Genetic Algorithms with Local Improvement
for Composite Laminate Design

Nozomu Kogiso, Layne T. Watson,
Zafer Giirdal, and Raphael T. Haftka

TR 93-17

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

May 28, 1993



Genetic Algorithms with Local Improvement for Composite
Laminate Design

Nozomu Kogiso
Graduate School, University of Osaka Prefecture, 1-1 Gakuen-cho Sakai, 593 Japan
| Layne T. Watson, Zafer Giirdal, Raphael T. Haftka
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA

ABSTRACT.

This paper describes the application of a genetic algorithm to the stacking sequence
optimization of a composite laminate plate for buckling load maximization. Two
approaches for reducing the number of analyses required by the genetic algorithm
are described. First, a binary tree is used to store designs, affording an efficient
way to retrieve them and thereby avoid repeated analyses of designs that appeared
in previous generations. Second, a local improvement scheme based on
approximations in terms of lamination parameters is introduced. Two lamination
parameters are sufficient to define the flexural stiffness and hence the buckling load
of a balanced, symmetrically laminated plate. Results were obtained for rectangular
graphite-epoxy plates under biaxial in-plane loading. The proposed improvements
are shown to reduce significantly the number of analyses required for the genetic

optimization.



INTRODUCTION.

The design of composite laminates is often formulated as a continuous optimization
problem with ply thicknesses and ply orientation angles used as design variables
(e.g., Schmit and Farshi, [1]). However, for many practical problems, ply
thicknesses are fixed, and ply orientation angles are limited to a small set of angles
such as 0°, 90°, and +45°. Designing the laminate then becomes a stacking sequence
optimization problem which can be formulated as an integer programming

problem.

The laminate stacking sequence design problem with frequency constraints has been
formulated by Mesquita and Kamat [2] with the numbers of plies as the design
variables, leading to a nonlinear integer programming problem. More recently,
Haftka and Walsh [3] showed that the use of ply identity design variables linearizes
the integer programming formulation of the stacking sequence buckling
maximization design problem. However, when strength constraints are also
considered, the problem becomes nonlinear again and has been solved by Nagendra
et al. [4] with a sequence of linearized integer programming problems. The branch
and bound algorithm was used to solve the integer programming problems in Refs.
[2 - 4]. More recently, Le Riche and Haftka [5] solved this problem by genetic
algorithms (GA).

An early implementation of genetic search methods is credited to Rechenberg [6],
although Holland's work [7] has provided the theoretical basis of most
contemporary developments. Genetic algorithms are stochastic optimization

methods [8-12] that work on a population of designs by recombining the most
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desirable features of existing designs. Following the evolutionary concept of
survival of the fittest, selection of mates favors the fittest members (designs) of the
population, and offépring (newly created designs) are created by splicing together
features (genes) of the parent designs. Additionally, genetic mutation is used to
create new design features. Genetic algorithms do not use any gradient information,
and thus are particularly suited for problems (such as discrete optimization) where
derivatives are not available. In the last decade, genetic algorithrns have proven
their ability to deal with a large class of combinatorial problems. In structural

optimization applications, GAs have appeared only recently [5, 13-15].

Despite their numerous advantages, a serious drawback of GAs is their high
computational cost.-Genetic algorithms usually require a large number of analyses,
sometimes in the range of thousands or even millions. Therefore, improvements in
both the efficiency of the analysis and the execution of the GA are needed in order
to make the genetic optimization affordable. The objective of the present work is to
reduce the cost of the genetic search for optimization of composite panels. We
propose the use of a binary tree data structure to store the results of all new
analyses performed during optimization, and retrieve the information for designs
that appeared in previous iterations. We also propose an approximation of the
buckling load based on two lamination parameters. After evaluating exactly the
buckling load for each design created by the genetic operators, new design strings
are created by trying all possible exchanges of the locations of pairs of plies in the
laminate. Then the buckling loads for these new designs are estimated using the
approximation, and the best of these designs replaces the nominal design. By
searching for a local optimum in a small neighborhood of the nominal design, we

try to improve the performance on combinatorial optimization problems. This local



improvement (searching for a local optimum in a small neghorhood) was used on
combinatorial problems by Refs. [16,17]. We apply this idea to improve the

performance of genetic optimization for composite panel design.

