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Preface 
 
The aim of the RESOLVE Workshop 2006 was to bring together researchers and educators 
interested in: 

• Refining formal approaches to software engineering, especially component-based 
systems, and 

• Introducing them into the classroom. 

The workshop served as a forum for participants to present and discuss recent advances, trends, 
and concerns in these areas, as well as formulate a common understanding of emerging research 
issues and possible solution paths.  The topics of interest solicited from participants included: 

• Verifying compiler technology 
• Specification and verification of performance properties 
• Modular approaches to detecting component interface violations 
• Trade-offs among testing, formal verification, and model checking 
• Combining concurrency-oriented formalisms with model-based behavioral specification 

approaches 
• Formal characterization of user interfaces 
• Formal modeling of file system behavior 
• Formal characterization of mathematical and program types 
• Formal semantics and proofs of correctness 
• Resolve language and implementation issues 
• Software engineering environments and tools 
• Component-based software 
• Client-view-first pedagogy 
• Using Resolve in undergraduate and graduate CS curricula 
• Pedagogical techniques to help teach the above topics 

The RESOLVE Workshop 2006 was chaired by Stephen Edwards (Virginia Tech) and sponsored 
by the Department of Computer Science at Virginia Tech.  The remainder of the program 
committee consisted of Joseph Hollingsworth (Indiana University Southeast), Murali Sitaraman 
(Clemson University), Bruce Weide (The Ohio State University), and Bill Ogden (The Ohio 
State University, emeritus). 
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ABSTRACT
A model and a taxonomy to characterize pointer manipulations
are introduced, along with an instrumentation technology that
leverages them to provide students with immediate reports of
their pointer errors in C++ programs.   A key innovation is that
not only does the student get feedback about pointer errors; so
does the instructor.  The method used to provide students with
feedback also permits logging of student errors for analysis by
the instructor, thereby facilitating both empirical research into
students’ understanding of pointers and new possibilities for
improved pedagogy.  Preliminary data collected using this
infrastructure, and other possible uses of it, are discussed.

Categories and Subject Descriptors
K.3.2. [Computer and Information Science Education]: Com-
puter science education, Curriculum.  E.1. [Data Structures]:
Lists, Stacks, and Queues.  D.3.3. [Language Constructs and
Features]: Data types and structures, Dynamic storage man-
agement.

General Terms
Languages, Experimentation.

Keywords
C++, CS2, data structures, linked list, pointers, references.

1. INTRODUCTION
Ask anyone who has taught a course such as CS2, in which
students are learning to use pointers to build linked data
structures: students make plenty of errors with pointers!  Yet
there is no body of research that expressly asks (or answers)
why this is so.  Of course, pointers involve indirection—and
this is a hard concept.  But what are the details of students’
misconceptions about writing programs that involve pointers?
Which pointer manipulations do students most readily under-

                                                                        
 

stand, which do they find most challenging, which errors do
they most often make with pointers in their programming
assignments, do they even realize they are making mistakes,
how do they debug their programs?  Instructors now must
appeal to personal experience and anecdotal evidence to try to
answer such questions, and for guidance about what to empha-
size in class and where to focus student attention.  Is it possi-
ble for instructors to better understand student understanding
(and misunderstanding) of pointers?  As with any question of
this kind, the answer is “perhaps—if only we had some data!”

Our chief objective is to show how to collect that data; a sec-
ondary objective is to suggest how to use it.  Specifically:

•  We introduce a model for explaining to students the
execution-time dynamics of C++ pointers, and a taxon-
omy for organizing discussion of the correctness issues
that arise from their use.

•  We explain how we have used this model and taxonomy
to give students immediate feedback on pointer errors in
their programming assignments.

•  We describe how we have adapted the instrumentation
used to provide feedback to students so it logs student er-
rors for off-line analyses by the instructor and/or by re-
searchers.

•  We discuss preliminary data collected with this infra-
structure over the past year in a CS2 course, and suggest
future research studies and pedagogical innovations that
it makes possible.

The contributions of the paper lie in all four of the above areas.
The model itself is novel.  It does not purport to explain what
pointers are or exactly how pointers work—either directly, as
in “a pointer is a memory address”, or metaphorically, as in “a
pointer is like an apartment key”.  Rather, it covers an or-
thogonal issue: the need for students to realize that every
manipulation of pointers is either “always safe”, “dangerous”,
or “never safe”.  It does this by defining a reasonably simple
but language-specific finite-state machine (which we discuss
in detail for C++) and by classifying its transitions into the
above three categories.  The instrumentation technique used to
give students feedback on their programming errors is based
on checked pointers [2], but it incorporates a few new twists to
adapt that technique to the model and taxonomy of this paper.
The method for logging pointer errors at first seems rather
straightforward—yet it raises some interesting technical and
non-technical issues.  Our advice on things to watch for
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should help others who might wish to develop a similar infra-
structure at other institutions or for other programming lan-
guages.  Finally, our preliminary data is the first to be reported
about the nature of pointer errors in student C++ programs.

The focus of the paper on C++ requires a brief explanation.  It
is, first and foremost, a product of the fact that C++ is the
delivery vehicle in the introductory courses at the authors’
institutions.  Recent reports indicate that C++ is no longer as
popular as Java in introductory CS courses, yet it is used in
perhaps 25% of CS1 courses [5]; and it probably accounts for a
similar or even larger share of CS2 courses, where most stu-
dents meet linked data structure implementations.  Moreover, a
significant fraction of industrial software projects use C/C++.
So, there are still good reasons to teach students how to build
software in which automatic garbage collection is not as-
sumed.  Whether this material arises in CS2 or in a later course,
our infrastructure can be used. In fact, preliminary data (see
Section 5) suggest that failure to reclaim storage properly is a
common error made by students learning to use pointers—far
more popular than, say, dereferencing a null pointer.

The paper is organized as follows.  Section 2 introduces the
model and taxonomy, which serves as the basis for providing
students with immediate feedback on pointer errors in their
programming assignments.  Section 3 briefly describes how
checked pointers work in C++ and outlines what we changed
from the approach proposed in [2].  Section 4 discusses a few
unanticipated technical problems that arose during our first
year of data collection and reports on some non-technical
issues raised by the very act of logging student errors.  Section
5 summarizes some of the data collected so far.   Finally, Sec-
tion 6 concludes with some suggestions for future empirical
research and instructional innovations made possible by the
infrastructure described.  Because of the page limit, Sections 4
and 5 discuss only the version of the software used, and the
preliminary data collected, at OSU.  Similar conclusions apply
to the software used, and the data collected, at IUS.

2. MODEL AND TAXONOMY
This section outlines our model for explaining certain aspects
of the execution-time dynamics of C++ pointers, and for clas-
sifying problems that may arise from their use.

2.1 Replacing Built-In C++ Pointers
In C++, it is possible to ensure that only “acceptable” (to the
instructor) uses of pointers will compile.  This prevents certain
classes of errors students might otherwise make.  For example,
we outlaw pointer arithmetic, e.g., using an expression such as
p++ or p+2, though it is legal for built-in C++ pointers.  Rul-
ing out such constructs can be achieved by requiring students
to use a Pointer class template in which only certain opera-
tors are defined [3].  To declare two pointers to int called p
and q, for example, a student simply writes:

Pointer<int> p, q;

rather than:

int *p, *q;

The Pointer template makes public only operators that the
instructor wants students to be able to use, say *, ->, =, ==, and
!=; nothing else will compile.  Figure 1 shows the operators
that are public in the Pointer template that is used through-
out this paper and available for download from our web site at

http://www.cse.ohio-state.edu/sce/SIGCSE2006.  Here, p and q
are variables of type Pointer<T> for the same parameter type
T; or q may be the constant NULL.  It is technically possible to
override new and delete to retain all the syntax of built-in
C++ pointers except declaration; or, to provide slightly differ-
ent syntax for some operators (such as the Pascal-like syntax
of New and Delete shown in Figure 1).  We have tried both
approaches to syntax at our institutions and have seen no
apparent impact on student behavior.  On the other hand, we
have kept the semantics of built-in C++ pointers, warts and all,
on the grounds that students should be aware of the problems
that can arise from using language-supplied pointers.

Figure 1: Allowable Pointer<T> operations

So, as with any version of pointers, plenty of code that will
compile with this approach can still be wrong.  Using some of
the operators under certain conditions is an error that a com-
piler, in general, cannot detect, and that typical C++ compilers
do not report even when technically they might do so with a
sophisticated static analysis.  Such errors include dereferenc-
ing a null pointer, dereferencing a pointer that has been de-
leted, creating a memory leak by allowing the last pointer to a
block of memory to leave scope, etc.  Fortunately, as explained
in [2] and discussed further in Section 3, the Pointer tem-
plate can be implemented in a way that (almost) every such
error can be detected and reported immediately at the point
during program execution where it occurs.  By contrast, most
errors with built-in C++ pointers—indeed, all such errors
except dereferencing a null pointer—might not be manifested
through observably anomalous behavior during program
testing.  Even if they are manifested eventually, this might not
happen until far beyond the program point where the pointer
error actually occurred.  And even then, there might be only a
cryptic system-level error message such as “bus error” or
“segmentation fault” that offers no help for debugging.

2.2 Abstract Pointer States and Transitions
The model in this paper has a slightly different purpose than
the traditional explanatory devices for pointers.  It abstracts
the actual value of a pointer (i.e., now Pointer) vari-
able—which could be any one of millions or billions of mem-
ory addresses—into one of a small set of states.  This simplifi-
cation implies that the model cannot be used to reason in full
detail about what happens during execution of a program that
uses pointers.  So, regardless of whether an instructor uses our
model, completeness demands that he/she still adopt a tradi-
tional explanation of pointer details, e.g., the direct version
that a pointer variable’s value is a memory address.  The four
states of a pointer variable in the  simplified model are:

•  Alive — the variable refers to memory that the storage
management system has given to the program, i.e., the
program “owns” that memory;

•  Dead — the variable refers to memory that the storage
management system has never given to the program or has
reclaimed from it, i.e., the program does not “own” that
memory;

Unary Binary

New(p);
Delete(p);
*p
p->...

p = q (assignment and copy constructor)
p == q
p != q
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•  Null — the variable refers to no memory location at all.

The need for the last state arises because of the possibility of
memory leaks:

•  Out of scope — the variable is not in scope.

Figure 2 and an accompanying discussion in class help stu-
dents understand the model.  The diagram shows the states that
a single pointer variable, say p , can be in; and the various
transitions it might undergo via the allowable pointer opera-
tors:

•  “declare” means the variable p is being declared;

•  “}” means the variable p is leaving the scope in which i t
was declared;

•  “*” means the variable p  is being dereferenced, using
either * or ->;

•  “NULL” means the variable p is being assigned the con-
stant NULL;

•  “New” and “Delete” are obvious.

An exhaustive analysis reveals that there are exactly two other
ways that a pointer variable p can change state via the opera-
tors in Figure 1: one obvious and the other subtle.  Both arise
from copying pointers with =.  First, a variable p that is in
scope can be assigned a pointer q that is in a different state, in
which case p changes to the state of q.  For example, if p is in
state Null and q is in state Alive, then after the statement p =
q;, p is also in state Alive.  None of these six obvious transi-
tions is shown in Figure 2.  Second, if p is Alive and is aliased
to another pointer q that transitions from Alive to Dead, then p
also becomes Dead.  This is the only spontaneous transition,
i.e., the only possible change to the state of p that can occur as
the result of a statement that does not syntactically mention p;
it captures an interesting effect of aliasing.  This transition i s
shown as an unlabelled double-line arrow to notify students
that it is possible, and that they must beware of it.

Of course the other binary operators, which test equality and
inequality of pointers, do not cause any state changes.

Figure 2: C++ State Machine and Taxonomy of Transitions

2.3 Taxonomy of Transitions
This model for explaining pointer states and transitions al-
lows the classification of every manipulation of a pointer as
“always safe” (i.e., “good”), “dangerous”, or “never safe” (i.e.,
“bad”).  Fortunately, as summarized in Figure 2, many transi-
tions are always safe.  A few are never safe, though of course
they will compile: dereferencing a pointer that is Null, and
dereferencing or deleting a Dead pointer.

The remaining transitions are “dangerous”, in the sense that
they may or may not result in memory leaks.  If a pointer vari-
able p is Alive and it leaves scope, then whether there is a
memory leak depends on whether the memory referenced by p
is also reachable via another Alive pointer that is aliased to p;
similarly for the statements New(p); and p = NULL; in the
same situation.  That such a highly abstracted model of pointer
behavior fails to predict, for sure, whether a memory leak will
result from these transitions is a consequence of the fact that i t
abstracts away actual memory addresses.  So, there is a trade-
off between the model’s predictive power and ease of reason-
ing.  The model’s simplicity helps a student (or, potentially, a
static analysis tool) identify possible trouble spots in a pro-
gram without demanding detailed reasoning about actual
pointer values. Yet, as Section 3 explains, it provides the
ability to immediately detect, report, and log at run-time tran-
sitions that are never safe, as well as dangerous ones that turn
out actually to cause memory leaks.

Note that the corresponding finite-state machine for Java in
Figure 3 is substantially simpler than the one for C++, having
but one transition that is never safe and none that are either
dangerous or spontaneous.  Because there is no explicit stor-
age reclamation in Java (i.e., no “Delete” transition) and no
Dead state, life is much simpler for the student and for the
professional programmer.  This is precisely why students who
have learned how to use Java references to implement linked
data structures must not be expected to do so competently in a
non-garbage-collected language like C++, without further
education and practice.

Figure 3: State Machine for Java References

3. CHECKED POINTERS
The Pointer  template we use is based directly on checked
pointers as described in [2].  It supports the operations in
Figure 1, and reports at run-time immediately, upon occur-
rence, every “never safe” transition and (almost) every “dan-
gerous” transition that actually leaks memory.  In addition, the
template checks and reports whenever a Dead pointer variable
is compared using operator == or operator !=.  With respect to

NULL

declare

New
New *

Out of
scope

Alive Null
}

}

NULL

*

Always safe Never safe
declare

New

New
New

Delete

Delete

NULL

NULL

*

*

Out of
scope

Alive Null

Dead

Delete

}

}

}

NULL

*

Always safe

Dangerous

Never safe

Spontaneous
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implementation of the Pointer template, interested readers
can consult [2] for details and/or download our code.

One issue needs to be explained here.  The qualifier “almost”
above is the result of using reference counting to identify
memory leaks—an extension to the approach used in [2].  If a
reference count for some memory block reaches zero, then there
really is no way to access it.  However, it is possible to con-
struct circularly linked structures in which blocks of memory
are inaccessible yet where all those blocks have positive refer-
ence counts: they point to each other.  Like [1] and [2], we do
not try to detect memory leaks of this sort upon occurrence,
but instead wait until the end of the program and report all
memory that has been allocated but not yet deallocated.  In
other words, any memory leak reported by our checked point-
ers is truly a leak, but not all leaks are immediately reported.
Whether this has practical importance depends on how likely
students are to write code that creates defective circularly
linked data structures, either on purpose or by accident; and
this, in turn, on the assignments made by the instructor.

4. LOGGING AND ASSOCIATED ISSUES
This section outlines several issues that anyone trying to
collect similar data from their own students should consider.    

4.1 Technical Issues
When a student program generates a pointer error at run-time,
the code of the Pointer template first reports to the student
the nature of the error (e.g., “Deleting dead pointer”) and pro-
duces a call trace to help in debugging.  The code then writes
to a central log file all this information, plus the time of the
error (accurate to the second), the student’s encrypted login
name, the name of the program the student was executing, the
command the student used to run the program, and the total
number of calls executed by the program.  Finally, the code
uses a C++ exit call to quit the program.

For GCC version 3.4.1 running under Solaris, we encountered
sticky technical issues in obtaining nearly every piece of
system information for the log: the call trace, the name of the
executing program, etc.  Anyone adapting our code to different
circumstances might anticipate a few technical hurdles here.

At OSU, students do their programming assignments in the
introductory courses using department computers, which are
Sun “login servers” that they can access from dedicated labs or
via the internet.  The centralized nature of this facility helped
simplify logging, but it is not essential if it can be assumed
that students have internet connectivity over which error
reports can be sent from the student’s computer to a central
site.  Error-logging functionality can thereby be provided at
the cost of some additional code that might vary according to
the institution’s local circumstances.

We also faced some technical questions when interpreting
preliminary log data.   Specifically, our log files contained a
few situations where the same student was reported to have
made two errors at the same time—despite the fact that proc-
essing the first error ends with an exit call.  We found that
this could  happen under some conditions.  Specifically, a
student’s code might include a global variable (i.e., static
storage in file scope). A pointer error that generates the first
log entry might result in that variable’s data representation
invariant being violated.  When there are global variables, a
call to exit  does not immediately quit the program [1,3]

because the C++ compiler registers destructors for global
variables so they are executed before the program actually
quits as a result of exit.  Thus, a second pointer error might
occur—even in correct code for a global variable’s destructor.
In this situation, using abort is a better way to quit.

We also discovered a situation in which one student experi-
enced the same error some thirty times in a row, at approxi-
mately one-second intervals.  This could happen if the student
ran a script as part of the testing process.

Therefore, we decided to count—not while logging but while
processing log data off-line—only the first of a series of
closely spaced errors by the same student, and to ignore any
error by that student within 10 seconds of the previous one.
Based on our observations of students in closed lab situations
and on our own attempts to make a simple change in a program
and then re-compile and re-run it as quickly as possible, at
least this much time must elapse between successive legiti-
mate error records.  In both the case of the two-error situation
involving destructors of global variables, and in the case of
repeated execution via a script, it makes sense to consider the
first error as a “true” error and the remainder as spurious.

