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l. Introduction

- effect the user
o interface
development process?.
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What is the Task

This guide presents the task mapping model (TMM), a synthesis/analysis methodology for
aiding the interface specialist in designing interfaces with better usability. This guide does not
motivate the necessity or impact of this model with regards to user interface development, that
is presented elsewhere (Mayo & Hartson, 1993),

Briefly, TMM describes necessary knowledge for user task completion, and analyzes if this
knowledge is supported by the user or interface. In order to examine user task knowledge, a
model of the users’ task is needed. TMM provides a framework for describing and analyzing
tasks. This framework consists of various abstract levels of task decomposition and description.
Each level of abstraction contains level-specific objects, operations, and sub-tasks for task
description and analysis. TMM focuses on the mappings users make among domains (during
task performance) to provide designers with specific information about task structure and user
knowledge requirements. This model allows descriptions of tasks using hierarchical
decomposition coupled with abstraction of user knowledge requirements.

The overall goal of TMM is to support the user interface development process in relation to both
initial design and redesign by deriving new interface design requirements. Because TMM is
task oriented, analysis for initial design and redesign support are implemented in two ways:
global analysis, situational analysis. Global anafysis techniques examine whole systems-—
including all user tasks, input-output devices, and user interfaces. Global analysis examines all
aspects of systems and is very costly in terms of time and effort. Situational analysis is involved
with examination and analysis of a few specific user tasks and interface usability problems
found by evaluators during formative evaluation cycles. During the initial design process both
global and situational analysis can help the interface specialist focus on user- and task-centered
issues. The redesign process has the benefit of formative evaluation findings, and thus,
situational analysis is very cost-effective. TMM employs both analyses types for initial design
and redesign during user interface development.

TMM may also be used as a synthesis or analysis method. As a synthesis method, TMM
supports interface design throughout the design process by focusing interface specialists on
user-centered needs. Using TMM descriptions of tasks that users had problems with, interface
specialists can direct their attention on improving interface usability and human performance.
Through analysis of specific situations {situational analysis) during formative evaluation, TMM
synthesizes new interface design requirements.

As an analysis method, TMM helps interface specialists investigate what users need to know
during task performance. With a TMM task description, user knowledge requirements can be
analyzed in detail, based on task structure and relationships among domain contents. Further,
TMM analysis points outs interface deficiencies and provides a synthesis of missing knowledge
that should be made available to the users, and new interface design requirements are then
derived to support that missing knowledge.




Human-computer interaction specialists often conceive their work two different viewpoints: the
constructional view and the behavioral view. The constructional outlook is focused on
implementation issues in HCI—where to put button, how to open a window, how can anyone
program using X? While the behavioral view focuses on user and system behavior—how did
the user do this, how did the system respond? Because of the user- and task-centered approach
of TMM, it fits into the behavioral view.

TMM can be used by interface specialists for both synthesis and analysis during human-
computer interface design. Formally, TMM is designed for human-computer interface
specialists; however, the simplicity and readability of the model’s descriptions allow more
general use, including ‘walkthrough’-style evaluations by non-specialists.

The following sections provide a general introduction to TMM, and outline the domain
structures, knowledge elements, and task description formats used in TMM. A section on T™MM
usage outlines associated methodologies, and finally, an example is provided to illustrate the
model’s use. This guide also has a glossary defining commonly used terms.

I Overview of TMM Task Descriptions
E%_______________

N - Doinains

This section gives a general overview of describing tasks with TMM.

The abstract levels of TMM task descriptions are referred to as domains. A domain contains
entities specific to the abstraction level. These entities are collectively referred to as domain
items. A domain item is either an object, operations, or sub-tasks. Domain objects are
manifestations of physical or conceptual things related to the task. Operations are actions
defined within the domain’s level of abstraction. Sub-tasks represent subordinate execution
sequences. All three components are {examples are given in the following section).

Domains range from ‘higher’ to “lower’ levels of task abstraction. The domains reflect different
levels of abstraction at which users perceive task artifacts (domain items). (Shneiderman, 1979;
Shneiderman, 1987; Moran, 1981 ; Nielsen, 1986) Simply put, a user works at several levels when
performing a task on a computer—from the highly abstract problem domain down to the low
abstraction level of physical manipulation.