The efficiency of this local improvement for the genetic search, as well as the use
of the binary tree to retrieve previously analyzed designs, are investigated for
buckling load maximization of a rectangular 48-ply unstiffened laminated composite
plate subjected to biaxial in-plain loads. The analysis cost associated with this
problem is low enough so that thousands of genetic optimizations can be carried out
for the purpose of averaging out the randomness in the performance of a single

genetic optimization.
Analysis and Lamination Parameters.

The simply supported plate, shown in Figure 1, has longitudinal and Iateral
dimensions a and b, respectively, and is loaded in the x and y directions by ANy,
ANy, respectively, where A is a load amplitude parameter. The laminate is
composed of N plies and assumed tc be a symmetric, balanced laminate, made up of
0°, 90°, and +45° plies of thickness t each. To reduce the number of design
variables and enforce the balanced condition, the laminate is constrained to be made
up of stacks of two 0° plies, two 90° plies, or a +45° and -45° pair of plies. These

-stacks are denoted by 0°2, 90°, or +45°. Taking into account the symmetry, only

N/4 ply orientations are required to define the entire laminate.

- For a simply supported plate under biaxial compression loading, the plate buckles

when the load amplitude parameter A reaches a critical value A, given as
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where m and n are the number of half waves in the x and y directions, respectively,
that minimize Acy. The Dijs are the flexural stiffnesses, which depend on the
lamination sequence. When a single material is used, the flexural stiffnesses can be
expressed in terms of only two lamination sequence parameters and material

constants (e.g., Miki and Sugiyama [18] ).
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where Uj (i=1....,5) are the material constants, h is the total plate thickness, and Wi *

and W»* are the bending lamination parameters defined as
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where @ 1is the ply orientation angle. The flexural stiffnesses Dig and Dog are

assumed to be negligible.

The optimization problem is to maximize the critical buckling load by changing
the laminate stacking sequence. Additionally, strain constraints are applied, and the
number of contiguous plies of the same orientation is limited to four plics to

alleviate matrix cracking problems.

The strain failure constraint requires all strains to remain below their allowable

limits. In our case Yxy is zero, and the laminate strains are related to the loads on

the plate by the relations

AN, = Aje, + ALeE, ,
(4)
AN, = Ane, +Aye, .

The strains in the ith layer are obtained from the laminate strains by

g, =cos’ €, +sin’ g, ,
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where the Ays are the in-plane stiffnesses, and 8 ; is the ply orientation angle of the
ith ply. These stiffnesses can also be expressed in terms of in-plane lamination

parameters and material constants as
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where the in-plane lamination parameters are defined as
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The strain failure load A is the smallest Ioad factor A such that one of the

principal strains in one of the layers is at its allowable value.

The ply contiguity constraint is implemented by a penalty parameter p (=0.9 here)
which reduces the objective function when the contiguity constraint is violated.

Based on the above discussion, the objective function A™ is given as



AZ=p"min(A,.4,) , )
where n is the number of contiguous plies in excess of the constraint value of four.
GENETIC ALGORITHM.

For a genetic algorithm, each design must be coded as a finite string of digits. In the
present work, a 0° stack is assigned the digit 1, a +45° stack the digit 2, and a 90°;
stack the digit 3. For example, the laminate [90°; /£45°; /90°, /0°; /+45°, /0°; g is
encoded as 1 221 3 22 3. The leftmost 1 corresponds to the layer closest to the

laminate plane of symmetry. The rightmost 3 describes the outermost layer.

Figure 2 shows the pseudocode for the algorithm. The genetic search begins with
the random generation of a population of design alternatives. Each individual has a
fitness value based on its objective function that determines its probability for
selection as a parent. Parents exchange parts of their genes (strings) in a process
called crossover to create offspring (new design strings). Additional genetic
operators, namely mutation and permutation, are applied to the child designs which

then replace the parent generation.

In this study, a two point interchange operator is introduced in order to produce
neighboring designs in which two digits of the design string are interchanged. The
local improvement procedure replaces each design generated by the genetic

operators by the estimated best of the neighbor designs.



Here, the best design is always carried to the next generation, which is an "elitist
plan” version of the genetic algorithm. The optimization process is repeated until

some specified number of generations provide no improvement in the best design.
Efficient Retrieval of Designs by a Binary Tree.