4.2 Non-Technical Issues
The most important non-technical issue we faced was a conse-
quence of our mere intent to use logged data in research to be
reported to the CS education community.  This meant that an
institutionally-approved human subjects protocol was re-
quired before data collection could even begin [4].  If we had
decided to use the error logs only for local instructional pur-
poses (e.g., to identify for special attention students having
the most trouble on their programming assignments), then no
such obstacle would have been imposed.

Our approved protocol includes a plan for collecting baseline
data without the students’ knowledge: a “deception” of the
students, in the parlance of such protocols.  The reason is that
we do not want to preclude being able to study later whether
the fact that students know that their errors are being logged
might affect their behavior.  However, even without a decep-
tion, an approved protocol is required for such research.

It also is essential to maintain confidentiality so individual
students are not identifiable from any data that could be pub-
lished.  We do not want to preclude longitudinal studies of
individual student behavior.  Hence, our logging software
records encrypted student login names, so if a log file were
inadvertently compromised there would be no way for anyone
to connect an error record with a particular student.  Moreover,
only one of the investigators even has “read” permission for
the data log files, in order to further limit the likelihood of
such a security breach.  These provisions have proved accept-
able to our Institutional Review Boards.

5. PRELIMINARY DATA
We logged all student pointer errors at OSU in Au04-Sp05,
then filtered the data as explained in Section 4.1 and also
limited the focus to students doing assignments for CS2.
Three programming assignments were involved: a closed lab
(done in pairs) to implement a stack class, given a queue class
as a model; and two open labs (done individually) to imple-
ment a singly linked list class and a doubly linked list class.
We logged 2765 pointer errors made by 139 students.
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Figure 4 lists each possible error message seen by these stu-
dents, along with two pieces of information for each: the per-
centage of students making at least one error overall (i.e., 139)
who made that particular error at least once, and the percentage
of all errors (i.e., 2765) accounted for by that particular error.

Error
Students
Making
Error

Percent-
age of All

Errors
Creating memory leak by
pointer leaving scope 74% 21%

Creating memory leak by using
= (i.e., assignment) 61% 18%

Creating memory leak by using
= NULL (i.e., assignment) 4% 1%

Creating memory leak by using
New 1% 0%

Deleting dead pointer
19% 2%

Dereferencing dead pointer by
using * or -> 70% 33%

Dereferencing null pointer by
using * or -> 57% 16%

Using dead pointer with != (i.e.,
inequality checking) 30% 5%

Using dead pointer with !=
NULL (i.e., inequality checking) 10% 1%

Using dead pointer with == (i.e.,
equality checking) 13% 2%

Using dead pointer with ==
NULL (i.e., equality checking) 9% 1%

Figure 4: Preliminary Data

Our logs contain a wealth of other information and will require
more detailed analyses during the initial data exploration
phase, in which we seek to identify features in the data that
should suggest carefully designed future experiments.  A few
interesting observations already evident are:

•  About 5/6 of all errors (i.e., all except dereferencing a null
pointer) might not have been detected at all without
checked pointers; and if they appeared, they would have
resulted in later mysterious behavior of the program
rather than straightforward error messages.

•  Most students who made any errors created a memory
leak.

•  Most students who made any errors dereferenced a dead
pointer (more than dereferenced a null pointer); indeed, a
third of all errors were of this kind.

•  Some errors apparently were much easier for students to
correct than other errors.  Many students made the follow-
ing kinds of errors at least once, yet they account for a
relatively small fraction of all errors: creating memory
leaks in various ways, and using the comparison opera-
tors with dead pointers.

6. CONCLUSION
The infrastructure described in this paper has been designed to
support empirical research studies that we expect to conduct in
the future.  Some are self-evident, e.g., investigations of con-

ceptual errors vs. technical ones, examination of the value of
pictures such as Figure 2 to explain the model, etc.  Other
studies are suggested by the preliminary data.  For example,
consider the first bullet point above.  As instructors, we have
little doubt that immediate detection and reporting of pointer
errors facilitates student debugging as compared to built-in
C++ pointers.  This claim could be tested by building multiple
versions of checked pointers that provide different error diag-
nostics to students, while still logging all the data of the
current version.  One version could allow the program to con-
tinue after every error to perform exactly like built-in C++
pointers, providing a control group for the study.  Another
version could report each error upon detection and stop the
program, but always with the same general message such as
“pointer error”.  Another version could provide detailed error
messages as shown in Figure 4.  Some questions to be an-
swered include: How does student debugging behavior differ
under such circumstances?  Do students end up making sig-
nificantly fewer total errors when presented with immediate
error detection, and/or when given detailed error messages?

Pedagogical innovations are also facilitated.  The infrastruc-
ture could be adapted to alert the instructor to students who
are making many pointer errors, to those who are making a
single error many times in a short period, etc.  Such students
could be singled out for special attention. Or, an instructor
could bring to class a  chart showing how many students made
each type of error while doing the previous assignment, and
call on students to explain the circumstances that led to errors
of certain kinds.  There are many creative ways in which error
data—now, of course, with logging not concealed from stu-
dents—could be used to focus classroom and/or individual
attention on problems students are actually having, rather than
on problems the instructor might have expected them to have.
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Abstract

We can adapt industrial-quality tools for developing, testing, and grading Resolve/C++ programs, and use
them to bring modern software testing practices into the classroom. This paper demonstrates how this can be
done by taking a sample Resolve/C++ assignment based on software testing ideas, building a simple Eclipse
project that handles build and execution actions for the assignment, writing all of the tests using CxxTest, and
processing a solution through Web-CAT, and flexible automated grading system. Using tool support to bring
realistic testing practices into the classroom has demonstrable learning benefits, and adapting existing tools
for use with Resolve/C++ will allow these same techniques to be used in courses where Resolve/C++ is used.

Keywords

Software testing, CxxTest, Eclipse, JUnit, unit testing framework, test-driven development, test-first coding,
IDE, interactive development environment, Web-CAT, automated grading

1.  Introduction

Software testing is a topic that does not receive full coverage in most undergraduate curricula [Shepard01, Edwards03a].
If we want to teach testing practices more effectively, it may be appropriate to integrate software testing across
many--or even most--courses in an undergraduate program [Jones00, Jones01, Edwards03a]. We have had some
success with this approach in our core curriculum at Virginia Tech, after integrating software testing throughout our
freshman and sophomore courses.

There are a number of potential benefits to learning when software testing is included in the curriculum, since
formulating software tests requires a student to formulate and write down their own understanding of how the software
they are writing is intended to behave [Edwards03b]. Further, running tests requires students to experimentally verify
(or refute) their understanding of what their code does. Experimental results suggest that student code quality improves
as a result. One of our experiments showed an average 28% reduction in bugs per thousand lines of non-commented
source code (bugs/KNCSLOC), with the top 20% of students writing their own tests achieving 4 bugs/KNCSLOC or
better--comparable to commercial quality in the U.S. Students who did only informal testing on their own never achieved
this level of quality, with the best students achieving approximately 32 bugs/KNCSLOC [Edwards03b].

2.  The Problem

To make software testing practices a regular part of the classroom experience, two things are critical: we must make it
easy for students to write and execute tests with minimum overhead, and we must provide concrete and directed
feedback on how students can improve their performance. Both of these goals are solvable with appropriate tool support.

First, using an appropriate unit testing framework can simplify test writing and execution. For Java, the JUnit framework
[JUnit06] provides excellent support that is easy for students to grasp and use. Similar frameworks, which go by the
name XUnit frameworks, exist for other languages as well [XProgramming06]. The problem is that no such unit testing 
framework exists for Resolve, or Resolve-based languages like Resolve/C++.

Second, automated grading tools can be used to provide clear and concrete feedback to students on performance.
Web-CAT is one such automated grading system [Edwards03a, Edwards04]. It supports assignments where students are
required to write tests for their own code. For students programming in Java or C++, it also instruments student code
and collects test coverage data as student tests are executed. Students receive feedback in the form of a
color-highlighted HTML source code view that highlights portions of the code that have not been executed or that have
been undertested. Still, however, no such grading tools exist for Resolve or Resolve-based languages.

3.  The Position
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We can adapt industrial-quality tools for developing, testing, and grading Resolve/C++ programs, and use
them to bring modern software testing practices into the classroom.

More specifically, we can adapt an appropriate unit testing framework so that it works with Resolve/C++. We can also
adapt a professional-level IDE that is still suitable for classroom use. Finally, we can adapt a flexible automated grading
system to work with Resolve/C++ and provide concrete feedback on correctness and testing.

While no XUnit framework exists for Resolve, why not adapt one from another language? At Virginia Tech, we have had
success using CxxTest [CxxTest06] with students learning to program in C++. It is possible to use CxxTest to write unit
tests for Resolve/C++ components in order to bring unit testing practices into the classroom. Further, the Eclipse-based
IDE support we use for C++ development will also work for Resolve/C++ development, including full GUI support for
unit test execution and viewing of results. While Eclipse is a professional IDE, it is seeing increasing use in educational
settings as well [Storey03, Reis04].

Together, CxxTest plus Eclipse will provide a modern, high-impact IDE environment for developing Resolve/C++ code
that will provide greater ease of use for students. Further, it will ease some of the transition out of Resolve/C++ to other
languages and tools. But most importantly, it will allow industry practices regarding unit-level software testing to be
included in a Resolve/C++ classroom, along with the learning benefits this approach supports.

Note that the CxxTest framework described here is completely independent of Eclipse. It can also be used via the
command line or a makefile without any IDE support if desired. Both command-line and IDE approaches will be
demonstrated at the workshop as part of the paper presentation.

Finally, Web-CAT provides a great deal of flexibility for automated grading tasks by providing a plug-in architecture so
that instructors can extend its grading capabilities for different assignments. Plug-ins for grading C++ assignments that
include student-written CxxTest-style test cases already exist, and provide support for using a commercial code coverage
tool called Bullseye Coverage to give students feedback on where they can improve their testing. Web-CAT can be
extended to support Resolve/C++ grading by adapting the existing C++/CxxTest plug-in to work with Resolve/C++ too.

4.  Justification

Justification for this position comes in the form of a "proof by example". We have taken a sample Resolve/C++
assignment based on software testing ideas, built a simple Eclipse project that handles build and execution actions for
the assignment, written all of the tests using CxxTest, and processed a sample solution through Web-CAT using an
adapted Resolve/C++ plug-in. This section will summarize the example, show how CxxTest test cases as written, and
illustrate how the Eclipse interface presents test results.

For our example, we chose CSE 221's closed lab 5, a Resolve/C++ assignment used at Ohio State. In this lab, students
must write a test suite to demonstrate a number of bugs in a Swap_Substring operation. Students in CSE 221 currently
write test driver programs that read commands from stdin and write output to stdout, and allow one to exercise all of the
methods under test with user-specified parameters. Students write test cases, or entire suites of test cases, as plain text
files that can be fed to such a test driver using I/O redirection on the command line.

Unfortunately, test inputs in such a format do not include any corresponding expected output. Instead, textual output
from the test driver is typically captured in a separate output file. Regression testing can be performed by comparing
output from a new test run against stored output from an earlier test run using tools like diff. However, it is
cumbersome for students to write and maintain their own expected output, and without this step, automated checking
for correct test results is challenging.

In the closed lab 5 assignment currently being used, students simply write a single test suite (a test input file). As part of
the lab setup, students have access to eight separate test driver programs that are provided for them, where each test
driver encapsulates a different buggy implementation of the Swap_Substring operation. Students also have access to a
test driver that correctly implements this operation. Students are also given a helper script that will run a student's test
input file against one buggy test driver, also run the same test input against the correct test driver, and then provide the
student with the diff results on the two output files. This is a form of back-to-back testing where a known correct
implementation is used as the test oracle for a (possibly) buggy alternative implementation.

There are several disadvantages of this approach. First, students only write test inputs--they are never forced to
articulate their own understanding of what the code should do, but only need write down how it should be invoked.
Second, students cannot use back-to-back testing easily on new code that they write, since it requires a reference
implementation that is known to be bug-free to compare against. Third, using this approach requires that one construct
a test driver for each unit to be tested. This involves additional input, parsing, and output code that is not directly
relevant to the task itself and that may also contain its own bugs. The more sophisticated the component to be tested,
the more work must go into the test driver. Also, if one wishes to extend the testing scenario, say by allowing multiple
objects to interact, or by adding a new method to the class under test, the test driver code must be extended and kept
in-sync with the code being developed. Fourth, this approach does not keep all of the test information in one place. The
test input is in one text file, the expected output (if the student writes it at all) is in another, and the test driver and
actual calls to the class under test are in a third location inside the test driver program. Keeping these all in sync
becomes more difficult as component complexity increases.

XUnit-style frameworks fix this problem by (a) making all test cases directly executable, written directly in the
programming language; (b) allowing the expected output or behavior change to be expressed as part of the test case
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itself; and (c) eliminating the need for test drivers by providing a framework the provides all the features of a completely
reusable test driver that can work with any set of test cases, so no input/parsing/output code need be written in order to
run tests. To see how this works, examine Figure 1, which shows a single test case enclosed in a CxxTest::TestSuite
class. This test case is for the Swap_Substring operation from closed lab 5.

1  #ifndef SWAP_SUBSTRING_TESTS_H_

2  #define SWAP_SUBSTRING_TESTS_H_

3  

4  #include <cxxtest/TestSuite.h>

5  #include "RESOLVE_Foundation.h"

6  #include "../CI/Text/Text_Swap_Substring_1_Body.h"

7  

8  class Swap_Substring_Tests : public CxxTest::TestSuite

9  {

10  public:

11  

12      void testSwapSubstring()

13      {

14          // Swapping all of non-empty t1 and non-empty t2

15          Text_Swap_Substring_1 t1;

16          Text_Swap_Substring_1 t2;

17          Integer pos = 1;

18          Integer len = 3;

19  

20          t1 = "hello";

21          t2 = "world";

22  

23          t1.Swap_Substring( pos, len, t2 );

24  

25          TS_ASSERT_EQUALS( t1, "hworldo" );

26          TS_ASSERT_EQUALS( t2, "ell" );

27          TS_ASSERT_EQUALS( pos, 1 );

28          TS_ASSERT_EQUALS( len, 3 );

29      }    

30  };

31  

32  #endif /*SWAP_SUBSTRING_TESTS_H_*/

Figure 1. A CxxTest test case.

In Figure 1, the testSwapSubstring() method is a single test case written as executable code. In this example, it creates
an object, calls the Swap_Substring method, and makes assertions about the results. In other words, it encapsulates one
test case, including the setup, the test actions to be carried out, and the behavior that should be observed if the test
"passes". A TestSuite class can contain as many of these test cases as desired, each framed as a separate method (that
is, a separate public void method, taking no parameters, and having a name that begins with "test"). A TestSuite class 
can also contain helper methods that are reused in different test cases. Finally, a TestSuite can even contain common 
"set up" actions that are performed before each test case in the suite, as well as common "tear down" actions performed
after each test case, in order to extract recurring pieces of infrastructure when needed.

As part of the build process, the CxxTest build support automatically identifies the classes that are subclasses of
CxxTest::TestSuite, automatically identifies all of the test case methods in each such class, and automatically builds the
necessary test driver to execute all of the tests the student has written. If there is no main() procedure in the project,
then the test driver itself will provide one. Otherwise, test execution happens as global objects are initialized, just before
the student's main() method is called.

Using CxxTest reduces the process of writing test cases to a fairly simple coding exercise, which is something students
have already practiced. The CxxTest framework takes care of all of the other details regarding test execution and result
reporting. When run from the command line, this single test would produce output like that shown in Figure 2. If a buggy
version of Swap_Substring that failed this test case were used instead, the output would be similar to Figure 3. This
output is a little odd because the default CxxTest machinery does not know how to write Resolve/C++-style values to an
output stream, but that can be remedied easily.

Running 1 test
.
Failed 0 of 1 tests
Success rate: 100%

Figure 2. Output from a successful test run.

Running 1 test
In Swap_Substring_Tests::testSwapSubstring:
../test-cases/Swap_Substring_Tests.h:22: Error: Expected (t1 == "hworldo"), found
 ({ E4 09 51 00 CE 29 82 00 ...  } != hworldo)
Failed 1 of 1 tests
Success rate: 0%
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Figure 3. Output from a failed test case.

In addition to using CxxTest to write test cases, students could also use an IDE, like Eclipse, to compile and test their
code. As part of our Web-CAT SourceForge project, we have a CxxTest plug-in for Eclipse that provides a graphical view
of CxxTest results. Figure 4 shows a partial screen shot of the CxxTest view within Eclipse on this example.

Figure 4. A screen shot of the CxxTest graphical view within Eclipse.

Finally, we customized the CxxTest-based grading plug-in for Web-CAT so that it also supports Resolve/C++
assignments. We submitted this example. Web-CAT produces a variety of feedback to students, most of which is
captured in a unified, color-highlighted HTML "print out" of the student's submission. Figure 5 provides a brief example of
what this output looks like for Resolve/C++ code using the modified plug-in. You can hover your mouse over the
highlighted code lines to see why specific portions have not been tested as well as necessary. Resolve/C++-specific
keywords are also highlighted, thanks to the customized plug-in. More information on Web-CAT is available elsewhere
[Edwards03a, Edwards03b, Edwards04].