The domains used in TMM task descriptions are: problem domain, computer semantic
domain, computer syntactic domain, and articulation domain. These domains are discussed
in more detail, with examples, in the following section. The following figure depicts the
domains of task abstraction.




Problem Compiiter Computer Articulation
Domain Semantic Domain Syntactic Domain Domain (UAN)
User Action | Feedback | Sys Stale
Higher Abstracrion Lower Abstraction

Ideally, users wish to work in the problem domain, where all domain items are problem related;
however, once a task is computerized, users must understand the translations between their
understanding of the task and the computers representation of the task.

For example, when a user attempts the task of DUPLICATE A DOCUMENT (problem domain task),
the user must reconceptualize it into coPY a FILE (computer semantic domain). Many of these
tasks can be viewed as action-object pairs that exist within different domains, and are both
representations of the task at hand. Also, cOPY A FILE can be reconceptualized further into the
‘computer’ grammatical components (computer syntactic domain items representing the ‘copy
command’ and the actual filename) and input sequence (articulation domain specification of

users’ actions).
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Problem Computer Computer Articulation
Domain Semantic Domain Syntaciic Domain Domain (UAN)
User Acfion [Feedback | Sys olale
Duplicate File Select A _
. Select fcon |File_lcon!  [Mark file of
<File_lcon> macro Fila_lcon as
- selected for
Document COpy operation
Envcke
<Dup|ic:ate K& D" Display fcan
of the new
Accelerator duptioated
Ke N fila
y Fila_lcon-!
Higher Abstraction Lower Abstraction




fuppings Using these domains to tepresent the different abstract levels that users perceive tasks,

mappings are formed to relate items across domain boundaries. A mapping refers to a specific
reconceptualization or translation of a domain item from one domain to another. Mappings can
exist from higher to lower or lower to higher abstract domains levels. The sequence of
mappings through these domains are task paths, and may be either execution or evaluation.
Mappings from higher to lower levels of abstraction represent execution paths. Here the user
maps conceptual task goals into actual physical actions. The converse, examining physical
results to determine is a goal has been achieved, is an evaluation path—users map from lower to
higher levels of abstraction.

In the previous example, DUPLICATE A DOCUMENT was reconceptualized (translated) to copvy a
FILE. During task performance the user maps DUPLICATE to COPY and DOCUMENT to FILE. TMM
notation uses an arrow, =, to indicate a ‘maps to’ reIationship, €.g., DUPLICATE = COPY and
DOCUMENT = FILE. These are two of the necessary mappings for task translation in this example.

In general, mappings link domain items across domain boundaries. The following figure
depicts the relationships of mappings and domain items among domains: :

Articulation
Domain (UAN)

Problem Computer
Domain Semantic Domain

Computer
Syntactic Domain

User Aclion | Feedback | Sys State

/ =
/ .
‘\ %* P _,_—-——_-
—
oy = —T—p--
Higher Abstraction Lower Abstraction
- Do e
= Domain Items = Mapping

This example shows mappings among different domains. Mappings within domain boundaries
are further decompositions of domain items; while, mappings among items from different
domains boundaries represent changes in abstraction levels,

This example illustrates a ‘one-to-many’ mapping from the single problem domain item to two
computer semantic domain items. This could represent a possible alternative method for
performing the same task, or these mappings can indicate a second possible computer semantic
representation of the problem domain item. ‘One-to-many’ mappings can occur between any
two domains.

Many-to-one’” mappings are also possible. Our example shows two computer semantic domain
items mapping to a single computer syntactic domain item. This could represent a collapsing of
the task into a common set of grammatical components or actions. For example, consider error
conditions where once an error is identified a sequence of actions common to all errors must be
taken for error resolution. Observe the errors associated with reading-from or writing-to a file—
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once the error is determined the user must check the media and then remount it. ‘Many-to-one’

mappings can occur between any two domains.