During the evolution process, populations often contain designs that have also
appeared in previous generations. If the calculation of the objective function is
expensive, it is worthwhile to keep track of designs to avoid duplicate calculation.
The binary tree data structure [19, pp. 139-143] provides a way to store previous
designs which permits efficient search for duplicate designs. The tree is used to
store all data pertinent to the design: the design string, in-plane lamination
parameters, bending lamination parameters, strain failure load, buckling load, and

objective function.

Figure 3 shows the calculation of the objective function with the aid of the binary
tree. After a new generation of design strings is created by the génetic operations,
the binary tree is searched for each new design. If the design is found, the objective
function value is obtained from the tree without analysis. Otherwise, the tree is
searched for designs with identical in-plane lamination parameters, and hence
identical in-plain strains. If a design with identical in-plain lamination parameters is
found, then the strain failure load is obtained from the tree. Otherwise, the strain
failure value is obtained by exact analysis. Then the buckling load is calculated, and
finally, the objective function value is adjusted for the ply contiguity constraint.

This new design and its concomitant data are then inserted in the tree.




Local Improvement.

Local improvement is used to improve the performance of combinatorial
optimization algorithms, by searching for a local optimum in a small neighborhood
of the nominal design. The present work considers as neighbors all the designs
obtained by interchanging two stacks in the laminate. An example of a stack

interchange is

nominal design : 123132212231

%)
perturbed design : 123231212231

The number of all possible different laminates obtained by interchanges is less than

or equal to @] =n(r—1)/2, where n is the string length.,

Figure 4 shows an example of the distribution of the perturbed designs in the
bending lamination parameter space. The central point corresponds to the nominal
design, and the three branches correspond to the three possible exchanges ( 12,
13, 2¢>3 ). The distance from the nominal point depends on the locations of the

exchanged stacks.
The interchange operation does not change the in-plane stiffnesses and the strain

failure load. Only the buckling load is influenced by this operation. To reduce the

cost of evaluating all the possible interchanges, the buckling load at neighboring
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designs is estimated by a linear least squares approximation based on the bending

lamination parameters.
A=A, +AAW, + BAW, , ' (10)

where Ap is the buckling load of the nominal design, and AW;* and AW, are the
changes in the bending lamination parameters (W1*, W»™) from the nominal design.
The coefficients A and B are determined as follows: first, the binary tree is
searched for the five nearest neighbors of the nominal design in the Euclidean
(W1, W) plane. Then the coefficients are determined by the least squares fit of

the form (10) to the five nearest neighbors.

The approximate buckling load is then used to evaluate the objective function for
all the perturbed designs, and the best one is used to replace the nominal one.
Figure 5 shows an example of the effectiveness of this local improvement. The first
column of each pair is the objective function value of the nominal design, while the
second column represents the best design which replaces that nominal design (which
was calculated exactly for the purpose of this figure). The objective function is
improved before going on to the next generation, and the desi gn obtained by local
improvement is used to produce the offspring of the next generation. The accuracy
of the approximation depends on the distribution of the nearest neighbors. The
nominal design of Figure 4 together with the five nearest neighbors are shown in
Figure 6. The éccuracy of the approximations for all the perturbed designs of
Figure 4 is shown in Figure 7. The horizontal axis in Figure 7 is the distance from
the nominal design in the bending lamination plane. The vertical axis is the buckling

load normalized by the buckling load of the nominal design
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[90°2/(245°/0°2)4/+45°/90° ]s. When the circles (approximate analysis) overlap the
diamonds (exact analysis), the approximation works well. The approximation fails
completely when it predicts an increase in buckling load while the true buckling
load actually decreases or vice versa. Figure 7 shows that such failures tend to
occur only when the change in the buckling load from the nominal design is small.
Thus, it is unlikely that the design selected as the best among the perturbed designs

on the basis of the approximation is worse than the nominal design.

Figure 8 shows the distribution of accuracy of all points from one genetic
optimization run. The horizontal axis is the normalized improve)d value by
approximation (Aap - Anom) / Anom, and the vertical axis is that by the exact
analysis (Aex - Anom) / Anom. When the approximation works well, points lie close
to the 45° line where Agp is equal to Aex. When the point lies above the line, the
approximation underestimates the buckling load, otherwise, it overestimates the
load. If the point is in the first or the third quadrants, the approximation predicts
correctly whether the interchange increases or decreases the buckling load. When
the point is in the second or the fourth quadrants, the approximation does not even
capture the sense of the effect of the interchange. As can be seen from the figure,
very few points lie in the bad quadrants, and these have small normalized values.