1  //  /*-------------------------------------------------------------------*\

2  //  |   Concrete Instance Body : Text_Swap_Substring_1

3  //  \*-------------------------------------------------------------------*/

4  

5  #ifndef CI_TEXT_SWAP_SUBSTRING_1_BODY

6  #define CI_TEXT_SWAP_SUBSTRING_1_BODY 1

7  

8  ///------------------------------------------------------------------------

9  /// Global Context --------------------------------------------------------

10  ///------------------------------------------------------------------------
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11  

12  #include "Text_Swap_Substring_1.h"

13  /*!#include "CI/Text/Text_Swap_Substring_1.h"!*/

14  

15  ///------------------------------------------------------------------------

16  /// Public Operations -----------------------------------------------------

17  ///------------------------------------------------------------------------

18  

19  procedure_body Text_Swap_Substring_1 ::

20      Swap_Substring (

21          preserves Integer pos,

22          preserves Integer len,

23          alters Text_Swap_Substring_1& t2

24      )    

25  {

26      object Integer index = pos + len - 1;

27      object Text_Swap_Substring_1 tmp;

28   

29   

30      // Fails when swapping all of non-empty t1 and non-empty t2

31      if ((self.Length () > 0) and

32      (t2.Length () > 0) and

33      (self.Length () == len))

34      {

35      // should be while (index >= pos)

36      while (index > pos)

37      {

38          object Character c;

39          

40          self.Remove (index, c);

41          tmp.Add (0, c);

42          index--;

43      }

44  

45      index = t2.Length () - 1;

46      while (index >= 0)

47      {

48          object Character c;

49          

50          t2.Remove (index, c);

51          self.Add (pos, c);

52          index--;

53      }

54  

55      t2 &= tmp;

56      }

57      else

58      {

59      while (index >= pos)

60      {

61          object Character c;

62          

63          self.Remove (index, c);

64          tmp.Add (0, c);

65          index--;

66      }

67  

68      index = t2.Length () - 1;

69      while (index >= 0)

70      {

71          object Character c;

72          

73          t2.Remove (index, c);

74          self.Add (pos, c);

75          index--;

76      }

77  

78      t2 &= tmp;

79      }

80  }

81  

82  

83  void Text_Swap_Substring_1::operator =(const Text& rhs)

84  {

85      Text::operator=(rhs);

86  }

87  

88  
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89  void Text_Swap_Substring_1::operator=(const Text_Swap_Substring_1& rhs)

90  {

91      Text::operator=(rhs);

92  }

93  

94  

95  #endif // CI_TEXT_SWAP_SUBSTRING_1_BODY

Figure 5. Example code view produced by Web-CAT.

5.  Related Work

A number of other educators have advocated including software testing across the curriculum [Shepard01, Jones00,
Jones01]. An overview of related work appears elsewhere [Edwards03a, Edwards03b]. The Eclipse and CxxTest support
described here have been reported in the more general context of supporting Java and C++ development as well
[Allowatt05].

6.  Conclusion

XUnit-style testing frameworks provide many benefits for students. They make it easier to write and execute operational
tests on individual classes and methods. Once written, XUnit-style tests are completely automated. As a result, they
completely automate regression testing, so that students can re-run all their tests each time they add some new code or
modify a feature. When students are encouraged to write their tests as they go--"write a little test, write a little
code"--tests give students greater confidence that the code they have written so far works as intended. It also gives
students a better feel for how much they have completed vs. how much remains to be done, and gives students greater
confidence when they repair or modify code that is already working. Finally, when students write tests this way, it
siginificantly reduces or prevents big bang integration problems, since each method has been tested in isolation before
classes are assembled into larger structures. In perception surveys, students report that they see these benefits
themselves, and prefer to use such techniques even when they are not required in class (once they have been exposed,
that is) [Edwards03b].

CxxTest provides a useful vehicle for obtaining these benefits in class when students are programming in C++. The same
tools can also be used on Resolve/C++ code with no real modification needed. Further, tool support--like Eclipse's CDT
and Virginia Tech's CxxTest support for students--can also be used on Resolve/C++ programs with no modification.
While this leaves some cosmetic issues unaddressed, it points in a promising direction away from simple text-based test
driver programs as a way to teach students about software testing, as well as introducing software testing practices into
more and more Resolve/C++ class activities.
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Abstract

We propose some "rules of engagement" for developing software in Java in order to achieve the following goals: simplified
specification and reasoning when compared to alternatives such as JML, efficiency comparable to typical Java software, and
the ability to make use of existing Java components (e.g., Swing).  It has been said that the best place to start is at the
beginning, and [Weide02, Harms91] tell us that the beginning has to be with the movement of data.  If we do not get that
aspect of software development right to begin with, then we are already fighting a loosing battle with respect to achieving the
stated goals.  Next comes the development of what we call "clean and safety net" foundational components which aid in
building of larger scale applications [Hollingsworth00] that meet our goals.  Finally, we need some additional rules that
must be followed in order to achieve the stated goals.
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1.  Introduction

Since the early 1990's the Reusable Software Research Group (RSRG) has advocated swapping [Harms91] as the primary 
means by which data should be moved within a sequential, imperative program.  Only one research language (Resolve
[Ogden94] created by RSRG) and no commercial languages (that we know of) support swapping as the built-in, primary
method for moving data within a program.  RSRG has proposed disciplines for Resolve/Ada [Hollingsworth92-2] and
Resolve/C++ [Hollingsworth94] that permit building software in those languages using the swapping paradigm. 

The contribution of this paper is that it proposes a data movement paradigm for Java, using existing built-in Java constructs,
along with a preliminary set of "safety net" foundational components, and some preliminary "rules for engagement" for
developing Java programs, all intended to reduce the cognitive load with respect to reasoning about Java programs and
object references inherent in them, and still be efficient.

Section 4.1 discusses why retrofitting swapping into Java (as was done in Resolve/Ada, and Resolve/C++) cannot be done

easily, and our choice as the next best alternative appears in Section 4.2.  Section 4.3 mentions (without detail)
some of the clean and safety net components, while Section 4.4 introduces some of the preliminary rules for engagement for
using Java in a disciplined manner.

2. The Problem

How to design and implement software written in Java to improve ease of reasoning and specification, efficiency, and the
ability to make use of existing Java components if so desired.  Note: "ease" is almost always directly dependent on the
difficulty associated with computing the solution to the problem, therefore "ease" is a relative term.  That is, we are not
claiming everything is going to be "easy".

3. The Position

By building on previous RSRG work, we have developed a prototype approach that addresses the above problem with a
system of rules that even hard core Java hackers can embrace.

4. Justification

4.1  In Java, "Move" or "Transfer" Data, but Do Not "Swap" it

[Weide02] explores the various ways in which data can be moved within a program, i.e., to address the data movement 
problem.  That paper also proposes some data movement evaluation criteria for evaluating these different methods for
moving data.  We are not going to rehash that work here, rather, we plan to use its results to pick the best data movement
paradigm for Java programs.  In this section, we first discuss why we are not picking the swapping data movement paradigm
for Java, which by the data movement evaluation criteria turns out to be an excellent choice for many commercially available,
sequential, imperative languages.  Next we propose that data be "moved" or "transferred" in Java.  This move approach is
not new - it is described in [Weide02], and by the evaluation criteria it is rated the next best choice for moving data within a
program.
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4.2 In Java, We Are Not Going to Swap

Anyone who has been even peripherally acquainted with RSRG's research knows that swapping of data has been (and
continues to be) at the core of the Resolve software discipline and approach.  That we are not choosing swapping for Java
must come as a great surprise.  But do not be fooled.  The heart of the problem within sequential, imperative programs is
how best to move data.  The answer is swapping in the Resolve research language and for many commercial languages
(except Java).  We are not married to swapping.  We are dedicated to solving the data movement problem, and if that means
choosing a method other than swapping, then so be it.

Because of the way in which Java is defined, swapping does not turn out to be the most effective method for moving data. 
The roots of this data movement problem in Java lie with the fact that all non-scalar type objects are implemented by using a
reference variable to store the address to the object data (as was done in Modula), but no direct access is given to where this
reference is stored.  By direct access, we mean, a Java software developer cannot gain access to the reference variable in
order to change the existing reference stored there so that the variable can reference a different object.  If one could access 
where the references are stored in Java reference variables, then one should be easily able to implement the swapping
paradigm. 

A folk theorem of computing is that every problem can be solved by adding a level of indirection [Weide01].  So why not
stick with swapping and implement all objects with a second level of indirection as is mentioned in [Sridhar02]?  That is,
when creating a new object class C, have the only data member inside C be a reference to the actual data that needs to be
stored by object instances of C.  Then to swap the data between two object instances of C, say A and B, one would just call
an operation exported from C which would have access to A's and B's data members (both of which are references to the real
data) and and just swap them.  The original Java variable references for A and B would remain the same.  (As a side note,
this double level of indirection is often referred to as a handle, and is used by some operating systems to permit the
operating system to do memory compaction on the fly while the program remains in an execution state.)  Why not choose
this approach?  Every dereference of an object now requires two dereferences, and as was seen in [Hollingsworth00] actual
commercial systems can be highly layered.  Thus when a dereference is made at a high level this dereference might cause a
cascading of dereferences down through the layers to the bottom layer.  Performing two dereferences for each access of an
object at each level of a highly layered system most certainly will cause a performance hit.  We have not measured this effect
because there is a viable alternative to swapping; we leave this for future work.

Ruling out two levels of indirection leaves us with trying to implement swapping in Java by using the built in language
constructs, e.g., assignment, parameter passing, returning of values, etc. 

Call-by-reference - If Java supported call-by-reference, then every class C could export an operation which would take
two objects from that class and do a straightforward three line swap using a locally declared temporary variable.  The
call to such an operation might look like: x.swap(y);  After the call, x would reference y's data, and vice versa.
Return multiple values - If Java supported the returning of more than one value, then one might construct an
operation which would take two objects and return those two objects in "reverse" order.  The call to such an operation
might look like: y, x = swap(x, y);
Preprocessor magic - If Java supported a preprocessor then one might be able to use preprocessor magic (as it is 
known in the C/C++ world) to implement swapping.

Our proposal is to implement data movement by using Java's assignment statement in combination with the recently
introduced generic class and interface capability.  We found in [Hollingsworth00] that dealing with a piece of data gives rise
to one of two situations: 1) we either momentarily need to hand off an object to some other operation (which implements
some algorithm that uses the data, and possibly changes it); or 2) we need to put it in some container for safe keeping for
later use.  For both situations, Java is well suited with its call-by-value for small and large objects.  Why?  Because at most,
all that is required for passing a scalar is the (small) value itself, and all that is required for passing large objects is the
(small) variable reference. 

But what about ease of specification and reasoning?  The problem is visible aliasing, i.e., aliased references to mutable
objects, so that changes to an object through one reference are visible through another reference that is not mentioned in
the statement that changes the object.  We want to drive the number of references to each object to the bare minimum, i.e.,
one.  Think of this as a program wide invariant, similar to a loop invariant, where there might be short times when we need
to have multiple visible aliases, but after that need is satisfied, we go back to our invariant of just one reference (just like
reestablishing the loop invariant).  That is, if in a particular part of a Java program, we have a Java variable reference to an
object (and its value), and we know (because of our program-wide invariant) that no other part of the program aliases this
object, then we can reason with certainty and confidence about the before and after values of the object when working with
it.  We can do this without introducing the complications of modeling or reasoning about references [Weide01].

When handing off an object - In the situation where our sequential program needs to hand off the object to another
operation, there will be two references in existence momentarily, one held by the caller and one held by the callee.  For now,
we are not going to allow the callee to make and save a copy of the reference, so that when the callee finishes, its reference
automatically gets eliminated.  Later we will discuss what has to be done if the callee needs to save a copy of the reference.

When saving an object for safe keeping - When inserting an object into a container object for safe keeping and for later use,
the container gets and stores the reference, and simultaneously we eliminate the reference stored in the caller by replacing it
with 'null'.  Below (in Figure 1) is some sample code using a Queue for a container:

Client of Queue IQueue.java
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import queue.*;

void Op1 ()
{
   SomeMutableOrImmutableObject x = new SomeMutableOrImmutableObject()
   IQueue<SomeMutableOrImmutableObject> q1 = new
Queue1<SomeMutableOrImmutableObject>();

   x.modify(...);
   x = q1.enqueue(x); // returns null
   ...
}

package queue;

public interface IQueue<E> extends 
Cloneable {
   public void clear();
   public IQueue<E> clone();
   public E dequeue();
   public E enqueue(E value);
   public boolean equals (Object 
other);
   public E peek();
   public int size();
   public String toString();
}

Figure 1.

All container components are implemented so that:

when the reference goes into the container, 'null' gets returned and the calling operation assigns this result to the
reference variable that was passed to the container's insert operation;
when the reference comes out of the container, no reference to it is maintained within the container, and the calling
operation assigns the returned reference to its own local reference variable

4.3  A Set of Clean, and Safety Net Components

This part of the effort involves encapsulating, into a family of well designed, understandable, and carefully implemented
software components, support for clean components that encapsulate the most important uses of indirection with simple
contract specifications; and safety-net components to handle all residual uses of indirection not otherwise covered. There is
not enough room to describe them here. A demonstration will be provided at the workshop, however. Details basically follow
[Hollingsworth92-1, Hollingsworth92-2].

4.4  Rules for Engagement

In the past it has been called a "discipline".  It's time for a new name, and that name is "rules for engagement".  Think of it
as how we are going to engage the language (Java in this case) in a way that helps us achieve our goals.  The incomplete list
of rules that follow are not in any particular order of importance.  One must remember that it is allowable to break any of
these rules for engagement; however, one needs a very good reason to do so, and also needs to be prepared to pay the
consequences.

Use value-based modeling and specification.
Make 'null' a member of the value space for all object models. That way when an object is assigned 'null' it has a legal
value for its type.
Use the "generic" construct so that the compiler can aid in helping identify type mismatches in client code at compile
time.
Use the "interface" construct to capture the abstract idea of a component, use one or more "class" constructs to
implement the interface.
Build all container components by layering on the clean and safety-net components mentioned in Section 4.3.
Implement 'clone' so that it makes a true deep copy.
Implement 'toString' so that it produces a string representing the abstract value of the object.
Implement a 'clear' operation to reset the object's abstract state to be exactly as if the object had just been created.
Implement a 'terminate' operation to be called when the object is no longer of any use. This is not the same as 'clear',
because after 'clear' is called the object can continue to be used.
At declaration time, assign a value to an object reference. One might use 'new' and call the object's constructor, or one
might 'clone' a value, or one might set the reference to 'null'. There are many options, but one way or the other, the
object reference must get assigned a value at declaration time.
Move data around as is described in Section 4.2.
At all times drive the number of references to bare minimum by moving/transferring references rather than copying
them.
If you make use of components that do not follow these rules of engagement, be aware that operations such as 'clone',
'clear', etc., will probably not work as advertised.

5. Related Work

We have made reference to other work throughout the paper.

6. Conclusion

As was mentioned in Section 3 (The Position), we have developed a prototype approach that simplifies reasoning and
specification about Java programs without sacrificing efficiency or existing libraries.  We can think of no better way in which
to make it stronger (or discredit it) than to hold it up for scrutiny by the attendees of the workshop.  We will come prepared
to show the clean and safety-net components, containers layered upon these components, and even a small GUI application
developed using these components.
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Abstract

One component of a verifying compiler is a verification condition generator. The generator will take a Resolve component (with suitable
specifications and implementations) as inputs and output one or more assertions that if proved by a theorem prover, will verify that the component
is correct. The objective of this paper is to examine two ways (goal-oriented and tabular reasoning) of creating the assertions.
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1.  Introduction

The Resolve verifier will create assertions that when proved by a theorem prover, will prove the code is valid. Two methods for creating the assertions have
been discussed in the Resolve literature: a goal-oriented approach [Odgen00] and a tabular reasoning method [Sitaraman00]. This paper is intended to 
initiate a discussion of which way is simpler and more appropriate to automate for the Resolve verifier.

2.  The Problem

Will the goal-oriented approach be simplest to automate? Are there any major obstacles to automating the goal-oriented approach? Would the tabular
reasoning approach be just as simple to automate? Are there any major obstacles in automating the tabular reasoning approach? Should the output be created
only for machines or also for a human to read?

3.  The Position

The Resolve verifier is to be based on a template similar to the one for the current Resolve to Java translator. So the verifier, for example, will use a visitor
pattern to walk the abstract syntax trees to generate assertions. This implementation decision, fortunately, might have no special impact on how the conditions
should be generated.

It is also possible that the verification condition generation is equally easy for both approaches, but the differences arise when the conditions are proved
mechanically later by a prover or when the conditions are used by programmers as debugging aids.

In the beginning stages of the implementation, it appears that the goal-oriented approach is more easily automated than the tabular reasoning approach.

4.  Justification

The example in figure 1 will be used to demonstrate the differences:

Assume true;

        If J > I then
                I:=:J
        end If;

        If K > I then
                I:=:K
        end If;

Confirm I >= J ^ I >= K;

Figure 1. An Example Assertive Code

4.1  Tabular Reasoning Approach

The tabular reasoning approach forms as its name implies a table. The table is split into states and shows how the variables change by numbering them in each
state. As seen in Figure 2, the table is formed to include the assumptions, requirements, and path conditions. To implement this approach, the verifier will walk
the ADT in the same direction and pattern as does the Resolve compiler. The assumption clauses are easily retrieved from the specification of each procedure.
It appears that the most difficult part of the implementation will involve numbering the variables. Also, eliminating unnecessary statements may prove to be
challenging, but is not an absolutely necessary step (except that then it's left to the prover).