With mappings, our previous example task of DUPLICATE A DOCUMENT might look like:
Problem Computer Computer Articulation
Domain Semantic Domain Syntactic Domain Domain (UAN)

UserAction |Feedback | Sys SEe
uoli .
Duplicate - | Fite —-—DSe@Ci | Bpselectcon [Fila_icon!  Viark fte of
>< <File_lcon> macro File_icon as
- i - selected for
Document Copy — operation
\ﬁrEnvoke
<Dup!icate — D" gstﬁlay leon
e new
Acceleraior dupticated
[file
Key> .
File_lcon-t
Higher Abstraction Lower Abstraction
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In this example, DUPLICATE = Copy = actual system ‘Copy’ command (e.g., ‘cp’,

menu item) = users’ physical actions.

‘Duplicate’
This series of mappings illustrates the user’s
reconceptualization of a problem domain task dewn into physical user actions.

Mapping one domain item into another item in a different domain is not altogether
straightforward. For instance, what is involved when the user performs DOCUMENT = #ILE? The
user requires certain knowledge to perform this mapping. Therefore, sets of necessary
knowledge elements are associated with each mapping, representing the knowledge
requirements for the mapping. Also, a mapping may have alternative knowledge sets. The
following figure depicts this concept with example generic mappings:




Problem Computer

Computer Articulation
Domain Semantic Syntactic Domain / UAN
Domain Domain

Ce

Higher Abstraction Abstraction Level Lower Abstraction
Key
Domain items are represented as cireles, and mappings are arrows.

Knowledge requirements for the execution path
(higher to lower abstraction level mappings)
1: Knowledge required to map a problem demain item into a computer semantic domain item.
2 K.nowledFe requireg to map a computer semantic domain item into a computer syntactic domain item.
3: Knowledge required to map a computer syntactic domain item into an articulation domain item.

Knowledge requirements for the evaluation path
{lower to higher abstraction level mappings)
4: Knowledge reguired to map an articulation domain item (system feedback) into a computer syntactic domain item.
§: Knowledge required to map a computer syntactic dofnain item into a computer semantic domain item.
Knowledge required to map a computer semantic domain item into a problem domain item.

In the previous figure notice that mappings connect domain items across domain boundaries.
The knowledge necessary for each mapping is ‘external’ to TMM'’s domains. In other words,
domains contain domain items, while knowledge requirements are generally defined outside or
between the domains. In the DUPT,ICATE A DOCUMENT example, consider the mapping DocuMENT
= FILE, one possible knowledge requirement could be the factual knowledge that documents are

stored within files., as shown in the following figure:

Eroblem Computer
Domain Semantic
Knowledge that documents Domain
are stored within computer
system files. .
Document > File
Duplicate —»Copy
Higher Abstraction Abstraction Level Lower Abstraction

This example illustrates that users must understand that documents are stored in system files in

order to map document to file. This may seem trivial, but a user without this understanding is
doomed.




.  TMM Task Description Domain Framework

This section has presented a brief overview of TMM. The following sections depict the domains,
knowledge elements, and task description issues.

1.

"o Example problem
v domangitems.

2.

This section further defines the domains introduced in the previous section: problem domain,
computer semantic domain, computer syntactic domain, and articulation domain.

Problem Domain

The problem domain contains items {objects, operations, and sub-tasks) directly related to user
task performance described in specific real-world terminology. Thus, the scope of this domain
is defined by the users’ task or job. Domain items are the physical and conceptual real-world
entities that comprise the users’ task, and are often not related to computer systems. The prob-
lem domain does not contain anything defined outside this scope.

Problem Domdin.~ - Objects ... -~ ‘Operations - Sub-Tasks -~ .
DOCUMENT ‘PREP. [+ Lerrer - [+ Eprr ‘e MOVE LINE'1-TO 5

“fre DOCUMENT - [« READ _+ EDIT DOCUMENT
o + DISCARD LETTER
« CHECK SPELLING

PERSONAL FINANCES. | = CREDIT CARDS |+ DEPOSIT » TRANSFER .$20 TO
- 4. Y|« Drart acer. ‘s WITHDRAW SAVINGS
| SAVINGS ACCT. {-» TRANSFER + BALANCE ‘CHECKBOOK
2| e DEPOSIT SLIE :
o[ BALBNCE

This table shows two different problem domains with representative domain items. Obviously,
this is not a complete table—e.g., documents can also be printed, reformatted, etc. This table
does illustrate that all domain items are problem defined, and there is no hint of possible
computer implementations or solutions. The objects defined are within the problem domain—a
letter is a physical world “letter’ and not a sequence of ones and zeros in a computer somewhere.

