indicates that this solution seems
promising. Surprisingly, the HTML files converted to PDF generadly shed 100-150 KB,
depending on size. The PDF could have a new page for each aticle, and a new script
could be written to index the PDF by page. This would maintain the large-file-browsing

13

dructure currently employed by the archive, without requiring separate dtorage of
andler, one-atide-per-page HTML files. One downside to this gpproach would be the
increased load times required for PDF viewers (as noted by Mr. Pencek, this could prove
particularly problematic with the “bloated” Acroba 6). Dr. Arnold wants to retain the
ability to browse through large files, she says such an gpproach to browsing is a common
method of viewing information for higorians. After further andyss and testing, she can
confidently decide whether the PDF optionwould be an improvement.

More immediately, the new, smdler files could use better tittes Due to the inconsstent
nature of the labes given each atice—as well as having no reason to label each aticle
with the newspaper name (within a huge file containing atides dl from the same
source)--the search results returned to the user don't indicate very well which newspaper
they come from. The newspaper name can be seen in the URL, but adding more
meaningful information to the document titles andlor HTML body, could more quickly
sgnd to users what paper they are reading. Also, adding HTML tags to give the smdler
files the same colors and fed of the Ste a large would improve the visud continuity of
the ste. These improvements could be accomplished with Perl implementation, and | am
writing a Perl script to solve this usability problem.

Dr. Arnold plans to add more transcriptions in the future, and perhaps more newspapers.

It is possible that Spanish-language texts from other sources will be added as wel. The
search implementation described herein is ready and able to accommodate any such
future changes.

7. Acknowledgements

| would like to thank Ming Luo and Yuxin Chen for providing me with space on ther
savers, and for dlowing me to devdop my scripts. Also, | thank Dr. Fox for marshaling
resources for me when | needed them. Bruce Pencek, Virginia Tech's Librarian for
Socia Sciences, was enthusiastic about the project and offered good advice. Findly, it
was a pleasure working with Dr. Arnold again.

8. References

[1] Arnold, Linda. “The Mexicat American War and the Media’. 2004.
http:/Aww.majbill.vt.edwhistory/mxamwar/index.htm

[2] Karush, Matt. “The Mexicant American War and the Media (Review)”. March 2003.
http://chnm.gmu.eduwhnmV/d/91.html

[3] Berry, Michael W. and Murray Browne. Understanding Search Engines:
Mathematical Modeling and Text Retrieval. Philaddphia Society for Industrid and
Applied Mathematics, 1999.

[4] Search Tools Conaulting. “Choosing a Site Search Tool”. 2001.

14

http://Amww.searchtool s.com/quide/index.html#basic

[5] Search Tools Consulting. “Alphabetical List of SearchTools Product Reports’.
2001. http://Mmwww.searchtools.com/tool s/'tools.html

[6] SWSoft. ASPseek search engine software. 2003. http://www.aspseek.org

[7] LavTech Com Corp. MnoGoSearch Search Engine. 2003. http://search.mnogo.ru

[8] Internet Workshop. WebGlimpse Search Engine. 2002. http:/Avww.webglimpse.net

[9] Kscripts.com. Ksearch. 2000. http://www.kscripts.com/scripts.shtml

[10] Apache Software Foundation. Jakarta Lucene. 2004.
http://|akartaapache.org/lucene/docs/index.html

[11] Theht://Dig Group. ht://Dig: Search Software. 2004. http://www.htdig.org

[12] Perlfect Solutions Ltd. Perlfect Search 3.31. 2004.
http://mww.perlfect.com/freescripts/search

[13] Swish-E Development Team. SWISH-Enhanced. 2004. http://www.swishe.org

[14] Index DataAps. Zebra. 2003. http://www.indexdata.dk/zebra

[15] Gilly, Danid. Unixina Nutshell. Cambridge: O'Reilly and Associates, 1992.

[16] Gundavaram, Shishir. CGI Programming on the World Wide Web. Cambridge:
ORellly & Associates, 1996.

[17] Schwartz, Randd L. and Tom Chrigtiansen. Learning Perl. Cambridge OReilly &
Associates, 1997.

[18] Asbury, Stephen, et al. CGI How-To: The Definitive CGI Scripting Problem-
Solver. Corte Modero, CA: Waite Group Press, 1996.

[19] Perlfect SolutionsLtd. “Perlfect Search — Development”.
http://perlfect.com/freescriptsy'search/deve opment.shtml

[20] Giorgos. “Search Algorithm Explanation”. August 11, 2000.
http://www.perlmonks.org/index.plnode id=27509

15

APPENDIX A

Technical Requirementsfor Search Tool

User Functiondity

-- Need to index a locd server—search redricted to archive files only. However,
crawling ability isa plus, the future Structure of the archive is not known &t this point.

-- Easy to use search interface. Search results page dso must be clearly presented and
essly undersood. Users should not have to use complicated regular expressons in
order to execute a search.

-- Needs to index .htm and PDF files. Support for other formats (to plan for future
changes to the archive) essentid.

-- Needs to index and provide software support for English and Spanish (archive may
include Spanish language materids in the future).

Cost of Ownership/Operation

-- Mugt be free software, both to implement and run for an indefinite period.

-- Must not require any new hardware or hardware upgrades.

Adminigration / Maintenance

-- An active user and/or development community.
-- Customizable search interface and results page.
-- Must be easy for a non-technical person to administer changes to the software.

-- Must dlow for changes in archive content and structure, and be as flexible as possble
to dlow for any future changes.

16