State Path Conditions Assumes Requires

0  True  

If J > I then   

1 J1 > I1 J1=J0 and I1 = I0 and K1=K0  

I:=:J 
  

2 J1 > I1 I2=J1 and J2=I1 and K2=K1  

End;   

3.1 J1 > I1 I3=K2 and K3=I2 and J3=J2  

3.2 ~(J1 > I1) I3=I0 and K3=K0and J3=J0  
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If K > I then   

4 K4 > I4 J4=J3 and I4 = I3 and K4=K3  

I:=:K
  

5 K4 > I4 J5=J4 and I5 = K4 and K5=I4  

End;   

6.1 K4 > I4 J6=J5 and I6 = I5 and K6=K5 I6 >= J6 ^ I6 >= K6

6.2 ~(K4 > I4) J6=J3 and I6 = I3 and K6=K3 I6 >= J6 ^ I6 >= K6

Figure 2. Reasoning Table

The final assertions to be proved by the tabular method are as follows:

      1.(((J1 > I1) => (J1=J0 and I1 = I0 and K1=K0)) and ((J1 > I1) => (I2=J1 and J2=I1 and K2=K1)) ^ ((J1 > I1) => (I3=K2 and K3=I2 and J3=J2)) and
(~(J1 > I1) => (I3=I0 and K3=K0and J3=J0)) and ((K4 > I4) => (J4=J3 and I4 = I3 and K4=K3)) and ((K4 > I4) => (J5=J4 and I5 = K4 and K5=I4)) and
((K4 > I4) => (J6=J5 and I6 = I5 and K6=K5))) => (I6 >= J6 and I6 )

      2.(((J1 > I1) => (J1=J0 and I1 = I0 and K1=K0)) and ((J1 > I1) => (I2=J1 and J2=I1 and K2=K1)) and ((J1 > I1) => (I3=K2 and K3=I2 and J3=J2))
and (~(J1 > I1) => (I3=I0 and K3=K0and J3=J0)) and ((K4 > I4) => (J4=J3 and I4 = I3 and K4=K3)) and ((K4 > I4) => (J5=J4 and I5 = K4 and K5=I4))
and (~(K4 > I4) => (J6=J3 and I6 = I3 and K6=K3))) => (I6 >= J6 ^ I6 )

When using the tabular approach, there is no need to generate new names for variables that are not affected by a certain statement. If this aspect is
mechanized, then several unnecessary names would disappear. After this simplification, there might not be much difference between the two approaches in
terms of the assumptions generated to complete the proofs.

4.2  Goal-oriented Reasoning Approach

The goal-oriented approach forms an assertion working "backwards." By applying the appropriate rule in each step, the assertion changes under the directions
of the rule. The goal-oriented approach seems fairly simple to implement. For each step a rule will be applied to modify the assertion. The most difficult part of
this implementation appears to be based on the difficulty of the rules. As seen in Figure 3, this approach may seem more complicated, but seemingly more
machine processable.

Step 1: Apply If_Then Rule  

A. Context/Assume true;

        If J > I then
                I:=:J
        end If;

        Assume K > I 
                I:=:K

Confirm I >= J ^ I >= K;

B. Context/Assume true;

        If J > I then
                I:=:J
        end If;

        Assume ~(K > I)

Confirm I >= J ^ I >= K;

Apply Swap Rule:
2A. Context/Assume true;

        If J > I then
                I:=:J
        end If;

        Assume K > I 
Confirm K >= J ^ K >= I;

Apply Assume Rule:
2B. Context/Assume true;

        If J > I then
                I:=:J
        end If;

Confirm ~(K > I) => 
(I >= J ^ I >= K);

Apply Swap Rule:
3A. Context/Assume true;

        If J > I then
                I:=:J
        end If;

Confirm (K > I) => 
(K >= J ^ K >= I);

 

Step 2: Apply If_Then Statement    

Context/Assume true;

        Assume J > I 
                I:=:J

Confirm (K > I) => 
(K >= J ^ K >= I);

Context/Assume true;

        Assume ~(J > I) 
                I:=:J

Confirm (K > I) => 
(K >= J ^ K >= I);

Context/Assume true;

        Assume J > I 
                I:=:J

Confirm ~(K > I) => 
(I >= J ^ I >= K);

Context/Assume true;

        Assume ~(J > I) 
                I:=:J

Confirm ~(K > I) => 
(I >= J ^ I >= K);

Apply Swap Rule:
Context/Assume true;

        Assume J > I 

Confirm (K > J) => 
(K >= I ^ K >= J);

Apply Assume Rule:
Context/Assume true;

Confirm ~(J > I) => ((K > I) => 
(K >= J ^ K >= I));

Apply Swap Rule:
Context/Assume true;

        Assume J > I 

Confirm ~(K > J) => 
(J >= I ^ J >= K);

Apply Assume Rule:
Context/Assume true;

Confirm ~(J > I) => (~(K > I) => 
(I >= J ^ I >= K));

Apply Assume Rule:
Context/Assume true;

Confirm (J > I) => ((K > J) => 
(K >= I ^ K >= J));

Apply Assume Rule:
Context/

Confirm true => (~(J > I) => 
((K > I) => 
(K >= J ^ K >= I)));

Apply Assume Rule:
Context/Assume true;

Confirm (J > I) => (~(K > J) => 
(J >= I ^ J >= K));

Apply Assume Rule:
Context/

Confirm true => (~(J > I) => 
(~(K > I) => 
(I >= J ^ I >= K)));
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Apply Assume Rule:
Context/

Confirm true => ((J > I) => 
((K > J) => 
(K >= I ^ K >= J)));

Apply Confirm Rule:
Context/

true => (~(J > I) => 
((K > I) => 
(K >= J ^ K >= I)));

Apply Assume Rule:
Context/

Confirm true => ((J > I) => 
(~(K > J) => 
(J >= I ^ J >= K)));

Apply ConfirmRule:
Context/ 

true => (~(J > I) => 
(~(K > I) => 
(I >= J ^ I >= K)));

Apply Confirm Rule:
Context/

 true => ((J > I) => 
((K > J) => 
(K >= I ^ K >= J)));

 

Apply Confirm Rule:
Context/

 true => ((J > I) => 
(~(K > J) => 
(J >= I ^ J >= K)));

 

Figure 3. An application of the goal-oriented approach

The final assertions from the goal-oriented Approach to be proved are as follows:

      1.Context/ true => ((J > I) => ((K > J) => (K >= I ^ K >= J)));

      2.Context/ true => (~(J > I) => ((K > I) => (K >= J ^ K >= I)));

      3.Context/ true => ((J > I) => (~(K > J) => (J >= I ^ J >= K)));

      4.Context/ true => (~(J > I) => (~(K > I) => (I >= J ^ I >= K)));

An advantage of the goal-oriented approach would be only in the cases where the goals that need to be proved are weaker than what can be proved

5.  Related Work

There is no comparable verification condition generator in the literature that is similar to the one outlined in this paper.

6.  Conclusion

The objective of this paper is to initiate a discussion on automation of verification condition generation and proofs at the workshop. At the time of the
workshop, we hope to have examples of automatically-generated assertions for discussion.
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Abstract

The RESOLVE vision of building software includes a library of components that satisfy two important
criteria:?each component must have mathematical specifications, and each implementation for a given
component must be certified to be correct.? Both of these criteria require systemic support for writing
mathematics.? Our position is that the mechanisms for expressing mathematical specifications in typical
verification systems are insufficiently powerful to support general program verification.? In addition, we propose
that the tool to achieve software verification should be designed as a relatively powerful proof check, rather than
as a general theorem prover.
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1.  Introduction and Related Work

The RESOLVE philosophy includes the thesis that software components should be certified to be correct before they become
part of a software system.? Of course, some may think that carrying out an elaborate scheme for testing the software is
adequate for certification, while others would like to insist on applying proof rules from a formal proof system in order to put
a stamp of approval on any given component.

Because attempts at formal verification have been around for decades without making a significant impact on how software is
written or used, many members of the community have lost hope that formal verification can be a reality.? Indeed, we know
that the question of whether two given programs are equivalent is an undecidable problem, so if we consider a specification
and an implementation as two programs we need to compare, hope for automated verification vanishes.

So the question of finding a way to address automated verification in the RESOLVE sense (a realization satisfies the concept 
for which it is written) presents many challenges, not the least of which is the need to articulate exactly what we hope to be 
able to do.

2.  The Problem

2.1? The Context for Articulating the Verification Challenge

Over a period of nearly two decades a RESOLVE vision of software has evolved from the idea of developing a language that
supports formal specifications with multiple implementations, to a vision of designing software components for a library to be
used and added to by programmers.? One mainstay among many guidelines for these software systems is that no component
should be permitted into the library unless that component has been certified as correct.

The plan is that certification can be to a large extent an automatable task, based on a system of proof rules which, when
applied to the code, generate mathematical clauses equivalent to the correctness of the program.? Of course, once those
clauses have been generated, the question of who or what will deal with proving those clauses has remained unanswered.? A
few people have looked at theorem provers hoping to find one capable of handling the multi-theory programs in the RESOLVE
style, only to find that existing theorem provers, usually based on induction, are aimed primarily at single level programs
written about integers.? Such provers fail to accommodate abstraction and modularity, both of which are essential to
RESOLVE.

2.2 The Current State of Verification

At present there are automatable proof rules ready to apply to the simple constructs in the RESOLVE language, and there are
drafts of proof rules for the more complex constructs, such as realizations and facilities.? Relational semantics have been
developed to permit the establishment of soundness and relative completeness for the proof rules.? The most up to date
proof rules deal not only with functional correctness, but with performance as well.

It has been proven that a mechanism in the language for supporting auxiliary constituents is a necessity for completeness, 
and equally importantly that it is always possible to find an auxiliary constituent for writing a correspondence from a correct 
implementation to its concept.

2.3 The Challenge

With proof rules to generate the clauses necessary for proving correctness, but the absence of a theorem prover to process
those clauses, we face the problem of either requiring a human to step in and prove the clauses or finding a mechanical way
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to process those clauses.? We know from the experience of applying proof rules to small programs that the clauses generated
can quickly grow to complicated forms which, although a human may be able to simplify the clauses and eliminate large
portions of the forms, present a daunting challenge for mechanization.

One of those challenges is that of figuring out how to simplify clauses as they are generated.? Such questions as when
simplification should take place and what simplification forms should be chosen do not have obvious answers.? Nevertheless,
those questions need to be addressed with the aim of having our clause generators produce forms that are reasonable to
process.? The literature has many accounts of ways various theorem provers have addressed the issue of simplification, but
we have found none that seem to fit well with the multi-theory nature of RESOLVE.

A more interesting challenge, calling for a new way to look at verification is that of looking at the problem of proving
correctness, not as a theorem proving exercise, but as a proof checking exercise.? This means that we consider automating
the process of checking proofs, rather than creating proofs, or possibly some combination of the two.

3.  Our Position and Justification

3.1 Math Units

Our position is that in addition to concepts, profiles, realizations, and facilities, RESOLVE needs a mechanism for describing
mathematical theories.? The syntax must support the process of finding particular properties of any given mathematical type
and checking to see that those properties have been used correctly in proofs.? We propose that the language will have a
collection of theories built in, including set theory, which underlies all other theories, and other basic mathematical theories
such as natural numbers, integers, and reals.

Not surprisingly, the mere presence of such a collection does not solve the problem of how those theories can be used
effectively by the verification system.? Many new questions arise with regard to organization and the differences between
mathematical material and programming material.

For example, one point of agreement among RESOLVE proponents is that the language should support strong type checking.?
There may be some controversy as to when one kind of number can be used in a mixed computation with another (such as
adding an integer to a real number), but for the most part, there is agreement that type checking should be done by name.?
In any case, rules for numerical mixing can be worked out so that syntactic checks sufficiently sort out what may and may
not be done.

Mathematical type checking presents some additional challenges.? Certainly, we want to allow mathematicians and others to
write mathematics as closely to the way they are used to as possible.? This means that most arithmetic symbols must be
overloaded, and rules for when it is all right to do such overloading must be worked out both for convenience of expression
and correctness of semantic interpretation.

For example, if we have an assertion that x = a + b, and the a is real, while the b is an integer, then it should be assumed
that the + sign represents real addition, rather than integer addition.? In the world of mathematics it is taken for granted
that such mixing of types is acceptable, and so the rules we develop for overloading will need to be more liberal than those
for programming.? We need to build into our mathematical typing the assumption that every natural number is an integer,
every integer is rational, every rational is real, and every real is also complex without any need to explicitly cast.

Moreover, abstraction complicates the efforts at mathematical type inferencing.? To decide whether a particular operation can
be applied to a given object, it must be possible to determine what the domain of the operation is, as well as the type of the
object.? This means we need some notion of type compatibility different from that used in programming.

To get an idea of what a math unit might look like, we include a short example here showing part of what would be necessary
for supporting binary relations.? It is not our intent to explain the details of the example, but rather to illustrate our position
that we need syntactic constructs for putting mathematics into the RESOLVE library and to show one example of what such
syntax might look like.? The pr?cis includes only properties and definitions, but no proofs, while a complete math unit
includes the proofs as well.? The thinking is that for proof checking, once a math unit (with proofs) has been entered into the
library, a proof checker?then needs only the properties that have been proven in order to apply them to its proof checking
task.
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3.2 Proof Checking as a Replacement for Theorem Proving

Our position is that the math units described can be used for checking proofs submitted for new theories identified by
designers of programs.? For example, in writing a prioritizer template as the specifications for sorting we might put in a
definition for the total entry count in an entry keeper, something that is not included in the built in basic mathematical
theories, but that makes writing the requires and ensures clauses simple and easy to read.

Similarly, we may want to add not only a definition, but possibly a lemma or theorem related to the particular component we
are writing, also not in the built in mathematics, but useful to a proof checker.? For example, when doing an enumerated set
template in which the type family, enumeration, is a record with one component being the size as a natural number and the
other component a mapping from positive natural numbers to the elements in the sets under question, it would be
convenient to include a definition, Set_of, for designating the set of elements for this type and a lemma stating that the
cardinality of that set is the size in the record constituent.

We propose that when a new lemma is written in a component, the programmer should supply a proof, which can then be
used in the verification process.? Of course, before such a component can be entered into the RESOLVE library, among other
things, the proof supplied by the programmer must be checked.? This is quite different from asking that the proof be
automatically generated by the verification system.

4.  Conclusion

Once some built-in math units and precis have been placed in the library, their proofs completed, additional math units may
be needed as new concepts and realizations are written.? In that case, since the new math units will be based on existing
library units, their proofs will refer to the properties of particular library pr?cis, and so new proofs can be checked against
properties of existing precis.? Designers of new math units will put on their uses lists the names of the existing math units on
which their new ones depend, so the proof checker can match claims in the new units against what has already been proven.

This is a whole new approach to the challenge of verification.? In this approach we do not depend on automated proof
creation, but rather we automate the process of checking proofs.? Of course, when proof rules are applied to programs and
clauses are generated, the problem of when and how to simplify those clauses must be addressed.?Additionally, there is the
challenge of how much an automated system can do with regard to supplying proof parts and then letting users know when
human hints are helpful or necessary to keep the proof progressing.?

The idea is to have humans and the proof system work together with the math units to address the verification challenge.?
Programmers supply new math units as needed.? The proof checker checks to see that the programmer supplied proofs are
correct in the context of the library math units.

Of course, this approach depends on a well-defined syntax for expressing mathematical theories, no small matter.? Moreover,
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for efficiency in applying these theories during the verification process, we need both rules of logic for our system and rules
for type inferencing in our mathematical notation.
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Abstract

This paper presents several possibilities of approaching the automation of proof generation. Using basic
heuristics, a theorem prover could be written capable of utilizing a library of tactics and sources and the strategy
of resolution theorem proving to compose a set of step by step instructions for ultimate verification by the Coq
Proof Assistant. This paper lays out design issues in the implementation of such a proof generator.
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1.  Introduction

An integral part of the verifying compiler as presented in the paper by Kulczycki, Duckworth, Sitaraman, & Weide will be the
Automated Prover [Kulczycki]. While a proof assistant, like Coq, may provide a powerful tool for evaluating and verifying
proofs, it will lack the functionality to generate its own proofs [Coq]. The proof generation process would have to be
automated within the compiler if Coq were to be used as a proof engine in conjuction with Resolve.

2.  The Position

Some parts of the proof could be generated mechanically (such as the initial generation of assumptions) but for the rest of
the proof, heuristics would have to be developed to guide the proof generation.

3.  Justification

One of the goals of the Resolve research project is to have a utility for the verification of Resolve programs - a verifying
compiler [Kulczycki]. This utility will have to perform two independent and very complex jobs: generation of a theorem to be
proved from Resolve specifications and code by a "Verification Condition Generator", and creation of a proof of that theorem
for soundness [Kulczycki]. While there is still debate about how to best implement the verification condition generator, once
these conditions, or obligations, were defined for proving, the proof generator could go to work building a step by step proof
and using Coq to evaluate it.

One of the first issues in the automation of this system is straightforward: how do we know which imports will be needed for
a particular proof? Will there be a way that we can narrow the searchable references down in order to reduce running time?
Producing too large a search space would create an unnecessary burden on the system, but failing to import all the necessary
sources could mean the proof would fail altogether.

For many user-generated obligations, we can speculate that the proof will likely need to reference a recently verified theorem
within the same package (as is the case in Figure 1). In this case, the modularity of the source and the grouping of similar
theorems may become important, especially if the system were designed to intuitively apply the rules. In the attempt to
resolve a proof, preference would most likely be given to utilizing local theorems and definitions first. Only when one scope
has been exhausted would the search space be widened to include other assumptions and eventually whole math units.

Figure 1 presents the splice proof first introduced in the paper by Kulczycki, Duckworth, Sitaraman, & Weide [Kulczycki]. 
We will consider this a prototypal proof in our discussion.

Theorem neq_0_ge_gt : forall n m : nat,
    n <> 0 -> m >= n -> m > 0.

forall Q0 P0 P1 : string Entry * string Entry,
    |P0 Rem| >= |Q0 Rem| -> |Q0 Rem| <> 0 -> P1 = P0 -> |P1 Rem| > 0.
Proof.
intros.
replace P1 with P0.
apply (neq_0_ge_gt (|Q0 Rem|)(|P0 Rem|)).
assumption.
assumption.
Qed.