As can be seen, there are no items concerned with computer hardware or software in this
domain. This level of abstraction requires that only the problem domain and tasks within the
problem domain need to be understood.

Computer Semantic Domain

The computer semantic domain contains items (objects, operations, and sub-tasks) that build a
representation of the users’ tasks with abstract computer concepts. This domain is a layer of
abstraction between the problem domain task representation and the specific coniputer syntactic
domain task representation. Le., this domain serves as an generic computer “middle-ground” in
the users” translation of tasks between the real world and a specific computer system.




Items within this domain are strictly computer related, but their definition is not limited to any
particular hardware or software platform. Items in this domain do not include the actual
interface features, but this domain does include the generalized concepts represented by these
features. For example, FILEs are common to most systems but their physical representations
among these systems vary considerably.

The TMM has chosen the taxonomy reported by Lenorovitz as the standard language within the
domains. (Lenorovitz, Phillips, Ardrey, & Kloster, 1984) By adopting this taxonomy as
standard, the TMM helps eliminate ambiguities from designers’ natural language task
descriptions—while not relying on constrictive grammars. This also gives a common language
by which designers and analysts can communicate.

The taxonomy is divided into four sub-taxonomies of the User-System Interface (USI): computer-
output, computer-internal, user-input, and user-internal taxonomies. The user-input and user-
internal taxonomies are of interest to TMM——these form the basic language used in TMM task
descriptions. This language is used throughout the problem-, computer-semantic-, and
computer-syntactic domains. These two taxonomies are outlined hierarchically:

PERCEIVE ACQUIRE DETECT
SEARCH
5can
EXTRACT
CROSS-
REFERENCE
IDENTIFY DISCRIMINATE
: RECOGNIZE
MEDIATE ANALYZE CATEGORIZE
CALCULATE CREATE ASSOCIATE NAME
ITEMIZE GROUP
T ABULATE INTRODUCE INSERT
SYNTHESIZE ESTIMATE ASSEMBLE AGGREGATE
INTERPOLATE OVERLAY
TRANSLATE REPLICATE CopyY
INTEGRATE INSTANCE
FORMULATE INDICATE SELECT (POS/OB])
PrROJECT OR REFERENCE
EXIRAPOLATE
ASSESS COMPARE ELIMINATE Remove Cur
EVALUATE DELETE
DECIDE STOP SUSPEND
COMMUNICATE TRANSMIT CAlL TERMINATE
ACKNOWLEDGE DISASSOCIATE RENAME
RESPOND UN-GRoUP
SUGGEST DISASSEMBLE SEGREGATE
DirECT FILTER
INFORM SUPPRESS
INSTRUCT SET-ASIDE
REQUEST MANPULATE TRANSFORM
RECEIVE ACTIVATE EXECUTE __ ENT

The definitions are given in the following table (still showing the hierarchy):
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PERCEIVE ACQUIRE DETECT Discover or notice an occurrence (usually unsolicited)

SEARCH Purposetul exploration or looking for specified item(s).

Scan Glance over quickly, usually looking for overall patterns or
anomalous oceurrences (not details).

EXTRACT Directed, attentive reading, observing, or listening with the
purpose of gleaning the meaning or contents thereof,

CROS3- Accessinfg or looking up related information usually by

REFERENCE means of an indexing or organized structuring scheme set
up for that purpose.

IDENTIFY DisCRIMINATE - | Roughly classify or differeniiaze an entity in terms of a
gross level grouping or set membership—frequently on
the basis of only a limited number of attributes.

RECOCNIZE Specific, positive identification of an enfity.

MEDIATE ANALYZE CATEGORIZE Classify or sort one or more entities into specific sets or
groupings, usually on the basis of a well-defined
classification scheme.

CALCULATE Reckon, mentally compute, or computationaily determine.