So, these points are not likely to be selected as the best among the perturbed

designs.
Variation of Failure Load and Buckling Load in the Lamination Parameter Planes.

The objective function for the genetic algorithm combines the buckling load and the

strength failure load which are determined uniquely by the bending and in-plane

12




lamination parameters, respectively. The variation of the failure load, as calculated
from equations (4) - (7), as a function of V;* is shown in Figure 9 for a fixed value
of Vo*, V5* = -0.5. It can be seen that there is a singularity at the boundary where
V3" = -2Vy*-1. This boundary represents laminates which do not have any 0° plies,
Points near this boundary have few 0° plies, and the strain in these plies is critical,
reducing the failure load. When the last 0° ply is eliminated, the failure load
increases suddenly because failure of 0° plies need not be considered. Such
singularities are known to cause difficulties for continuous optimization algorithms
because, unless the ply that causes the singularity is absent, the algorithm would
tend to increase that ply's thickness rather than climinate that ply. Genetic
algorithms can circumvent singularities because they permit temporary degradation
in performance. Thus a design with two zero stacks can change into one with only a
single stack by mutation or crossover, even though this reduces the failure load. A

subsequent mutation or crossover can then eliminate the remaining stack.

The distribution of the buckling load with respect to the bending lamination
parameters is shown in Figure 10. The contour plot for each buckling mode is

obtained from equations (1) - (3), and the contours are given by

W, =[2°hU, (a*n* - b*m* W, + 122a°6* (b’ N, + a*n*N,)
-2’ {U,(a*n* + b*m* ) + 280" m*n? (U, + 20, )] (11)

[ 2h(a*n* — 6a%0>m?n? + b'm*)

The contours in Figure 10 are piecewise linear with each segment corresponding to

combinations of the wave numbers m and n that minimize the buckling load.
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RESULTS.

Results were obtained for a 48-ply graphite-epoxy plate with the following
material properties: Ej = 18.50E6 psi (127.59 Gpa); E; = 1.89E6 psi (13.03 GPa);
G12=0.93E6 psi (6.41 GPa); vi2 = 0.3; t = 0.005 in. (0.127 mm). The ultimate
allowable strains are g192 = 0.008, gyua = 0.029, y15v2 = 0.015. These allowable
strains were reduced by a safety factor of 1.5. The plate has longitudinal and lateral
dimensions of a = 20 in. (0.508 m) and b = 5 in. (0.127 m), respectively. Because
of the symmetry and the use of 2-ply stacks, the 48-ply laminate is described by a
12-gene string. The genetic algorithm was applied to three load cases with Ny/Nx =
0.125, 0.25, and 0.5, called load cases 1, 2, and 3, respectively, where Nx is set to
1.0 Ib/fin (175 N/m).

In this problem there are many near optimal designs. For this reason, designs that
are within a tenth of a percent of the global optimum are accepted as optimal and
are called practical optima here. To evaluate the efficiency of the algorithm we
define a normalized price, which is the average number of evaluations (also called
price) of the objective function divided by the probability of reaching a practical

optimum (called practical reliability).

Average prices and practical reliabilities were calculated by performing one

hundred genetic optimizations for each of the three load cases. The algorithm was
considered satisfactory only if the practical reliability was at least 0.8. This means
that a single genetic optimization run has at least an 80 percent chance of finding a

design within 0.1 percent of the global optimum. The requirement of 0.8 practical
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reliability was used to determine the stopping criterion. We start 100 optimization
runs with the stopping criterion set to 10 generations without improvement. We

then increase the stopping criterion until a practical reliability of 0.8 is achieved.
Performance of Genetic Algorithm without Local Improvement.

In [5], Le Riche and Haftka investigated the performance of a genetic algorithm
without local improvement for the same problem with the same three load cases.
They found that good performance was obtained with a population size of 8,
probability of mutation of 0.01, probability of crossover of 1.0, probability of
permutation of 1.0, and a penalty constant in the objective function of 0.9. The
same values are used here. The performance of the algorithm depends strongly on
the load case, as shown in Table 1. The table shows the stopping criterion (number
of generations without improvement), the normalized price, and the practical
reliability for the three load cases. For load case 2, the practical reliability did not
reach 0.80 even with a stopping criterion of more than 60 generations, but in the
other load cases, it reached 0.80 with a much lower stopping criterion. This
behavior was investigated and found to depend on the nature of the optimum for

each load case.