Figure 1. Proof of Splice Procedure on Lists for Coq

Of Coq's many proving "tactics", the initial method applied when the obligation takes the form of an inference is usually
"intros". It applies deduction to assume the first half of an implied relationship, adding that statement to the "local context"

24



and forms a new obligation to be proven from the implied statement. This can be considered a standard step in the proof.
Similarly, once the obligation has been reduced to the point that the only steps left to complete the proof are simple
substitutions of already existing assumptions, the "auto" or "assumption" tactics can be called upon to do just that. But what
is the point at which the "auto" feature of Coq can be called upon? Would the system attempt to use the "auto" tactic after
every step? Or would there be a more sophisticated reasoning in place that could recognize a proof near completion?

The initial and final steps of the proof could in this way be mechanized. The real work of automation will occur after the local
context has been formed but before the point at which the "auto" or "assumption" tactics can be invoked. Here, the system
designer must find some mechanical method for "guiding" the Coq proof assistant.

For very basic obligations containing equalities, it may be possible for a simple substitution routine to be applied within the
first stages of the proof. This will involve the matching and rewriting of variables. Certain other relationships (e.g.
inequalities) may reference a set of behavioral rules entirely their own. Such rules would specify how a series of inequalities
might be correctly rewritten. The automated prover would use these rules to search the local context for applicable
assumptions.

The most complex part of the scenario, however, is the part that Coq cannot independently execute. User input is required to
decide which theorems to apply and to guide the direction of the proof. While the opening and concluding steps of the proofs
can be painlessly mechanized, implementing a higher order of intelligence in a verification system would require several
important design choices to be made. When the program does not immediately see a local hypothesis it can apply to the
obligation at hand, might it resort to applying each theorem from the imported list iteratively or would a complex set of
heuristics come into play?

The automated prover will need to exhibit a level of artificial intelligence at this stage; the generation of proof tactics will not
be strictly mechanical. The system will more than likely need to discern what the most appropriate next step is. For this, it
might be necessary to hold a list of commonly applied tactics. This list could be specific to the semantic format of the given
local context and obligation. The system would use heuristics to score each step in the list for probability based on the
information at hand in the proof. The best candidate for the next step would be selected and, failing an ultimate solution
using that path, the program would backtrack, apply the next best step, and so on. The bulk of the logic in this scenario
would go into the development of the heuristics. This may involve matching the format of the obligation to the resolution
offered by a theorem. For example, an obligation in the form "x > 0" will be matched to a list of theorems which conclude
with an assumption in the form "x > 0".

One step may be common to all proofs. Before the system looks to apply any theorems, it will need to check the local context
to see if a substitution or resolution is possible from the existing assumptions. This check will likely need to take place after
every step in the proof.

To illustrate some of the complications in implementing an automated prover, we can examine a specific proof.

Confirm (|T| > 0) and (∀ T': Stack, F': Entry, (T = <F'> • T') => (|T'| < Max_Depth
and ... ) )

Proof |T'| < Max_Depth ; 
   Goal |T| = | <F'> • T' | ;                /* from the assumption */
   Goal |T| = | <F'> • ((T')Rev)Rev | ;      /* Thm. S10 from String Theory */
   Goal |T| = | (ext((T')Rev, F')Rev | ;     /* Defn. of Rev */
   Goal |T| = | (ext((T')Rev, F') | ;        /* Thm. S11 from String Theory */
   Goal |T| = suc( | (T')Rev | ) ;           /* Defn. of | | */
   Goal |T| = suc( | T' | ) ;                /* Thm. S11 from String Theory */
   Goal |T| = | T' | + 1 ;                   /* Defn. of suc() */
   Goal |T| - 1 = | < Max_Depth | ;          /* Substitution for T' */
   Goal |T| <= | Max_Depth | ;               /* True by constraint on the Stack
Template */

Figure 2. Proof of |T'|

The first step follows from the assumption but obligates us to find a way to deduce |T'| from its relationship with T. Finding
nothing helpful in the assumptions, the prover would ultimately call upon String Theory. Here, we find ourselve limited in the
theorems we can apply to a string in the form <x> • a. The ()Rev operation allows us to reverse this string and apply the
ext() operation as per the definition of ()Rev. The proof follows neatly from there.

This example raises an interesting question. Are there likely to be more theorems which can be proven in a single series of
steps or which can be proven in multiple ways? It seems that in the case of Figure 2, after an initial creative leap, we are
relatively limited in the number of theorems we can apply and in this way part of the proof guides itself. A strict and concise
library of theorems might of primary importance in this way.

4.  Related Work

The Resolve research group at Clemson University is currently looking into ways to incorporate the Coq proof assistant into
the Resolve system and automate proof generation for Coq.

5.  Conclusion

The design of a automated prover will be an essential part of the future development of the Resolve software package. Using
an existing proof checker would not only make this task easier but would provide a basis for discussion about the design
intricacies of a Resolve proof generator. How would an intelligent, efficient proof generator be constructed?
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Abstract

Verification of correctness of parallel programs is an open research problem.  In proving correctness of
such programs, it is necessary to show that the processes are not simultaneously modifying the same
variable.  Even if a shared variable is not modified, it is often necessary to show that the variable is
preserved, i.e., its value never changes.  This position paper examines a few simple exercises to
understand the kinds of problems that must be addressed in the verification of any parallel program, in
general, and point-based programs, in particular.  It postulates possible proof rules for mechanical
verification.

Keywords

Parallel constructs, proof of correctness, pointers, preserves parameter mode

Paper Category: technical paper
Emphasis: research

1.  Introduction

Verification of correctness of parallel programs is an important problem.  Resolve includes a preserves parameter mode
especially for use in parallel programs.  A procedure that claims to preserve a parameter must guarantee that the
parameter’s value never changes–not even temporarily— during execution of the procedure.  This paper considers proving
correctness of programs that use preserves parameter mode and uses this idea as a starting point towards development and
verification of parallel programs in Resolve.  The paper presents examples and example proof rules, hoping to stimulate
discussions on these and related topics at the workshop.

2.  The Problem

The problems addressed in this paper include verification of programs that use preserves modes in Resolve that, by design,
facilitate parallelization, and verification of correctness of parallel programs with and without pointer behavior. 

3.  The Position

Research in construction and verification of parallel programs, where the goal is to speed up processing, can be a useful first
step towards verification of more general concurrent programs.  Moreover, understanding the preserves parameter mode (as
opposed to the restores mode) may serve as a starting point.

4.  Justification

This section considers several Resolve examples to justify the position.
 
Preserves Mode Parameters
 
Kulczycki, et al., have discussed formal specification and reasoning of correctness of an operation to splice or interleave two
given lists [Kulczycki 05, Kulczycki 06].  They consider two versions of the Spice code.  One version is based on a data
abstraction for lists and another is based on pointers.  The pointer-based version is reproduced below.  For the purpose of
this first section, the preserves parameter mode of Position p is the focus.  The preserves mode is different from the restores
mode in that the restores mode simply demands that the code ensure p = #p, whereas the preserves mode demands that p
never changes.  To show that p is preserved, it is not sufficient to show that p remains is the same after every step in the
code.  This is because if p is passed as a parameter to an operation that merely restores p, then there’s no guarantee that p
is preserved. 
 

Definition Var Is_Reachable_in(hops: N; p, q: Location): B = 

    Targethops(p) = q and "k: N, if Targetk(p) = q then k ³ hops;

Definition Var Is_Reachable(p, q: Location): B = $k: N ' Is_Reachable_in(k, p, q);

Definition Var Distance(p, q: Location): N   =   ;

Definition Var Is_Info_Str(p, q: Location; a: Str(Info)): B =
    $n: N ' Is_Reachable_in(n, p, q) and a =;
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Operation Splice(preserves p: Position; clears q: Position);
    updates Target;
    requires ( $k1, k2: N ' Is_Reachable_in(k1, p, Void) and

                                         Is_Reachable_in(k2, q, Void) and k2 ≤ k1 ) and 
        ( "r: Location, if (Is_Reachable(p, r) and Is_Reachable(q, r)) then r = Void );
    ensures ( "t: Location, if not Is_Reachable(#p, t) and not Is_Reachable(#q, t)

                                             then Target(t) = #Target(t) ) and
        ( "a, b, g: Str(Info), if Is_Info_Str(p, Void, a) and

                                             Is_Info_Str(#p, Void, b) and

                                             Is_Info_Str(#q, Void, g) then a ≤!≥ (b, g) );

Recursive procedure
    decreasing Distance(q, Void);

    Var r, s: Position;

    If (not At_Void(q)) then

        Relocate(r, p);

        Follow_Link(r);

        Relocate(s, q);

        Follow_Link(s);

        Redirect_Link(p, q);

        Redirect_Link(q, r);

        Splice(r, s);

        Clear(q);

    end;

end Splice;
Figure 1. Pointer-Based Splice Operation Specification and Code from [Kulczycki 05]

 
Proof Rules for Handling Preserves Mode Parameters
 
An obvious solution to the problem is to specify the Splice operation so that p is restored and confirm that p = #p at the end
of the code.  The general reason to use the preserves mode over restores mode is to facilitate parallelization.  Before
considering a parallel version of Splice, first we consider verification of code with preserves mode parameters.  Suppose that
Preserve is a special verification assertion.  Then we can formulate straightforward rules to prove that variables are
preserved.
 
Procedure declaration rule:
 
Context È {Operation P (preserves x: T);} / Remember; Assume pre; body; Preserve x; Confirm post;
 Context È {Operation P (preserves x: T1; updates y: T2); requires pre; ensures post} / Procedure P (preserves x: 
T); body; end P;
 
 
Modified Procedure Call rule:
 
Context È {Operation P (preserves x: T);} / assertive_code; Preserve u; Confirm …
Context È {Operation P (preserves x: T1; updates y: T2); requires pre; ensures post;}/ assertive_code; P(u, v);
Preserve u; Confirm Q;
 
 
Modified Swap Statement Rule:
 
Context/ assertive_code; Preserve x; Confirm Q [y -> z; z -> y];
Context/ assertive_code; y :=: z; Preserve x; Confirm Q;
 
A Parallel Version of Splice
 
Though it’s hard to envision much to be gained by parallelizing Splice procedure, it offers a useful example.  Shown below is
an example.  The specification of Splice is the same as in the sequential version.  In the code, for correct working of the
parallel code, it’s necessary to establish that the parallel process do not affect or update the same variable.  For this reason,
we specify a set of positions affected by each process in an affects clause.  Just as in the specification of an operation, all
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“external” variables not mentioned in the ensures clause are assumed to be (and implicitly established to be) restored, all
variables not listed in the affects clause must be “preserved” by each process.  
In general, a formal verification system needs to and can establish this invariance using the Preserve assertion discussed in
the last subsection.  However, it may not be necessary to show that all variables are preserved, only that the ones referred to
(but not necessarily updated) by the processes remain unchanged.  For this purpose, it’s useful to add a refers to clause for 
each process.  In the Splice example, the position r is referred to by both processes, but is modified by neither.
 
Operation Splice (preserves p: Position; clears q: Position); 
            requires …
            ensures …
Recursive Procedure
            decreasing …
            Var r, s: Position;
            If (not At_Void(q)) then
                        r = p;
                        s = q;
                        Follow_Link (r);
                        Follow_Link(s);
                        Cobegin
                                    Process P1: affects q, Target(p), Target(q); refers to r;
                                                Retarget_Link(p, q);
                                                Retarget_Link(q, r);
                                                Clear(q);
                                    Process P2: affects {t: Position  | Is_Reachable_in (1, r, t) or Is_Reachable_in(0, s, t)}; refers to
r;
                                                Spice(r, s);
                        end;
            end if;
end Splice;

Figure 2. A Parallel Version of Splice Code
 
 A proof rule for verification using the affects and refers to clauses is given below.  Note that the above parallelization of
Splice will not work if Splice is specified to restore its parameter p, instead of preserving it.
 
A proof rule for verification of parallel code
 
Context/assertive_code; Confirm W1 Ç W2 = Æ;
Context/assertive_code; code_1; code_2; Preserve R1, R2; Confirm Q;
 
Context/assertive_code; 

Cobegin
Process P1: affects W1; refers to R1; code_1; 
Process P2: affects W2; refers to R2; code_2; 

end; 
Confirm Q;

 
 Additional Examples
 
Unlike the pointer-based version of Splice, the List-based version given in [Kulczycki 06] is not readily parallelizable because
the participating lists are modified by the recursive List Splice procedure.  So we consider below a variation.  This parallel
program is unlikely to make it any faster than the regular Splice, but it is an example of that shows how we can make the
processes independent by trading off more space (extra List variable R here).  

Operation Splice(updates P: List; clears Q: List);

      requires |Q.Prec| = 0 and |P.Rem| ≥ |Q.Rem|;

      ensures $a: Str(Entry) ' a ≤!≥ (#P.Rem, #Q.Rem) and

                     P.Prec = #P.Prec  a and |P.Rem| = 0;

Recursive procedure Splice(updates P: List; clears Q: List);

      decreasing |Q.Rem|;

      Var E: Entry;

      Var L: List;

 

      If (Rem_Length(Q) /= 0) then

            Advance(P);
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            Remove(E, Q);

            Swap_Remainders(P, R);

            Cobegin

                  Process 1: affects E, P;

                        Insert(E, P); Advance(P);

                  Process 2: affects R, Q;

                        Splice(R, Q);

            end;

            Swap_Remainders(P, R);

            Advance_to_End(P);

      end;

end;
Figure 3. A Parallel Version of List_Based Splice Code

 
An example with a loop is given below.  In general, if operations called in parallel, such as Push and Pop in the following
example, were non-trivial operations, then the parallelism would be useful.  Notice that the code will work properly even if
Pop(F, S) is done before Push(E, S_Flipped).  But there’s no need to prove all kinds of inter leavings, if the processes are
independent.
 
Operation Flip (updates S: Stack);

            ensures S = #SRev;
Procedure
            Var E, F: Entry;
            If (Depth_of(S) ¹ 0) then
                        Pop(E, S);
                        While (Depth_of(S) ¹ 0) 

                                    maintaining #S = S_FlippedRev o <E> o S;
                                    decreasing |S|;

do
                                    Cobegin
                                                Process P1: affects E, S_Flipped;
                                                            Push(E, S_Flipped);
                                                Process P2: affects F, S;
                                                            Pop(F, S);
                                    end;
                                    E :=: F;
                        end;
                        Push(E, S_Flipped);
            end if;
            S :=: S_Flipped;
end Flip;

Figure 4. A Parallel Version of Stack Flip Code
 
We conclude the paper with a more typical array parallelization example.  Other examples include situations where an array
is referred to, but not affected by the processes.
 
            Facility SF is Stack_Template …
            Var Array (1..Max) of SF.Stack;
             
            Cobegin for I := 1 to Max 

maintaining "J: N, if 1 £ J £ I, then A[J] = #A[J]Rev;
do Process (I): affects A[I]; 

Flip(A[I]);
            end;

Figure 5. Parallel Processing with an Array of Objects
 

5.  Related Work

The most closely related work for this paper is previous efforts by Pike et al. on automatic parallelization of sequential
Resolve programs [Pike 02].  Using static analysis, it is indeed possible to extract the parallelization inherent in some of the
examples mechanically, but the general problem requires a linguistic solution.  There is significant work in the literature in
verification of parallel programs.   However, much of that work is not directly related to the focus of this that is concerned
with enhancing Resolve with parallel constructs and establishing Resolve programs to be correct.   This paper is based on the
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well-known idea of establishing processes that are mostly independent.  Considerable research remains to be done to show
correctness in the presence of shared variables. 
 

6.  Conclusion

Most of the ideas in this paper are exploratory in nature and the corresponding findings are preliminary.  The objective of this
paper is to stimulate a discussion on verification of parallel programs at the workshop.
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Abstract

Sulu is a object-oriented programming language that adopts many of the features of RESOLVE, providing an alternative
mechanism for the embodiment of RESOLVE components. In this paper, I provide a short tutorial for programming in Sulu,
and a discussion on some of the issues surrounding the design of the programming language.

1 Introduction

In the RESOLVE 2002 workshop, Weide's paper Good News and Bad News About Software Engineering Practice presented a
pessimistic view of the impact of RESOLVE research. At one point, he wrote: "None of the RESOLVE innovations has had the
slightest influence on CSTs [commercial software technologies], even via their inevitability." [Weide02a] Later, at the 
workshop itself, Dr. Weide presented a much more positive view of RESOLVE research; nonetheless the tone of the paper
perhaps represents the frustration of the community over the relatively low impact of this research in the larger software
engineering community.

I have often thought that this state of affairs is brought about partly by the lack of a programming language implementation
that embodies the ideas espoused by RESOLVE, and the lack of a novel application for the ideas espoused by RESOLVE
research. The Sulu programming language is partly an attempt at working towards alleviating this perceived lack.

To date, the most common vehicle for presenting RESOLVE components is to implement them in RESOLVE/C++. It is a
testament to the flexibility of the C++ language, and the ingenuity of the community that people can program in the
RESOLVE discipline using that language. But the idioms of RESOLVE/C++ is quite alien to regular C++ idioms. Showing
RESOLVE-like components in a different programming language like Sulu may lessen the cognitive dissonance of looking at
programs written with idioms different from the host programming language.

Sulu is not RESOLVE, but it is strongly influenced by it. In the same RESOLVE 2002 paper [Weide02a], Weide lists some of 
the ideas brought forth by the RESOLVE community. The following table shows how Sulu tries to incorporate those ideas into
the language.