ITEMIZE List or specify the varicus components of a grouping,

TABULATE Tally or enumerate the frequencies or values of the
members of an itemized list or table. :

SYNTHESIZE ESTIMATE Mentaily gauge, judge, or approximate, often on the basis
of incomplete data.

INTERPOLATE | Assign an anroximate value to an interim point based
upon knowledge of values of two or more bracketing
reference points.

TRANSLATE Convert or change from one form or répresentational
system to another according to some consistent mapping
scheme.

INTEGRATE Pull together, and mentally organize a variety of data
elements so as to extract the information contained therein.

FORMULATE Generate and put together a set of ideas 50 as to produce
an integrated concept or plan.

PrOJECT OR Assign an approximate value to a future point based upon

EXTRAPOLATE | the value(s) of preceding point(s).

ASSESS COMPARE Consider two or more entities in parailel so as to note
relative similarities and differences.

EVALUATE Determine the value, amount, or worth of an entity, often
on the basis of a standard rating scale or metric.

DECIDE Agrive at an answer, choice, or conclusiorn.

COMMUNICATE TRANSMIT CaLL Signal to a specific recipient or set of recipients that a
message is forthcoming,

ACKNOWLEDGE | Confirm that a call or message has been received.

RESPOND Answer or reply in reaction fo an input.

SUGGEST Offer for consideration.

DIRECT Provide explicitly authorifative instructions,

INFORM Pass on or relay new knowledge or data.

INSTRUCT Teach, educate, or provide remedial data.

REQUEST Solicit, query, or ask for.

Get, obtain, or acquire an incomine messaze.




CREATE

ASS0CIATE

NAME

Give title to or attach label to for purposes of
identification/reference.

GROUP

Link together or associate for purposes of identification.

INTRODUCE

INSERT

Make space for and place an entity at a selected location
within the bounds of another such that the latter wholly
encomIlJasses the former, and the former becomes an
integral component of the latter.,

ASSEMBLE

AGGREGATE

Combine two or more components so as to form a new
composite entity.

OVERLAY

Superimpose one entity on top of another so as to affect a
composite appearance while still retaining the separability
of each component layer.

REFLICATE

Cory

Reproduce one or more duplicated of an entity (no links to
master).

INSTANCE

Reproduce an original (master) entity in such a way as to
retain a definitional link to the master—i.e., such that any
subsequent changes or modifications made to the master
will automatically be reflected in each and every instance
created therefrom.

INDICATE

SELECT (POS/CB))

—

pt for or choose an entity (e.g, a position or an 'object) by
pointing to it [and possibly other user actions].

REFERENCE

Opt for or choose an entity by Mvoking it name.

ELIMINATE

ReEMOVE

Cur

Remove a designated portion of an entity and piace itina
special purfose buffer (residual components of the original
entity usually close in around hole le by cut-ouf portion).

DELETE

Remove and (irrevocably) destroy a designated portion of
an entity.

STOP

SUSPEND

Stop a process and temporarily hold int abeyance for future
restoration.

TERMINATE

Conclude a process such that it cannot be restarted from the
point of interruption, only by complete re-inifiation.

DisASSOCIATE

RENAME

Change an entity’s title or label, without changing the enfity
itself.

UN-GROUP

Eliminate the common bond or reference linkage of a group
of entities.

DISASSEMBIE

SEGREGATE

Partition and separate an entity into one or more
component parts such that the structure and identity of the
original is lost.

FILTER

Selectively eliminate one or more layers of an overlayed
composite.

SUPPRESS

Conceal or keep back certain aspects or products of a
process without affecting the process itself (i.e., affects
appearance only).

SET-ASIDE

Remove entire contents of current {active) work area and
store in a readily accessible buffer (for future recall).

MANIPULATE

TRANSFORM

Manipulate or change one or more of an entity’s attributes
{e.g., color, line type, character font, size, orientation)
without changing the essential content of the entity itself.