For the optimum design for load case 1, the failure load is critical while the
buckling load is not. The failure load depends only on the ratio of total thicknesses
associated with the ply orientation angles, and does not depend on the through-the-
thickness location of the plies as long as the contiguous ply constraint is satisfied.

Consequently, there are many optimum designs, some of which are shown in Table
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2 (a). Therefore, it is easy to reach a practical optimum design and the price of the

optimization is low.

For load case 2, there are only three practical optimum designs as shown in Table
2 (b). Two of these designs have critical failure load and one has critical buckling
load. The failure load and the buckling load are very close at the optimum. Changes
in the stacking sequence easily degrade either the buckling load or failure load, so

there are few practical optimum designs, and it is more difficult to find one.

For load case 3, only the buckling load is critical for the practical optimum designs
as shown in Table 2 (c). The optimum designs do not have any zero plies, and there
is some freedom to change the ratio of the +45° plies and 90° plies without

degrading the buckling load significantly.
Effect of Binary Tree.

The efficiency of the binary tree for the objective function evaluation without local
improvement is shown in Table 3. The second column in the table, the price, is the
mean (over 100 runs) of the number of designs considered by the algorithm. Since
an elitist strategy is adopted in our genetic algorithm implementation, the best
design is passed on from one generation to the next, and the reanalysis of this design
is not necessary. The elitist price is the mean of the number of ahalyses required by
taking advantage of this property. Finally, the average number of nodes in the tree
shows the mean of the number of different designs per optimization. The standard

deviations of these means are also given in this table. It is clear from Table 3 that
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20 to S50 percent of the analyses can be avoided by keeping track of previous

designs.

Table 3 also shows that the number of nodes in the binary tree increases with
permutation rate. This indicates that the permutation operator contributes to the
creation of new design strings. Table 3 may indicate that if a binary tree is used to

avoid reanalyses of designs the optimum permutation probability may be lowered.

Effect of Local Improvement.

Table 4 shows the performance of the local improvement with the same genetic
parameters as in Table 1. For load cases 1 and 2, local improvement worked very
well, especially for the load case 2, where the performance improved by about a

factor of three.

For load case 3, however, local improvement made the performance worse (see
tables). We investigated the reasons for the poor performance of the algorithm for
load case 3. Table 5 shows frequently obtained designs by local improvement for
this load case. In comparison with the practical optima found without the local
improvement (see Table 2 (c)), these designs all have 0° plies near the midplane.
The rest of the stacking sequence is the same as those of the practical optima which

do not have any 0° plies.

Upon further investigation the problem was found to be due to the singularity of the
optimum for load case 3. As discussed carlier, the failure load exhibits a singularity

at the boundary of the lamination diagram (see Figure 9) where the laminate does
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not have any 0° plies. This situation is illustrated in Figure 11 which shows the
effect of pushing the 0° plies toward the midplane and replacing them with +45°
stacks when they reach the midplane. As can be seen in Figure 11, the buckling load
increases monotonically during this operation. However, the failure load decreases
as we reduce the number of 0° plies until they are all eliminated, when it Jjumps up.
Recall that this happens because we no longer need to enforce strain constraints in

the 0° plies.

Crossover and mutation are two genetic operators that can potentially get rid of the
undesirable layers from the laminate. Consider, for example, the following
crossover scenario where both parents have 0° plies occupying different positions in

the strings.

parent1 22/11

parent2  11/22
child 2222

Local improvement interferes with this mechanism because it will move 0° plies
towards the midplane, where they have the least detrimental effect on the buckling
load, in all members of the population. For example, parent 1 in the above design is

likely to be changed to

2211 —h 1212

local improvement
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Now the crossover cannot eliminate both 0° plies, because some of the 0° plies

occupy the same location in both laminates and, therefore, appear in both children.

To ameriolate this situation, we seeded the initial population with "no-zero-ply"
(NZP) designs. With the population sized fixed at 8, we tried two, four, or six
initial NZP designs. This corresponds to 25%, 50% or 75% of the population.