Idea How it is implemented in Sulu

separating specifications from implementations

Like RESOLVE, Sulu has both Concepts that hold specifications, and
Realizations that holds implementation details. It has syntactic slots for
executable design-by-contract specifications. The specification language is
influenced by JML, the Java Modeling Language. [Leavens99]

allowing for multiple interchangeable 
implementations of a single specification

The separation of concepts and realizations in Sulu makes this trivial. All
realizations must have corresponding concepts.

having a standard set of "horizontal", 
general-purpose, domain-independent 
components such as lists, trees, maps, etc., in 
a component library

This is currently work in progress, with example components for stacks, 
lists, and binary trees already implemented.

templates are a useful composition mechanism Sulu concepts and realizations both allow generic template parameters.

having value semantics is useful even for 
user-defined types

Sulu uses swapping as the main data movement operator, and thus has 
value semantics, but minimizes the need for deep copying.

reasoning about programs that use 
pointers/references is complicated and 
error-prone

Having value semantics, reasoning about pointers/references is limited only
to when the programmer uses a pointer component.

problems related to storage management, such 
as memory leaks, are serious

The Sulu interpreter, being implemented in Java, uses the Java garbage
collection mechanism to implement memory management. But in theory, a 
Sulu compiler can be built with no need for garbage collection at all.

Sulu is not RESOLVE, its syntax is divergent from the one presented in the Software Engineering Notes paper
[Sitaraman94]. Most notably, Sulu is object-oriented. It uses what has become the standard obejct-oriented dot notation,
and supports various forms of inheritance.

Additionally, the Sulu interpreter introduces an infrastructure that uses the formal specification to aid in automatically
generating and executing unit tests. It is my hope that this infrastructure will prove to be a useful vehicle for research in
automatic test-case generation.

2 An example: implementing a list
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Perhaps the best way to give a feel for how you can program in Sulu is through an example. In this section we will implement
a List component using two stacks.

Figure 1 illustrates our conceptual view of a list component. We imagine a List as two sequences (let's call them leftSequence
and rightSequence), both starting out empty. We have two insert methods insertLeft and insertRight. The insertLeft method
will insert an item to the end of leftSequence, and insertRight will insert an item at the beginning of the rightSequence. We
also have a method removeLeft that removes the end of the leftSequence (provided that it is not empty), and similarly, a
removeRight method. Finally, we also have an advance and retreat method which shifts elements from the leftSequence to
rightSequence and vice versa.

 
Figure 1. A conceptual view of a list component as two sequences.

Figure 2 is the code for the List concept. For brevity, not all the specification is included. You might notice that the concept is
a template, it takes a parameter Item, which must match the concept Abstractable. We will discuss this idea of matching in
the next section.
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/******
 * A List is conceptually two sequences, a left one and a right one.
 ******/
concept List( Item: concept Abstractable() )
{

    model method leftSequence(): concept Sequence( concept MathObject() );

    model method rightSequence(): concept Sequence( concept MathObject() );

    method leftLength(): Int
        ensures leftLength == leftSequence().size();

    method insertLeft( elem: Item )
        ensures leftSequence() ==
                        old( leftSequence() ).append( elem.getMathObject() ) );

    method removeLeft( elem: Item );
        requires leftSequence().size() > 0
        ensures old( leftSequence() ) ==
                        leftSequence().append( elem.getMathObject() );

    method advance()
        requires rightSequence().size() > 0
        ensures {
            leftSequence() == old( leftSequence() ).append(
                                                        rightSequence().at(0) );
            rightSequence() == old( rightSequence() ).removeFirst();
        };

    method retreat();

    method rightLength(): Int;

    method insertRight( elem: Item );

    method removeRight( elem: Item );

    method length(): Int;
}

Figure 2. The List concept

Sulu specifications are executable. That is, there is an actual concept in Sulu called Sequence, and one or more realizations
for it. We take care to separate the components that are in the specification world (components that inherit from MathObject)
from components that are used in the implementation world (components that inherit from Object).

Methods that are prefixed by model are specification-only methods. Often, these methods are abstraction functions, mapping
the internal state of the object to its representation in the specification world.

Figure 3 is a realization that implements a List concept using two stacks. Note that the type of Stack the realization uses is
also left as a generic parameter. This provides great flexibility over what kinds of stack implementation to be used.

realization TwoStacks( ItemStack: concept Stack( Item ) )
    implements List( Item )
{
    /* instance variables */
    var left: ItemStack;
    var right: ItemStack;

    /* abstraction methods */
    model method leftSequence(): concept Sequence(Item) {
        leftSequence := left.getSequence().reverse();
    }

    model method rightSequence(): concept Sequence(Item) {
        rightSequence := right.getSequence();
    }

    /* methods */
    method insertLeft( elem: Item ) {
        left.push( elem );
    }

    method removeLeft( elem: Item ) {
        left.pop( elem );
    }

    method leftLength(): Int {
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        leftLength := left.size();
    }
}

Figure 3. This realization implements a List using two stacks

If you are familiar with Java, you may want to think of concepts as the equivalent of Java interfaces, and realizations as
classes that implement the interface. Since concepts and realizations are generics, there is a need to "instantiate" the
templates. This is done with the class construct in Sulu. Figure 4 illustrates how a List of String objects may be created and
used.

// create a StringList class of String objects, using the TwoStack realization
// which in turn uses a linked-list based stack.
class StringList extends concept List(String)
    realization TwoStacks( concept Stack( String)  realization LinkedList );

//Create a StringList object;
var list: StringList;

// create a console object to print out the strings
var c: Console;

// create a String object to hold the various strings
var str: String;

list.insertLeft("Hello");
list.insertRight("World");

list.retreat();

list.removeRight(str);
c.println(str); //prints "Hello"

list.removeRight(str);
c.println(str); //prints "World"

Figure 4. How a List component may be used

The class construct instantiates the generic concept and realization with fully determined types. In figure 4, we are saying
that the StringList class is a List of Strings; it is implemented by the TwoStack realization, which in turn uses Stack objects
implemented using a linked list. Hopefully, with the exception of the class construct, variable declaration, method calls, etc.
will be familiar to developers used to modern object-oriented languages.

3 Language and Runtime Design

In this section, I discuss some of the more notable aspects of Sulu's language and runtime design. Specifically we talk about
various object-oriented features of Sulu, its support for automated testing research, and a note on swapping as implemented
in Sulu.

3.1 Support for Automated Testing

Sulu's architecture is designed such that it can support automated test-cases generation, execution, and evaluation. Many
test-cases generation srategies, such as in [Edwards00] follow these steps:

Generate candidate test cases
Filter out invalid candidates
Run the test-cases using an oracle to determine whether the test-cases pass or fail
Determine the efficacy of the test-cases using metrics such as code coverage

As of this writing, the Sulu runtime is being developed to support a plug-in architecture that will allow it to run different
test-cases generation algorithms.

The executable nature of Sulu's specifications contribute to two aspects of the evaluation of test-cases. The first is that
execution of preconditions can act as a test-case filter test-cases that result in precondition failures are considered invalid.

Valid test cases (those that do not result in precondition failures) can then be run against method postcondition and invariat
checks. Valid test-cases that result in postcondition and invariant failures means that that test-case found a bug. That is,
runtime checking of specs can also be used as an oracle determining whether the component behaved correctly or not.

Finally, after running the test-cases, we may wish to determine how well the test-cases exercised the component under test.
One increasingly popular way to do this is to use code coverage metrics. The Sulu runtime system already compiles
statement coverage and decision coverage information, and work to support the collection modified condition-decision
coverage is underway.

3.2 Object Orientation

As can be seen from the example in Section 2, Sulu adopts the modern object-oriented dot notation. It also embraces the
typical notion of encapsulation of data and functionality within an object's implementation -- a Sulu realization.
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One of the core defining aspects of object-oriented languages is inheritance. Sulu also has inheritance. Concepts may inherit
from other concepts, realizations "inherit" a concept's behavioral specification by implementing them, and realizations may
inherit from other realizations as well, allowing it to reuse the parent realization's implementation.

For the sake of simplicity and ease of implementation, however, Sulu uses a single inheritance heirarchy. Multiple inheritance
is not allowed; perhaps most notably, a realization is only allowed to implement one concept (and all that concept's
ancestors). Moreover, a realization that inherit from another realization may only implement the parent realization's concept.
That is, the inheritance hierarchy discussed in [Tan02] and shown in figure 5, is currently still impossible with Sulu.

 
Figure 5. This kind of inheritance hierarchy is not (yet) allowed in Sulu

3.4 Matching and the binary operation problem

One feature of the Sulu programming language is that the inheritance relationship also defines a matching relationship, 
instead of the traditional "is a" relationship. Sulu matching relationship essentially follows the work found in [Bruce02].

Sulu's use of the matching relationship stems from the need for binary operations. It is often the case where an object needs
to operate on other objects of the same type. One class of operators, for example, are comparison operators.

Imagine we want to build a sorting machine. Properly designed, this sorting machine should be able to sort all kinds of
objects that can be compared with each other. So perhaps we create a concept called Comparable, that all objects that can
be compared to each other can inherit from. Perhaps it looks like this:

concept Comparable() {

    method greaterThan( other: concept Comparable() ): Bool;

    method lessThan( other: concept Comparable() ): Bool;

    method equals( other: concept Comparable() ): Bool;

}

Figure 6. A Comparable concept using traditional OO design.

Using conventional OO design, we might want to build a subtyping hiererchy that looks like this:
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Figure 7. A conventional OO hierarchy for Comparable.

What happens when we compare Strings with Integers? Should we be able to?

Preserve subtyping via invariant parameters

Conventional wisdom says that interface inheritance should define a subtyping [Liskov94] relationship. For the subtyping
relationship to hold, however, input parameters must be contravariant, and output parameters must be covariant. Sulu
parameters are always in-out, so they have to be invariant.

Practically, this means that Integer objects must be able to accept other types of Comparable objects (say, String objects) as
the parameter to the lessThan method. In Java, and many other OO languages, the solution is to have use the instanceof
oparator (or equivalent) , and throw an exception if the parameter is of the wrong type. Sulu does not have exceptions, but a
similar solution may be to have an extra out parameter that tells you the status of the operation -- whether the comparison
succeeded or not. While this solution preserves subtyping, I believe it is quite awkward.

method greaterThan( other: concept Comparable(), compared: Bool ): Bool {

    if( other instanceof Integer() ) {
        //do comparison here
    } else {
        compared := false;
    }
}

Figure 8. A greaterThan method that preserves subtyping.

Allowing covariance

A second possiblity is to junk the subtyping relationship and allow covariance.

concept Integer() extends Comparable() {

    method greaterThan( other: concept Integer() ): Bool;

    method lessThan( other: concept Integer() ): Bool;

    method equals( other: concept Integer() ): Bool;

}

Figure 9. An Integer concept when covariance is allowed

This is essentially the path that Meyer takes with Eiffel. The main problem with allowing covariant solutions is that it becomes
impossible to build a sound static type checker for the language. That is, some type errors would only be detectable at
runtime.

Using generic parameters

A third possibility is to use generic parameters to break up the monolithic hierarchy into several subtyping hierarchies. That
is, we can add a parameter to the Comparable concept that determines what types of objects can be compared.
Unfortunately, the resulting solution in Sulu necessitates self-referential parameters.

concept Comparable( SelfType: concept Comparable( SelfType ) )  {

    method greaterThan( other: SelfType ): Bool;

    method lessThan( other: SelfType ): Bool;
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    method equals( other: SelfType ): Bool;

}

Figure 10. A Comparable concept using generic parameters to generate different subtyping hierarchies.

Here is how one might create and use a fully instantiated integer class:

class Int: Integer( Int ) realization Builtin();

var a: Int;

a := 1; //etc.

Figure 11. Creating and instantiating an integer class

Figure 12 illustrates how using self-referential generic parameters can generate several subtyping hierarchies for the
Comparable concept.

Figure 12. Using generic parameters breaks up the subtyping hierarchy.

Finally, using this scheme, here's how a header for a SortingMachine concept would look like:

concept SortingMachine( Item: concept Comparable( Item ) ) { //...

Figure 13. Sorting machine concept header using the generic parameter scheme

While this works, you can imagine my frustration at the confusing, circular syntax!

Allowing covariance for self types only

Finally, the solution arrived by Bruce in [Bruce02] is also the approach used by Sulu. It essentially replaces subtyping with a
new relationship called matching that allows covariance but only for self types. In Sulu, we've adopted a keyword called
selftype:

concept Comparable()  {

    method greaterThan( selftype ): Bool;

    method lessThan( selftype ): Bool;

    method equals( selftype ): Bool;

}

Figure 14. Comparable concept using the selftype keyword. 

Thus, an Integer realization may use the same signature for greaterThan, lessThan, and equals, but it is taken to mean that
the types taken in by the methods are of the Integer realization, not any implementation of Comparable.
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Using selftype has these advantages:

Unlike the invariant parameter approach, using selftype limits binary operations only to objects of the same type.
Unlike the covariant parameters approach, using selftype makes it possible to build a sound type system.
Unlike the generic parameters approach, the syntax is straightforward and more easily understood.

3.5 Swapping, Assignment, and Parameter passing

Sulu follows RESOLVE in that the main data movement operator is swapping, not assignment. In Sulu, variables map names
to objects. Objects may be swapped between variables, or passed into and out of methods also via swapping, following the
strategy used in [Harms91]. In a departure from RESOLVE, however, all parameter passing in Sulu is in-out.

[Weide02b] presents the argument for using swapping as the data movement operator in a programming language. Because
objects can only be swapped between variables, variables hold unique objects. This solves the problem of aliasing introduced
by by-reference assignment. But because swapping can be implemented under the hood as a constant time operation, it
solves many of the efficiency problems of by-value assignment.

Sulu, however, does allow assignment in one case. That is the case where a variable is assigned the return value of a
method. This is permissible because methods always return new objects, and never aliases.

It is sometimes necessary, especially when dealing with low-level implementation of data structures, that a programmer
needs some way of sharing references to objects. For example, if one needs to implement tail-sharing lists. Sulu is envisioned
to provide various pointer components for this. Currently, a ChainPointer component is provided that an be used for
implementing various acyclic data structures.

4 Future work and concluding remarks

In this paper, I have presented a brief overview of the Sulu programming language, and a couple of language design issues
that I found challenging to tackle. However, there are still many outstanding issues that need to be resolved (as it were) for
the Sulu programming language; there is much that still needs to be done. Here are some:

Automated testing evaluation. This is the core focus of my research; as of this writing, the plug-in system for automated
test-cases generation is still under development. There have been various strategies that have been implemented, with
varying levels of automation [Cheon02, Edwards00, Mungara03 ] that can be adapted for Sulu.

More components. There is a need to write more components for the programming language. Traditional data-structure
type of components to be sure, but also I/O components and GUI components as well. Determining how well the swapping
paradigm works for GUI programming may be an interesting topic to explore. There is also a need for a larger number of fully
specified components.

Bug fixes and documentation. Because of its relative newness, Sulu is not as stable and bug-free as I would like it to be;
the syntax and semantics of the language is also not as completely well documented as I'd like (I hope this paper has helped
in alleviating that problem, however slightly).

IDE integration. Integration with Eclipse, syntax-coloring files for vim and emacs, or even giving Sulu its own editor would
be nice to have.

I hope that I have piqued the reader's interest in the Sulu programming language. Sulu is still being actively developed; if the
reader is interested in contributing to this work, he or she is encouraged to check out the sulu-lang project at Sourceforge
[Sulu-sfg]. Any help for this project is certainly welcome.
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Abstract

The idea of a multiparadigm programming language, languages that incorporate two or more programming 
styles into one language, has been around for over 20 years. Multiparadigm languages, especially those that
integrate the functional, imperative, logical, and object-oriented paradigms, are very flexible and free the 
programmer from following one dogmatic approach to programming or another. Practitioners who use these
languages, however, do not have a rigorous approach to specify the behavior of their programs. Research is
now underway to attempt to answer some of the questions that are raised in developing a specification language
for a multiparadigm programming language.
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1.  Introduction

Multiparadigm programming languages are languages that incorporate more than one programming paradigm into them.
Most programming languages today will incorporate at most 2 different paradigms. However, there is a set of less-known
programming languages that integrate many paradigms, including the Functional, Imperative, Logical, and Object-Oriented 
paradigms, examples of which include Leda [Budd 1995], Oz [Muller 1995], and JavaMP [Naik 2003]. These types of
programming languages are interesting in that they free the programmer from thinking in one mind set and from a software 
engineering standpoint allow for the best approach to be used to solve particular problems or integrate paradigms to come up
with novel solutions to problems.

One shortcoming of programming in this type of language is the complete absence of formalisms in specifying the behavior of
programs written in this style. There has been no work done in developing a specification language for programs written
using a multiparadigm language. I contest that writing such a language is possible and that it can be done in a way that will
not eliminate any of the advantages of using a multiparadigm programming language.

The rest of this paper will discuss a general outline of a solution to developing this multiparadigm specification language.
Section 2 discusses the solution in a broad stroke. Section 3 will address some of the open problems and possible solutions
that could provide the start of a discussion. Section 4 will discuss some of the work that has been done in semantics,
specification, or programming that could be useful in this research. Section 5 will address "where we are" and "where we are
going."

2.  The Outline of a Solution

The very first question that needed to be addressed was the issue of what type of language to develop-a generic specification
language that would work for all multiparadigm programming languages or a specification language specific to a particular 
programming language. Considering the fact that the idea of what constitutes a multiparadigm programming language is a
moving target and the complexities involved in specifying behavior for all such languages when it isn't necessarily certain it 
can be done for one language, it was decided to pick a specific language. This, obviously, begs the question "Which
language?"