ACTIVATE

EXECUTE __ FNT

Initiate or activate any of a set of predefined utility or
special purpose functions {e.g., sort, merge, calculate,
update, extract, search, replace

M.3. Computer Syntactic Domain

items

Computer syntactic domain items
syntactical components related to both
represent user interface software entities (e.g., specific filenames, interface objects) and

(objects, operations, and sub-tasks) represent actual
computer semantic and articulation domain items. These

actions (e.g., user physical actions, interface commands) employed during task performance
with particular computer or software packages.
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This domain outlines the syntax—the components of articulation and their order. In other
words, the computer semantic domain describes what fo express to the computer, whereas the
computer syntactic domain describes how to express to the computer. Thus, items in the
computer syntactic domain are somewhat specific to general interaction styles and techniques.

Many components are not fully specified at this level of task description because of ambiguities
in users’ actions. (E.g., the interface specialist may not know the exact filename or command.)
Therefore, variables may be used at this level of task description. Domain items with brackets,
< >, are variables in TMM task descriptions that represent actual system equivalents. For
example, <FILENAME> would reduce to the actual system filename like ‘exp.dat’, and
<FILE ICON> is the system-displayed icon for a particular file used within the task, With
variables a task description still maintains adequate expressive power, while the ‘noise’ of
variable qualification is left to user actions.

It is important to understand that computer syntactic domain items represent syntactical items
for articulation—not the manipulation or articulation of the syntactical items. By the vary
nature of command line interfaces (CLI), the computer syntactic domain items will tully specify
the commands; however, in direct manipulation (DM) interfaces only the components of the
commands are specified. To illustrate the differences between a CLI and DM style interfaces,
consider the task Erase FILm:

. -':"C-?'dmput'ér'-Seméht"iéﬁl_:t'éﬁis:: |- - Interaction Style. [ Computer Syntactic Items
« "ERASE. | o ‘COMMAND. LINE INTERFACE |+ .. U el
1e MS-DOS e INVORE BELC

« SELECT <FILENAME>

. DIRECT MANIPUTATION, . v
|+ MACINTOSH-0OS .» SELECT. <FILE ICON>
- o .+ MOVE <FILE ICON> TO
<TRASHCAN - ICON=
'+ DE-SELECT <FILE LCON>

-« MICROSOFT WINDOWS + SELECT <FILE. ICON>
S ' -+ INVOKE <DELETE> MENU
ITEM FROM <FTILE>
PULLDOWN MENU

These example syntactic domain items are, in effect, a meta-language for the articulation. The
items specify the articulation in terms of actual commands and arguments (albeit through
variables), but they do not specify the articulation. For instance, the UNIX-CLI syntactic items
are INVOKE 'RM’ and SELECT <FTLENAME>, but the articulation of these items is not specified (in
fact, it may be either by keyboard, voice, or some other form). The syntax for the syntactical
domain items is fully defined and described by the interface specialist.

Syntactical representations described within this domain map into the articulation domain. The
specification for the articulation needs only be described once. For example, the tasks
ERASE FILE and COPY FILE share a common computer syntactic domain item:
SELECT <FILENAME>. The articulation for this synfactic domain item needs only be described
once, and then referenced in the future. These representations of syntactical items can be kept in
a dictionary of articulation descriptions.




lI.5.

Articuiation Domain

The articulation domain contains the specification of the users’ physical interaction while com-
municating computer syntactic items to and from the interface. This domain models the users’
actions with the syntax of the interaction defined within the computer syntactic domain.

Because of its ability to specify users’ actions and system feedback, the User Action Notation
(UAN) (Hartson, Siochi, & Hix, 1990) is used within this domain.

The articulation domain contains both system feedback to users and user inputs to the system.
The system’s interpretation of user inputs is a purely constructional issue, and therefore not
important to this research. However, the users’ ability to understand system feedback is a
behavioral issue very Important within TMM.

Users must understand system feedback because it usually affects subsequent actions. Hence,
evaluation paths in TMM task descriptions mostly originate from system feedback. TMM helps
determine the usefulness of the feedback by identifying ambiguous, misleading, or nonexistent
feedback based upon the evaluation paths and users’ knowledge requirements. For example,
the feedback FILE ID=0092KAM REMOVED could be understood better as LETTER TO Jom

terms; while in the second case, feedback is provided in problem domain specific terms. The
TMM task description for this task identifies several mappings users must perform to relate
1D=0092KAM back to LETTER TO JOE SCHMALTY . The second feedback example (problem-
domain-specific) removes many of the file name mappings identified by TMM, and hence makes
the feedback easier for the user to understand. Of course, feedback can not always be
represented within the problem domain—a DIsk FurL error is a good example.