The results obtained by this NZP seeding are shown in Table 6 for load case 3 for
both with and without the local improvement and for two permutation probabilities.
The performance is seen to improve both with and without local improvement as
the number of NZP designs increase in the initial population. The effect on the
average of all three load cases is shown in Table 7. The practical reliability reached

80% at a very small normalized price.

The comparison in Table 7 shows that while the NZP seeding procedure helps also
without local improvement, its effect on the local improvement procedure is
dramatic. With half of the initial population seeded NZP, the local improvement

procedure reduced the price of the GA by better than a factor of two.

We also checked the need for permutation when seeding and local improvement are
used. The results for 50% NZP seeding and three permutation probabilities are
given in Table 8. It is seen that without local improvement permutation is critical
for achieving the desired reliability. However, with local improvement it may not
be necessary. Furthermore, if the performance of the algorithm is based on the
number of different designs (nodes in the binary tree), no permutation could be the

most efficient choice.
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For the present problem, the calculations of the buckling load and the strength
failure load involve the use of simple algebraic formulae, so thaf it takes longer to
search for the nearest neighbors and construct the approximation than to evaluate
the objective function. Also, the binary tree requires a large amount of memory to
keep track of all the designs. Therefore the two approaches proposed, the binary
tree and local improvement, are not cost-effective for this problem. However, these
procedures have high potential and wide applicability to problems with a very

expensive objective function.
CONCL.UDING REMARKS.

This research introduced two approaches for reducing the number of analyses
required by a genetic algorithm for the stacking sequence optimization of composite
plates. The binary tree data structure is effective for avoiding the reanalysis of
designs which appeared in previous generations. A local improvement scheme
considered all designs that can be obtained by interchanging two stacks of plies in
the nominal designs and estimated the buckling load of these designs using a linear
approximation based on lamination parameters. This local improvement was found
to substantially reduce the cost of the genetic optimization. We also found that to
avoid difficulities with singular optima, the initial population needs to be seeded

with designs containing no zero degree plies.
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Table 1.  Normalized prices and practical reliabilities without
local improvement
(probability of permutation = 1.0, population size = 8).

Load case Stopping Normalized Practical
criterion price reliability

1 19 350 0.84

44 530 0.99

2 44 1126 0.71

63 1250 0.78

3 38 832 0.81

44 963 0.77

Average 44 836 0.823




Table 2. (a) Optimal designs for load case 1*.

Design variable Load factor A

Stacking sequence Genetic code Buckling Failure
[+455/04/+45/04/90,/02]5 131121122222 [14659.583 |13518.661
[£455/04/90,/04/+45/05]5 121131122222 [14610.845 | 13518.661
[£452/90,/+45/(+45/04),/£45/05]5 121121122322 114421.311 | 13518.661
[£454/0,/£45/04/145/04/90,] 311211212222 |14284.145 |13518.661
[£454/02/£45/04/90,/04/+45]5 211311212222 [14251.656 | 13518.661
[£453/02/1452/04/902/02/+45/0, s 121311221222 {14029.490 [13518.661
[902/+452/(£45/02)3/02/+45/0,]5 121121212223 |14013.722 | 13518.661
[902/(£452/02)2/345/04/+45/0,]¢ 121121221223 |13831.525 | 13518.661
[£453/(02/+45)2/04/+45/0,/90, 5 312112121222 |13744.604 |13518.661

* There are many other practical optimum designs because the strain

failure is critical.

Table 2. (b) Optimal and near-optimal* designs for load case 2.

Design variable

Load factor A

Stacking sequence Genetic code Bﬁckl'mg Failure
[£452/902/+453/00/+45/04/+45/0,]5 121121222322 [12743.451 | 12678.777
[£45/900/4454/(02/£45/0,)5]5 121121222232 |12725.257 |12678.777
[905/455/(02/145/02), 15 121121222223 [12674.853 1 12678.777
[£452/902/£453/04/(+45/02)]s 121211222322 |12622.464 |12678.777
[245/902/+454/04/(F45/02)]5 121211222232 [12617.837 | 12678.777
[£452/90,/+453/(04/%45)]s 211211222322 {12592.217 | 12678.777
[£45/902/3:454/(04/£45)]s 211211222232 |12590.982 | 12678.777
[£453/902/445,/(05/£45/0,)]s 121121223222 [12568.942 | 12678.777

* Only the top three designs are the practical optima.




Table 2. (c) Practical optimal designs for load case 3.