Deciding which language was the next issue that needed addressed. For the scope of this project, developing our own
multiparadigm languages was not a viable solution, especially considering the availability of other languages. While many
languages filled the necessary requirements, it was decided that JavaMP would be the language of choice in this research.
Other languages had x-factors that would make them more difficult to use (Leda was too old and Oz includes syntax that 
would add a level of complexity to potential user studies, for examples.) JavaMP is a translator that takes JavaMP code and
translates it into pure Java where it can be compiled using the Java compiler. The language is essentially Java with additional
grammar to include multiparadigm features, such as lambda functions, logical relations, and a global scope. JavaMP has
many advantages over other multiparadigm languages, including familiar syntax, a popular language foundation, and the 
availability of the code.

Making use of JavaMP had an additional advantage-it is based off of Java. Researchers have devised a specification language
for Java, called the Java Modeling Language (JML) [Leavens 2005]. The Java Modeling Language allows for specifying the
properties of classes and class functions using pre and post conditions, as well as class invariants. JML is open source, so it is
possible to extend the syntax of JML to include constructs that will allow us to specify programs written in a language such as
JavaMP.

So, as a place to begin, to demonstrate that writing a specification language for a multiparadigm programming language is 
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possible, we will develop extensions to the specification language JML that will allow us to write specifications for programs 
written in JavaMP. To demonstrate that the extensions for JML are capable of specifying the behavior of JavaMP programs, it
will be necessary to develop the formal semantics of JavaMP, extend the semantics of JML to include the extensions that are 
written, and show that a specification written in JML has a solution in JavaMP. 

3.  Open Problems and Possible Solutions

In order to define this specification language, the syntax for JML needs extended, which is the current focus of this research.
The goal is to extend JML in such a way that the "look and feel" of the extensions is comparable with JML and that the 
changes to JML be minimized.

3.1.  Representation of Functions in a Specification Language

In JavaMP, functions are a first-class data type, which means that they can be returned as results of a function, passed as a 
parameter, and redefined "on-the-fly". These types of behavior require that their behavior be addressed in any extensions to
JML. Several proposed syntaxes are discussed below. The questions are which of these solutions should be used, should they
be used in combination, or is there a better solution?

In the case where a function is passed as a parameter or returned as a result, it will be necessary to specify the behavior of 
the function. It may not, however, be desirable to write the complete behavior for the function, but only discuss some of the
properties of the function, like acceptable parameter values, etc. As a result, it may be desirable to discuss functions as a
collection of properties: the return value, arity, parameter types, for example. The advantage of this type of syntax is that it
is very flexible and can be used in a number of circumstances in the same manner. The disadvantage is that while it is
flexible when specifying general properties of a given function, it can be more cumbersome when a full specification of a 
function is desirable.

/*@
   @ requires
   @      f.result>0 && myList.length() > 0
   @ ensures
   @       \exists(IntList newList; newList.length()==myList.length(); 
   @                   \forall(int x; 
   @                             0<x<myList.length(); 
   @                              newList.get(x)==f(myList.get(x)));
   @       && \result.equals(newList);
   @ */
public IntList map(IntList myList, [int(int)] f)

Figure 1.An example property-based function specification. Notice that we have constrained the set of functions
to those where the result is greater than 0.

The other possibility is to develop a way of embedding typical JML specifications into the extensions to specify functions. In
this case, a traditional JML "requires-ensures" clause would be included in the specification of the function. The advantage
here is this is true to the ideas of JML and would require few changes to the syntax. However, in cases where one is
specifying return values or parameters being passed, complete information about the function may not be available and you 
also will have the case where there will be nested requires-ensures clauses within the requires-ensures clause of the member 
function.

/*@
   @ requires
   @      function f [
   @         ensures \result >0
   @         ] && myList.length() > 0
   @ ensures
   @       \exists(IntList newList; newList.length()==myList.length(); 
   @                   \forall(int x; 
   @                             0<x<myList.length(); 
   @                              newList.get(x)==f(myList.get(x)));
   @       && \result.equals(newList);
   @ */
public IntList map(IntList myList, [int(int)] f)

Figure 2. An example property-based function specification. Notice in this case, we have specified the behavior
of the function in an embedded requires-ensures clause.

Another possibility is to treat functions as a set mapping. JML includes set comprehension syntax and it may be possible to
extend the syntax to describe the solution set of the function. The advantage here is that, as we see in section 3.2, the best 
solution to JavaMP relations is to describe a set of possible solutions. Because we are already talking about a set of solutions
in relations, it is a simple matter of translating idea to functions, which minimizes the changes to JML. The disadvantage is,
again, the problem of having to fully specify the function rather than just talk about properties of the function.

/*@
   @ requires
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   @      function f [
   @         ensures
   @               \result_set={\solution(int x, int \result)| 
   @                  if(x<0) \result=-x    
   @                  else \result=x+5}
   @         ] && myList.length() > 0
   @ ensures
   @       \exists(IntList newList; newList.length()==myList.length(); 
   @                   \forall(int x; 
   @                             0<x<myList.length(); 
   @                              newList.get(x)==f(myList.get(x)));
   @       && \result.equals(newList);
   @ */
public IntList map(IntList myList, [int(int)] f)

Figure 3. An example set-comprehension specification. In this case, we are defining the mapping of the solution
set and because it is a physical mapping from A->B, we need to talk about both the incoming values and the 

result of the function. This is encapsulated as a tuple, \solution.

The best solution that we have at the moment is to make use of the set-comprehension syntax as well as including the ability
to look at properties of functions individually, such as the function result or arity.

3.2.  JavaMP Relations

JavaMP provides the idea of a relation to allow for logical predicates to be defined. As in other languages, such as Prolog,
these logical predicates can result in more than one possible solution based on the arguments that are passed. JavaMP's if
statements can recognize the presence of a solution. While loops in JavaMP allow a programmer to iterate over the entire set
of solutions. As a result, we must account for all of the possible solutions in our specification language. Because we have
already developed the concept of a solution set for the solutions of functions, it is a natural extension to use it as the solution 
set for relations.

The mechanism used in JavaMP to convey the solutions of a predicate is through parameter passing. The language includes
pass-by-name as a method for moving data back and forth across the called method. Like in other logical programming
languages, JavaMP allows the variables to be "bound" or "unbound" (unbound in this case means, effectively, passing a 
variable that is null.) This introduces the interesting issue of what using a named variable actually means in the
specification-how can you specify a function in terms of a variable that may be unbound? If pass-by-name did not allow
assignments to the parameter (x:=y+1, where x is a pass-by-name parameter), we could make the implication that a 
variable that is passed by name is potentially unifiable and have a specification similar to figure 4. Unfortunately, JavaMP
allows for assignments to a parameter when the actual parameter is a variable. As a result, we need to distinguish between
the cases where pass-by-name is simply the preferred passing mode for data and the case where the variable is potentially 
unifiable in a logical relation.

Possible solutions to this problem vary. The variance is on how much information remains hidden from the programmer. The
best case being that the binding of the variables is implicit to the specification, resulting in comparatively simple 
specifications. The worst case is defining each possible binding pattern (using tags, such as \bound() and \unbound() in the
specification) of the variable and the specification for each pattern in a way similar to the pattern matching idea used in 
languages like ML [Milner 1997].

The middle case scenario is to develop tags indicating that a given parameter is potentially unifiable. This solution, however,
pushes down the complexity of the specification into the postcondition where one is specifying the behavior of the function.
In each case that a parameter is potentially unifiable, the specification has to include an existentially-quantified variable that 
satisfies some aspect of the postcondition. That variable is then unified with the parameter. This results in a postcondition
that is long and full of nested existential quantifiers, making the specification difficult to read, at best. Work is now underway
to find a way around this within the behavior of pass-by-name and relations in JavaMP or to develop a convincing cover story 
that would eliminate the need to write all of the existential quantifiers.

/*@
   @      ensures
   @      \result_set=({\solution(head, tail) | edgeSet.hasEdge(
   @                  head, tail) });
   @*/
public relation edge(Integer @ head, Integer @ tail)

Figure 4. Ideal specification of a logical relation. The best case is to make the binding behavior of the language
implicit in the specification so that it works for any binding pattern. However, additional information about the

variables may be necessary.

3.3.  Developing the Semantics of JavaMP and JML Extensions

The most daunting part of this research will be the development of the semantics of JavaMP and the JML extensions. There
has been work done in the past on the formal semantics of both JML and Java [Berg 1999, Jacobs 2001, Jacobs 2002].
However, the semantics that were devised were written with the goal of making it easy to implement a theorem prover, 
rather than make them readable or understandable to humans. The best approach in our mind is to use this as a basis from
which to write our own specifications that are more readable for humans.
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In addition to this more procedural issue is the very real issue of how to specify in the semantics behavior of constructs in a 
programming language that is not often specified. These include issues such as pass-by-name, logical relations, and functions
as return values and parameters. Each of these concepts has a relatively common way of describing the necessary behavior.
(Pass-by-name creates a parameterless function to pass an argument, for example.) The question to answer now is whether
or not these standard ways of describing concepts in JavaMP relate to useful formal semantics for the language.

4.  Related Work

JML is a behavioral specification language that is being actively researched by a number of groups. A reference manual to
JML, including the syntax of the language to be extended can be seen here [Leavens 2005]. A survey of the tools that may
be available to extend for use in user studies can be found here [Burdy 2005].

There are many examples of programs written in a multiparadigm fashion. Some of the best come from Dr. Budd's works on
programming in Leda [Budd 1992, Budd 1995]. These will be used as the basis of any case studies or user studies used in
our research and provide very clean examples of programs to specify with our specification language. This language forms
the basis of the work done in JavaMP.

The best solutions available to the open problems discussed in section 3 make use of set comprehension syntax, including 
using it to specify the behavior of logical relations. An interesting example of using similar syntax in a database query
language (which is where the benefits of a logical programming language could be leveraged) is found in [Buneman 1994].

5.  Conclusions

Programming in a multiparadigm programming language has many benefits. Providing a specification language to a
multiparadigm language will provide practitioners specifications with the type of rigor necessary in larger scale projects.
Currently the syntax of the extensions needed for JML are being written. Following this, the semantics for these extensions
will have to be integrated into some existing specification of JML. After this, it will be shown that the specification language
will allow one to write specifications for JavaMP by creating a mapping between JML and JavaMP. (This will, of course, require
a definition of the semantics of JavaMP, as well.) The preceding has been a survey of the work that is already been done and
is currently being done. It is obviously an incomplete accounting and more problems will arise and (hopefully) better
solutions will be found.
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Abstract

The benefits of recasting graph algorithms as data abstractions include ease of use,
implementation independence, and the flexibility of incremental computation.  This paper
examines the issues in designing specifications of data abstractions for finding cheapest
paths in graphs, when the graphs are allowed to change after some of the paths have
been computed.   These more complicated abstractions are necessary to capture the more
typical problem of communication and transportation network topologies that evolve
because of additions (and deletions) of network links.  The paper also considers issues in
building implementations that must be optimized to take advantage of shortest paths
computed earlier in answering queries for new shortest paths.  Developing these
non-trivial components so that they are amenable to formal verification will help establish
the scalability of Resolve verifying compiler technology.  Specification and verification of
performance profiles for optimizing implementations is another important topic for
discussion.
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1.  Introduction

Noting the software engineering problems of classical “batch-style” graph algorithms, such as ones to find
spanning forests and cheapest paths, Weide et al., have noted the importance of designing data
abstractions to solve these problems incrementally [WOS94, SWLO00].  The concept for finding cheapest
paths allows multiple questions to be answered, once the edges of a graph have been inserted.  This paper
explores the issues in generalizing the concept to allow for edge addition and deletion after some shortest
paths have been computed, and implementation issues in optimization.  The generalization and
optimization are essential for the abstraction to be widely useful for computing shortest paths in
communication networks (whose topologies change due to link failures and recovery) and transportation
networks (that change due to road constructions and blockage).  At the same time, they make it non-trivial
to specify and implement, allowing us to explore the scalability of Resolve principles in more complicated
situations.

2.  The Problem
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Computation of shortest paths is among the most-widely studied graph problems with practical applications
in network communication and in transportation networks.  Conventionally, for static graphs, the shortest
path problem has been solved in “batch style” following a procedural approach, using algorithms for finding
either Single Source Shortest Paths (SSSP) or All Pair Shortest Paths (APSP) [CLR90, Dij59, PR02, RR97,
RTR96]. A data abstraction solution proposed in [SWLO00] overcomes key shortcomings of the procedural
approach, but it still demands static or unchanging graphs.  This paper considers interface design problems
in permitting graphs to evolve and implementation design problems in updating shortest paths efficiently
when graphs evolve, so that the results are amenable to automated verification. 

3.  The Position

Data abstraction components for evolving graphs have practical applications.  However, specification and
optimized implementations of such components are non-trivial.  So they can serve as useful exercises for
demonstrating the scalability of Resolve principles.

4.  Justification

 Specification Issues
 
Figure 1 reproduces a specification of the Cheapest_Path_Template from [Ogd00].  In the specification,
Vertex, Edge_Universe, and Edge_Info are purely mathematical notions.  The provided program type
Graph_Holder, is mathematically modeled as a Cartesian Product:

1.     Is_Gr_Edge says whether an edge from Edge_Universe (which stands for a collection of
unique identification for edges) belongs to the graph under discussion;

2.     E_Info holds the information corresponding to an edge, including its cost, its source and
target vertices, and other information, termed, Edge_Label;

3.     Accepting is a Boolean flag that is true if and only if edges may be added to the
Graph_Holder.

Initially, a graph holder GH is accepting edges and the predicate Is_Gr_Edge is false for all edges in the
Edge_Universe.  When using this concept to find a cheapest path between two vertices of a graph, a caller
begins inserting edges using the Add_Edge operation.  The operation Stop_Accepting_Edges needs to be 
called before finding shortest paths.  To find the shortest path between two vertices, the caller needs to
invoke the operation Get_First_Edge_for to get each edge repeatedly, using the previously returned vertex
as the origin for the next invocation.  We have omitted the details of definitions, such as
Is_Cheapest_Connecting_Path, because they are not directly relevant for the issues raised here. 
 

Concept Cheapest_Path_Template( type Edge_Label; evaluates Vertex_Max, Max_Edge_Count: Integer 
);

                                    uses Std_Integer_Fac, Std_Real_Num_Fac;

                        requires 0 < Vertex_Max and 0 < Max_Edge_Count;

 

            Definition Vertex:Ã(ℕ+) = [1..Vertex_Max];

 

            Defines Edge_Universe: Set;

                        constraint ║Edge_Universe║ ³ Max_Edge_Count;

 

            Definition type Edge_Info = Cart_Prod

                                                            Src, Tgt: Vertex;

                                                            Cost: ℝ³0;

                                                            Label: Edge_Label

                                                end;
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    Type Family Graph_Holder Í Cart_Prod

                                                            Is_Gr_Edge: Edge_Universe®B;

                                                            E_Info: Edge_Universe®Edge_Info;

                                                            Accepting: B

                        end;

exemplar GH;

                        Def  const Edge_Count( GH: Graph_Holder ): ℕ = (║{ E: 
Edge_UniverseôGH.Is_Gr_Edge(E) }║ );

                        constraint Edge_Count(GH) £ Max_Edge_Count;

                        initialization

                                    ensures GH.Accepting and Edge_Count(GH) = 0;

 

            -- other defintions

 

            Def const Is_Cheapest_Connecting( s, d: Vertex, r: Str(Edge_Universe), GH: Graph_Holder ): B

                        = …

 

            Oper Add_Edge( evaluates s, t: Integer; evaluates C: Real; alters L: Edge_Label; updates GH:
Graph_Holder );

                        requires GH.Accepting and s, t Î Vertex and C Î ℝ³0 and Edge_Count( GH ) < 
Max_Edge_Count;

                        ensures $ UE: Edge_Universe ' Agrees_Elsewhere(GH, #GH, UE) and

                                    ¬ #GH.Is_Gr_Edge(UE) and GH.Is_Gr_Edge(UE) and GH.E_Info(UE).Src = s 

                                    and GH.E_Info(UE).Tgt = t and GH.E_Info(UE).Cost = C and
GH.E_Info(UE).Label = #L;

 

            Oper Stop_Accepting_Edges( updates GH: Graph_Holder );

                        requires GH.Accepting;

                        ensures ¬ GH.Accepting and

GH.Is_Gr_Edge = #GH.Is_Gr_Edge and

GH.E_Info = #GH.E_Info;

 

            Oper Get_First_Edge_for( evaluates Origin, Dest: Integer; restores GH: Graph_Holder; 

replaces Fst_Vrtx: Integer; replaces E_Cst: Real; replaces E_Lbl: Edge_Label );

                        requires ¬ GH.Accepting and Origin ¹ Dest and $ r: Str(Edge_Universe) '
Is_Path_Connecting( Origin, Dest, r, GH );
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                        ensures $ s: Str(Edge_Universe), $ E: Edge_Universe ' Fst_Vrtx = GH.E_Info(E).Tgt and

E_Cst = GH.E_Info(E).Cost and E_Lbl = GH.E_Info(E).Label and

Is_Cheapest_Connecting(Origin, Dest, áEñ°s, GH);

 

-- other operations
end Cheapest_Path_Template;

Figure 1: Specification of Data Abstraction for Finding Shortest Paths
 
The change necessary to the concept to allow insertion of edges after some paths have been computed is
relatively straightforward.  We can replace the operation Stop_Accepting_Edges with a Change_Mode
operation as shown below.
 

Oper Change_Mode (updates GH: Graph_Holder);

                        ensures GH.Accepting = ¬ #GH.Accepting and

GH.Is_Gr_Edge = #GH.Is_Gr_Edge and

GH.E_Info = #GH.E_Info;
 
After inserting graph edges and finding some shortest paths, a client can invoke Change_Mode operation
and add new edges to the graph.  
 