The articulation level can also help in identifying interface characteristics that could inhibit task
performance for certain classes of users. For example, how would a seeing person deal with a
Braille screen, or a speech impaired individual with a voice activated system? Examining user
class profiles in conjunction with the articulation domain could identify usability problems, this
is discussed in the section TMM View of User Classes.

Domain Skipping

TMM task descriptions capture the flow of user actions in terms of tasks and sub-tasks, as well
as the necessary knowledge for these actions. It is possible, given the TMM domain framework,
that users can ‘skip’ a domain. Skipping a domain implies that the user does not have or want
an understanding of the task within the domain. For example, it is possible for a user to have
memorized a keystroke sequence for a particular task without an understanding of the
underlying commands that are being issued. TMM analyses supports this style of translation;
however, a user with a fragile task understanding represents usability problems waiting to
happen.

IV.  TMM'’s Description of User Knowledge Requirements

Each mapping is associated with a set of knowledge requirements. This set of knowledge
requirements represents the necessary information that users must possess to perform that
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Factual Knowledge

Deﬁnitior}_; _'Factual..kh_q@gi_ge:'_:i_s_"cc_)mprised of singleor s
i .~ collections of declarative facts users need for mapping items:
- from one domain to another. EEE

' problern—compute se ant1c mappmg that reqﬁil;_es the

"'--:-facmﬁl_-3kndW1éd'gé" AMILY TREE INFORMATION . IS. STORED,
UIN A DATABASE. S R -

Jtic: omputer ‘syntactic mapp_irigf that
owledge: - coruiy DELETION COMMAND

*_computer syntactic-

omputer : é_l*h_c}:':;ﬂatic;n mapping that tequires the 5
- factual knowledge: ¥

.KEYBOARD IS QWERTY STYLE.

The first and most straightforward category of knowledge is factual knowledge. Factual
knowledge is information necessary to the user. The information can be a single statement or a
series of statements taken as a whole. Both FILES ARF STORED ON DISK and THE FIRST COLUMN
IS MONTHLY SALES are examples of factual knowledge elements. These examples help to
illustrate that factual knowledge is necessary for task completion, and also that the requirement
for specific factual knowledge can be associated with a mapping between any domain levels.

The notation that TMM uses for factual knowledge is FK : <STATEMENT>. The knowledge,
<STATEMENT:, i$ a natural language representation of a smgle fact. As an example of a mapping
requirement with corresponding factual knowledge, consider the task: <gnp EMAIT, TC JOHN
DoE:
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Problem Computer
Domain Semantic Domain
Send EMail 1 Edit <Message> _ >
to John Doe / with <Editor> Use the sysiem
Compose /1 Message has ed”;‘;’;ﬂ:{i‘g‘};’; 1o
Message 2/ been created <Message>
Mail A v Mail <Message>
Message -1 4 to <J.Doe Mail ~—@» ...
Address> with
<Mail System>
Key:

1: FK: Messages are contained within files
FK: Files are changed though editing

2: FK: Message is prepared

3: FK: All EMail must have an address
FK: John Doe has an EMail address
FK: EMail is sent through mail system

In this superficial example the user must know about system files, edit and mail systems, and
user email addressing. These represent a few of the necessary factual knowledge elements for
this task. This example also shows factual knowledge used in both execution and evaluation

paths.

Conceptual Knowledge

The second category of knowledge is conceptual knowledge. A concept is defined to be a
collection of ideas, characteristics, and/or other concepts. For example, a user has a conceptual
understanding of F1ras, and therefore, the user may understand operations and general
characteristics of ¥ ILES butnot necessarily the underlying system representation and operations.




to specifics. If a user is known to P

possession of certain factual knowledge can be deduced or inferred. Like factual knowledge
conceptual knowledge can be used throughout a TMM task description,

Computer Articulation
Syntactic Domain Domain (UAN)
User Aclion | Feedback Sys Slate
!
Se e,Ct _1__’ ~[<File>-1] kFites-I:
<File_lcon> - My <Filg>!
[F<File'>!