Design variable

Load factor A

Stacking sequence Genetic code Buckling Failure
[902/2452/(902/£45),/+455] 222222323223 | 9998.198 {10398.136
[902/£45,/(902/445),/+45,/90,]5 322222323223 | 9997.614 |10187.937
[(902/£452)0/(90/+45),/+45,]5 222323223223 | 9997.614 |10187.937
[ (902/i45)2/i452/(i45/902/i45)2]s 232232222323 | 9994.836 |10187.937
[F45/904/+452/90,/£454/90,/+45] 232222322332 | 9994.836 {10187.937
[(45/902)2/902/4454/905/+455] 223222233232 | 9994.836 |10187.937
[904/+45/90,/+45,]¢ 223222222233 | 9994.694 |10398.136
[904/2456/(145/90,)515 323222222233 | 9994.110 |10187.937
[(902/_-f:45)2/i-453/(902/i45)2/i45]s 223232222323 | 9994.110 |10187.937
[45/904/(£455/90,/+45),/+4515 223222322332 | 9994.110 |10187.937
[904/+457/904/+451 233222222233 | 9990.606 |10187.937
[£45/904/44535/904/+454] 222233222332 | 9990.606 |10187.937
[902/4:453/904/+45/90,/+454] ¢ 222232332223 | 9990.606 {10187.937




Table 3. The efficiency of the binary tree; population size=8,
stopping criterion=56 generations without improvement.

(a) probability of permutation=0.5.

Load Price "Elitist" Avg. no. of % Practical
case price® nodes in tree | saving |reliability
1 6560+ 11 | 575010 | 3295+ 6 42.7 0.99
2 937.0+25 ) 820822 | 4678+ 12 43.0 0.63
3 937.0+27 | 820.8+23 | 3949+ 12 51.9 0.74
Average| 8433+ 15 | 7389+13 ) 3974+ 7 46.2 0.786
(b) probability of permutation=1.0.
Load Price "Elitist" Avg. no. of % Practical
case price* nodes in tree | savings | reliability
1 6462+ 12 | 566.4+11 | 4530+ 9 20.0 0.99
2 907.0£27 | 794.7+23 | 6319+ 18 20.5 0.71
3 918.5+27 | 804.7+23 | 5044+ 16 37.3 - 0.86
Average| 8239+ 15| 721.9+13 | 5297+ 10 26.6 0.853

* Price excluding repeated analyses of best design
(passed on to next generation with elitist strategy)




Table 4. Normalized price and practical reliability with
local improvement
(probability of permutation = 1.0, population size = 8).

Load case Stopping Normalized Practical
criterion price reliability

1 10 193 0.80

50 520 1.00

2 22 435 0.81

50 720 0.96

3 50 1646 0.46

63 2209 0.45

Average 50 813 0.807




Table 5. Frequently obtained designs for load case 3

(with local improvement).

Design variable

Load factor A

Stacking sequence Genetic code Buckling Failure
[904/4456/(345/0;)15 121222222233 | 9910.385 |10251.197
[(902/£45)0/+453/90,/04/90,/05] 131132222323 | 9803.273 {10787.530
[45/902/(902/4455)2/04/90,/0] ¢ 131122322332 | 9803.273 |10787.530
[(F45/902)4/04/+45/0,]14 121132323232 | 9803.273 | 10787.530
(902/£452/(905/+45)2/+45/04/+45/041s | 121 122323223 | 9803.105 |11404.473
[(F45/902)4/04/905/0,] 131132323232 | 9801.937 |10193.772
[904/+456/04/90,/0,]5 131122222233 | 9801.119 |[11404.473
[902/+452/(905/+45),/445/04/90,/05]s | 131 122323223 | 9799.017 |10787.530
[345/904/%453/904/04/+45/0,] 121133222332 | 9795.513 {10787.530
[902/+453/904/+45/904/04/+45/05]¢ 121132332223 | 9795.513 |10787.530
[(B02/345)2/445,/90,/£45/04/+45/00]s | 121 123222323 | 9792.593 |11404.473
[£45/904/£453/904/04/905/0,]15 131133222332 | 9791.425 [10193.772
[902/4453/904/+45/902/04/90,/0;]5 131132332223 | 9791.425 |10193.772




Table 6. Normalized price near 0.80 practical reliability for load case 3
starting with seeded nonzero degree plies in initial population.