Allowing edges to be deleted makes the specification a much more challenging problem, because in turn it
requires the ability to identify and search edges.   One possibility is to replace the conceptual edge
identification based on Edge_Universe in the specification with a concrete program type.  So the graph
holder will provide an Edge_Id type in addition to the Graph_Holder.  The Add_Edge operation would
plausibly return a (unique) id when a new edge is added.  A Delete_Edge operation would take an id as a
parameter as would an operation to search and retrieve information pertaining to an id.  If the id is
introduced, it would probably also make sense for edge ids to be returned when a cheapest path is needed
rather than the edge information.  This design essentially leads to a concept that combines an abstraction
for searching with the one for finding a shortest path.  At a certain level, this may be the appropriate
design because the problem requires combining the ability to find shortest paths with database-type
queries.  At the same time, it raises the question if the next generation of Resolve concepts would be such
non-trivial inseparable combinations of abstractions conceived earlier.  There are also corresponding
language design questions.
 
Implementation Issues

The impact of the minor change from Stop_Accepting_Edges to Change_Mode in the specification is
significant on implementations that must optimize to be efficient.   We begin with the discussion of an
implementation based on Dijkstra’s algorithm using an adjacency-list representation to hold graph edges. 
Figure 2 shows key details of the set up including the representation and correspondence assertion.  To
establish the correspondence with the mathematical model of graphs shown in Figure 1, we have used
adjunct variables and give unique identifications to edges.  Though the edge numbers are abstract, for a
given representation value, it seems necessary for the correspondence to relate it to the same abstract
edges from the Edge_Universe.   A predicate Is_E_Info_For_Edge has been used to extract the information
corresponding to an edge id. 

 

Realization Dijkstra_Realization for Cheapest_Path_Template (

Operation Copy_Label (replaces Copy: Edge_Label; restores Orig: Edge_Label)

ensures Copy = Orig; );

uses Static_Array_Template, Record_Template, One_Way_List_Template, Prioritizer_Template;
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Definition Edge_Universe: Ã(N+ ) = [1.. Max_Edge_Count];

 

Type Edge_Info_Stored = Record

Aux Edge_Num: Integer;

Src, Tgt: Vertex;

Cost: Real;

Label: Edge_Label;

end;

 

Type Graph_Holder = Record

Facility List_Fac is One_Way_List_Template (Edge_Info_Stored,

Max_Edge_Count) realized by Shared_Realiz;

Aux Edge_Counter: Integer;

Adj_Lists_Holder: Array (1.. Max_Vertex) of List_Fac.List_Position;

-- solution structures omitted

end;

     Conventions …

Definition Is_E_Info_For_Edge (E: Edge_Universe, EI: Edge_Info, GH: Graph_Holder): B = (

$ v: Integer, $EIS: Edge_Info_Stored ' 1£ v £ Max_Vertex and

          <EIS> Is_Substring_of GH.Adj_List_Holder[v].Rem and

          E = EIS.Edge_Num and 

          EI = (EIS.Src, EIS.Tgt, EIS.Cost, EIS.Label)

);

Correspondence

Conc.Graph_Holder.Is_Gr_Edge (E) iff 1£ E £ GH.Edge_Counter and

Conc.Graph_Holder.E_Info (E) = {EI, if 1£ E £ GH.Edge_Counter and Is_E_Info_For_Edge
(E, EI, GH)

                                                              (1, 1, 0.0, L)}  and

Conc.Graph_Holder.Accepting = GH. Accepting;

         -- code for operations omitted

end Dijkstra_Realization;

Figure 2: Outline of a Realization
 
 

Notice the use of auxiliary variables Edge_Num and Edge_Counter. If we want to allow a delete edge
operation, then both of these variables would be concrete variables.
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Presumably, if edge deletions are allowed, the auxiliary field Edge_Num would become a concrete part of
the representation.
 
Several versions of optimization are necessary for the concept to be realized efficiently. The optimizations
in turn demand non-trivial representation invariants or conventions.  In the simplest case, when no new
edges are allowed to be added or deleted, the representation must maintain the shortest paths that have
been computed, so that eventually no new calculations will be necessary.
 
When an edge is inserted, after some shortest paths have been computed, it is necessary to discard or
recompute only some of the calculated paths.  In the case of fully-dynamic graphs (when edges are
inserted and deleted), one approach when an edge is deleted, is to update only the sub-shortest paths to
the vertices that are descendents of the target node of the deleted edge [NST00]. In the process, it is
necessary to check, if the deleted edge will divide the graph into two disconnected sub-graphs [ES81].
 
While implementation optimization is essential for the class of problems discussed here, it also raises
fundamental questions about developing performance profiles suitable for component users.

5.  Related Work

To our knowledge, outside the Resolve community, no one has explored the problems of formal
specification of data abstractions for graph algorithms.  However, much research has been done on
computing shortest paths for dynamic graphs.  For example, [Weighe01] discusses adaptability of
algorithm component by discussing the shortest path problem whereas [AISN90] examine APSP for
semi-dynamic graphs.  [SP75] discusses big-oh estimates for finding and updating shortest paths. 
[FINP98] present experimental study for shortest paths in dynamic graphs. 
 

6.  Conclusion

While the problems of specification and implementations are non-trivial to handle dynamically evolving
graphs, fortunately, we need to develop suitable reusable components only once.  The objective of this
paper is to motivate a discussion on design and specification of data abstractions, optimizing
implementations, and their performance profiles at the workshop.  Verification of correctness of such
components will help validate the scalability of Resolve verifying compiler techniques and principles.
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Abstract

The Resolve language is designed with verification in mind. Language features are not added to Resolve unless
the designers know how to reason about them. Java and C# were not designed with verification in mind, but
significant research efforts have been made to facilitate ad hoc specification and reasoning. This paper presents
Tako 1.0, a Java-like language that incorporates the alias-avoidance features of Resolve, including automatic
initialization, a swap operator, in-out parameter passing, and a pointer component. With Tako, we hope to
explore the possibility of a value-based verification system for an object-oriented language, leveraging the
research done on verifying compilers in both the Resolve and Java/C# communities. 
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1.  Introduction

One of the main motivations behind the Tako project was the desire to answer the following question: Can language design
principles used in Resolve be successfully and independently applied to the redesign of existing languages to make them
more tractable to formal reasoning? Tako 1.0 represents a first step in answering that question ? it is a redesign of Java 1.4
that incorporates the alias-avoidance features of Resolve. These features include automatic initialization, alternative data
assignment operators such as swapping and initializing transfer, in-out parameter passing and an initialization scheme that
avoids the repeated argument problem, and a built-in pointer component that allows programmers to implement linked data
structures. This paper gives a brief description of these how these features work in Tako 1.0. It discusses the implications for
future work in the specification and verification of Tako and looks at the impact of the Tako language on a verifying compiler.

2.  Language Features of Tako 1.0

Tako 1.0 is very similar to Java in terms of syntax and semantics while also borrowing some key concepts from Resolve,
which make Tako programs easier to reason about than normal Java programs. The following sections describes how Tako is
similar to Java and also other features central to Tako. 
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Listing 1. An implementation of a stack in Tako

public class Stack {
   
    private Object[] contents;
    private int top;
    private final int MAX;
 
    public Stack (int n) {
        MAX := n;
        contents := new Object[MAX];
        top := -1;
    }
     
    public void push(Object x) {
        assert depth() < MAX; 
        top++;
        contents[top] :=: x;
    }
     
    public void pop(Object x) {
        assert depth() > 0;
        x :=: contents[top];
        top--;
    }
     
    public int depth() {
        result := top + 1;
    }
}

2.1   Similarities with Java

The Tako compiler is based on the Kopi Java compiler. Our goal for version 1.0 of Tako was to introduce only those
Resolve-like features into Java that facilitated alias avoidance. Therefore, most of the object-oriented features of Java remain
intact. Perhaps the most important of these is that classes remain the fundamental unit of modularity in Tako. They export a
single type and they can contain private and public attributes and methods. In addition, as discussed below, we did not want
to modify Java's approach to inheritance or polymorphism. Though the Tako compiler essentially translates Tako programs to
Java 1.5 programs (and then compiles the Java code), we did not implement key features in Java 1.5, such as generics,
enum types, or "auto boxing," which automatically wraps primitive types when they need to be treated like objects.
Assertions, which are a feature of Java 1.4, are intended to be a part of Tako 1.0, though we have not yet implemented
them. As any Java programmer can see from Listing 1, the Tako code for a stack object is not radically different than Java
code for a stack class.

2.2   Automatic Initialization

In Tako, all variables are initialized when they are declared. Some Tako language features that we provide to avoid aliasing
require automatic initialization, such as initializing transfer and the initializing approach for parameter passing. For primitive
types, initial values are the same is in Java. For objects, variables are initialized using the default constructor, which is
created automatically if the programmer does not supply one. When interface variables are declared (and not assigned to)
they are not associated with an object.  Therefore, we simply initialize these variables with null. When arrays are declared
they are initialized with a zero length array. Therefore, programmers need to initialize them with the appropriate length. Tako
1.0 will automatically initialize each cell of the array, but this feature is currently not implemented. Programmers still must be
aware when they are declaring an object, whether its default constructor is really what they want. For example, based on
Listing 1, if a programmer declares Stack s; the contents array will have length zero by default, which is probably not what
the programmer wants. Therefore, the Tako programmer should assign an explicitly constructed stack object to this variable:
Stack s := new Stack(20);

2.3   Data Assignment

Reference assignment is not available in Tako. The primary means of data transfer is swapping (:=:) and initializing transfer
(<-). Both swapping [Harms91] and initializing transfer [Tan02] avoid aliasing and thus simplify reasoning of Tako
programs. In Listing 1, the swap operator is used in the push method in the statement contents[top] :=: x; Tako 
reports a compile-time error if the variables are not of the same type. If programmers want to transfer an object a specified
type to an object of a supertype, the initializing transfer operator can be used. Apart from the above operators, Tako also
provides a function assignment operator (:=) that can effectively be used as a "copy" operator. As its name implies, the
function assignment operator is used for function assignment, as in str := s.toString(); It is also used for assigning an
explicitly constructed object to a variable, as in contents := new Object[MAX]; If the operator is used with a variable
instead of a function (or constructor) on its right-hand side, the compiler interprets the variable as having an implicit call to a
special "replica" function. For example, Stack s := t; is interpreted as Stack s := t.replica(); If no replica function
is defined, the compiler reports an error. In functions, the special result variable ensures that a new object is always
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created and aliasing is therefore avoided. Function always return the object currently held in the result variable. Therefore,
the statement return s; is not permitted in Tako as it is in Java. However, the statement return; (without indicated what
is returned) may be used to exit the function before it would normally terminate. The type of the result variable is the same
as the return type of the function, and it is has an initial value at the beginning of the function. Programmers can roughly
think of primitives as objects with special syntax that obey these same rules (as in MAX := n; and result := top + 1;) 
but this view is not entirely sound in Tako 1.0. It will be implemented in a later version of Tako, but currently, primitives
behave like they do in Java.

2.4   Parameter Passing

The most visible difference between parameter passing in Java and Tako is that Tako has in-out parameter passing. Thus,
instead of writing the pop method as a side-effecting function (as Java requires), Tako's pop method can be written as a
procedure (a void method). In the pop method in Listing 1, the parameter x gets swapped with an item of the contents
array. The changes made to x are passed out to the actual parameter due to the in-out parameter passing mechanism in
Tako. Conceptually, we can think of the parameters as being transferred in before the call and transferred out after the call
using the initializing transfer operator. This avoids the repeated arguments problem described in [Kulczycki05]. Once the
variable is transferred in, it gets initialized and consequent attempts to use the variable as a parameters in the same method
will lead to passing in an initial value. In Tako, as in Java, the this variable denoting the current object is also an implicit
parameter to the method (in non-static methods) and therefore must also behave as an in-out parameter. All parameters in
Tako are in-out by default unless declared using the eval mode. (Note: the implicit this parameter cannot be an eval
parameter). The eval mode indicates that a function rather than a variable is expected. If a variable is passed in, the
compiler assumes the object is invoking its replica method (similar to function assignment).

Tako uses a special scheme to avoid run-time cast errors during parameter passing that might occur if a niave approach to
in-out parameter passing is used. Tako does not have generics, so suppose a programmer wants the "pseudo-generic" stack
described above to hold circle objects. She writes the following code:

Circle c;
Stack s = new Stack(20);
s.push(c);

After the declarations of the circle and stack, c holds and initial circle object and s holds and initial stack. Though conceptually
the stack is empty, the contents array in the stack's representation holds 20 initialized objects of type "Object." When the
push method is invoked with argument c, the circle object held by c is passed to the formal variable x of type Object. Then x
gets swapped with the first element in the contents array. So now x holds and initialized object of type "Object," and
contents[0] holds the circle object. Since Tako has in-out parameter passing, x's object value is transferred back to c. This
means that an initialized object of type Object is passed to a variable c of type Circle, which clearly cannot be permitted.

To avoid this inconsistency in Tako, the variable c is initialized with a new Circle object instead of assigning the object of type
"Object". Thus, for in-out parameter in Tako the variable to which the outgoing object is assigned, may be initialized, if the
object cannot be held by the variable.

2.5   Pointer Component

Tako, like Resolve, provides a pointer component to implement linked structures. Listing 2 shows an example of a linked list
implmented using the pointer component. The special syntax (including ->, ^, *:=:, and allocate) are short for methods
in the pointer component, but it is implemented efficiently in the compiler using Java references, as illustrated in Table 1. For
more information on the Tako pointer component, see
http://www.directreasoning.org/wikitako/index.php/Pointer_behavior_through_the_position_class.
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Listing 2. A portion of a linked list implementation in Tako

public class LinkedList {

class Node is Object ^(next);

private Node head, pre, last;

private int left_length, right_length;

public LinkedList() {
   allocate head;
   pre -> head;
   last -> head;
}

public void insert(Object x) {
   Node post, new_pos;
   post -> pre^next;
   allocate new_pos;
   new_pos *:=: x;
   pre^next -> new_pos;
   new_pos^next -> post;
   if (right_length = 0) {
       last -> last^next;
   }
   right_length++;
}

/* other list methods */

}

Table 1. Tako pointer syntax and its meaning

Tako syntax Position class meaning Java translation

class Node is Object 
^(next);

class Node is
PositionType<Object>(1) 
implemented with Default 

class Node extends
PointerType { 
      Node next = null;
      Object contents = new
Object(); 
}

allocate p; p.takeNew(); p = new Node();

p -> q p.moveTo(q); p = q; 

p -> q^next; p.moveTo(q); p.follow(1); p = q.next;

p^next -> q; p.redirect(1, q); p.next = q;

p *:=: s; p.swapObject(s); Object temp = p.contents;
p.contents = s;
s = temp; 

2.6   Discussion

Tako maintains the most important object-oriented properties of Java, while introducing important alias-avoidance concepts
of Resolve. In the 2002 Resolve workshop, Tan presented a number of issues that needed addressed in "the creation of an
object-oriented version of Resolve" [Tan02]. The bullets below briefly state the relevant issues and tell how Tako handles
them.

How do classes relate to Resolve modules? ? We chose to keep the class as the fundamental unit of modularity in
Tako. A class exports only one type, just as in Java.
Should OO resulve use reference or value semantics? ? Since Resolve-like alias avoidance was the main feature we
wanted to add to Java, Tako uses value semantics.
How should OO Resolve handle inheritance? ? We tried to keep inheritance as close to Java-style inheritance as
possible. Java has no multiple inheritance, so neither does Tako.
How will OO affect type checking? ? Like Java, parameter types in Tako have to be invariant for method overriding,
which is consistent with Tan's suggestion that in-out parameter types should be invariant. However, since Tako relies
on Java type-checking, even eval mode parameters are invariant.
How will exeptions be handled? ? Though Tako 1.0 technically handles exception just as Java does, it also takes
addvantage of assertions in Java 1.4, as can be seen in the stack example in Listing 1.
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3.  Verification Issues in Tako

Tako includes language features from both Java and Resolve. Both the Java and the Resolve communities have significant
research efforts in verification. We would like to be able to leverage this research in the verification of Tako programs.

3.1   Approaches to Verification

The following represent approaches to verification for which there is a significant body of research in either the Java or
Resolve communities.

Runtime Assertion Checking

JML specifications are written in a functional subset of Java, and is intended to support both runtime assertion checking and
formal verification [Leavens05]. The specifications can include model variables, abstraction functions, invariants, and basic
requires and ensures assertions. The JML tool can check many (but not all) of these assertions at runtime. 

ESC/Java.

The ESC/Java [Leino00] can statically check Java code for common errors such as the possible occurrence of null pointer
exceptions. It also understands a subset of JML and can statically verify some lightweight specifications. 

LOOP compiler.

The LOOP compiler [van der Berg01] is intended for full verification of sequential Java programs. To prove the correctness
of the Java code with respect to its JML specification, the compiler translates both the code and the specification into a
heap-based logic. The resulting logical theories are then proved with the help of the PVS theorem prover. 

Resolve verification.

The RESOLVE verifying compiler focuses on modular, heavyweight verification using a value-based semantics [Kulczycki06].
No heap structures or special proof rules for pointers are needed. The state space at any point in the program is comprised of
the programming and conceptual variables and their values. The frame property restricts the effects of a operation invocation
to its actual parameters and the global variables declared in the updates clause of the operation declaration.

Ideally, we would like to be able to implement runtime assertion checking for Tako as well as automatic static checking of
lightweight specifications in the spirit of ESC/Java. For full verification, however, we aim for a Resolve-style system with its
simpler value semantics, state space, and frame property. It is an open question whether we can achieve this goal. In
particular, we are not sure how to reason about Java-style inheritance using the simple frame property given in Resolve style
semantics.

4.  Conclusion

Tako 1.0 is a first step toward a Java-like language that includes Resolve-style features. Future work includes implementing
constructed classes in Tako that correspond roughly to Resolve facilities.
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