No local improvement (permutation probability = (.50)

Initial population Stopping Practical Normalized
Normal Nonzero criterion reliability price
8 0 56 0.80 1181
6 2 32 0.83 566
4 4 22 0.85 378 (147)*
2 6 16 0.80 280 (104)*
Local improvement (permutation probability = 0.50)
Initial population Stopping Practical Normalized
Normal Nonzero criterion reliability price
8 0 63 0.30 2997
6 2 63 0.73 1161
4 4 16 0.81 284 (131)*
2 6 16 0.85 218 (121)*
No local improvement (permutation probability = 1.00)
Initial population Stopping Practical Normalized
Normal Nonzero criterion reliability price
8 0 38 0.81 832
6 2 25 0.83 496
4 4 13 0.83 249 (134)*
2 6 10 0.80 173 ( 97)*
Local improvement (permutation probability = 1.00)
Initial population Stopping Practical Normalized
Normal Nonzero criterion reliability price
8 0 63 0.45 2209
6 2 56 0.83 943
4 4 13 0.80 256 (144)*
2 6 10 0.81 190 (109)*

* Average number of nodes in binary tree,




initial population.

No local improvement

(permutation probability = 0.50)

Table 7. Normalized price near 0.80 practical reliability for average of the

three load cases starting with seeded nonzero degree plies in

Initial population Stopping Practical Normalized
Normal Nonzero criterion reliability price
8 0 56 0.827 1034
6 2 44 0.810 821
4 4 32 0.820 602 (250)*
2 6 38 0.827 734 (292)*
Local improvement (permutation probability = 0.50)
Initial population Stopping Practical Normalized
Normal Nonzero criterion reliability price
8 0 63 0.767 968
6 2 19 0.810 362
4 4 13 0.820 263 (135)*
2 6 16 0.860 287 (148)*
No local improvement (permutation probability = 1.00)
Initial population Stopping Practical Normalized
Normal Nonzero criterion reliability price
8 0 44 0.823 836
6 2 50 0.857 853
4 4 38 0.833 665 (365)*
2 6 38 0.827 737 (362)*
Local improvement (permutation probability= 1.00)
Initial population Stopping Practical Normalized
Normal Nonzero criterion reliability price
8 0 50 0.807 813
6 2 19 0.827 353
4 4 16 0.817 307 (179)*
2 6 16 0.840 305 (188)*

* Average number of nodes in binary tree.




Table 8. Normalized price near 0.80 practical reliability for the average of
the three load cases starting with 4 NZP and 4 normal designs in
the initial population.

No local improvement

Permutation Stopping Practical Normalized

probability criterion reliability price
0.0 63 0.283 3278 (115)*
0.5 32 0.820 602 (250)*
1.0 38 0.833 665 (365)*

Local improvement

Permutation Stopping Practical Normalized

probability criterion reliability price
0.0 25 0.807 439 (106)*
0.5 13 0.820 263 (135)*
1.0 16 0.817 307 (179)*

* Average number of nodes in binary tree.
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Procedure Genetic algorithm
begin
initialize population;
do I=1, population size
evaluate objective function;
enddo
rank designs;

while number of consecutive generations without improvement in
the best design less than a specified number do
begin
do I=1, population size
select parents;
create children by crossover;
perform mutations;
perform permutations:;
enddo
one of new designs replace by the best design of
the previous generation:;
do I=1, population size
evaluate objective function;
local improvement:
enddo
rank designs;
end
end

Procedure Local improvement
begin
search for 5 nearest neighbors in the binary tree;
construct a least squares approximation to buckling load;
while two point interchange not finished do
begin
perform two point interchange of stacks;
compute buckling load approximation;
adjust objective function for strain failure load
and contiguous ply constraint;
end

replace nominal design by the best interchanged design;
end

Figure 2. Pseudocode for genetic algorithm
with local improvement.



Procedure Evaluation of objective function using binary tree
begin
search for the given design in the binary tree;
if found;
get objective function value from the binary tree;
else
search for design having identical in-plane lamination
parameters;
if found;
get strain failure load from the binary tree;
else
perform in-plane strain analysis;
endif
perform buckling analysis;
adjust objective function for contiguous ply constraint;
add design to the binary tree;
endif
end

Figure 3. Calculation of objective function
with aid of binary tree.
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