2 I <Filg"»-]

| "] - I
~[x,y] putline
Delete 4-_-/' ¢ <Filg> >~
<File_icon> ] 3 ~[Trash] butline
M <Files >~
Trash)t
Key:

1: CK: Direct manipulation interface styles
CK: Desktop metaphor
FK: Noun-Verb interaction
2: FK: Fiie associated with <File_icon> is selected
3: CK: Deleting in desktop metaphor DM interface
(E.g., FK: Files in the <Trash> are deleted)
PK: Movement is performed by dragging

The previous figure depicts an exam
mapping. Here the task is to delete a file from a Macintosh-li

ple of using a conceptual knowledge element within a
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IV.3.

Procedural Knowledge

The final knowledge category is procedural knowledge. Procedural knowledge represents
possible courses of action, user goals, task ordering and structure, needed during task
performance. In simpler terms, this knowledge represents ‘where-am-T’, ‘how-did-I-get-here’
and ‘what-do-I-do-next’ task knowledge. There are two different types of procedural
knowledge: knowledge of possible task paths, and knowledge to correctly choose a path.

The first type of procedural knowledge outlines the possible paths users may take. Much of this
knowledge is embedded into the task decomposition. In particular, users must be aware of
tasks that have multiple orderings in time. For example, task A requires both task B and C to be
completed (in either order)—there are two paths for task A: B then C, or C then B. This type of
procedural knowledge identifies timing relationships among tasks—which defines possible task
paths.

Knowledge about task paths also includes methods that help the users’ mapping process among
task abstraction domains. Consider the problem of locating an interface artifact, such as a meny
item, the associated procedural knowledge identifies the need for information about searching
menus. Said another way, procedural knowledge also describes auxiliary tasks and information
that users employ to assist their own task mapping needs.

The second type of procedural knowledge is concerned with conditional task execution and
evaluation. Simply put, a task may conditionally execute. A user should know and understand
the condition that controls task execution. For example, if the condition is RECORD RECENT pATA
ONLY for the task STORE DATA, then the user must be aware of the condition and be able to
evaluate it.

Tasks can have several outcomes, and users faced with evaluating the results. Procedural
knowledge includes the conditions that control the task outcomes. For example, the task rrap
CORRECT FILE has both a positive (corrECT FILE FOUND) and negative (FIL.E NOT FOUND)
outcomes. Users must know the correct path based on the condition to follow (i.e., where-do-I-go-
next). Procedural knowledge for this task includes both outcomes and the paths the users take.
Conditions associated with the outcomes are specified using natural language, and can indicate
either an execution or evaluation paths.

Users can maintain multiple methods for the same task. However, this modeling does not
attempt to place conditionals on equally likely method selection based on user class profiles.
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This is because TMM does not model mental processes but only identifies knowledge necessary
for task accomplishment.

As an example,

consider the problem domain task of Locate a knowy MOVIE TN MOVIE STORE

COMPUTER, this maps into the computer semantic domain items: MOVIE NaM: and SEARCH. (For

this task, it is a

ssumed the user knows the movie name.)

Key:

1: FK: The movie name, <Movie:x, is
<Criteriax for search

2! FK: <Search> is the command to
retrieve data from database

3: PK: <Results> are examined by user
visual search

Also,
PK: Structure of task: Locate a known

movie in video store computer
PK: Where to go aiter task:
Examine Data from search

In this task, the user must specify the criteria (
knowledge represents the actual command
necessary task structure. Further, once out
examine the data to check for accuracy in the search. Either the movie data was found or it

wasn’t (notice the condition within the task d
knowledge. The user must know to verify th

verification.

Computer Computer
Semantic Domain Syntactic Domain
Movie Name | Select
<Search //'
Movie Criteria>
DataBase
<Movie>
Not Found ‘
Search for Envoke L
Namein — | 2 <Search>
DataBase
NExamine | View
|- Data from <Resulis>
<Movie> search
Not Found

TMM Task Ordering Issues

the movie name) and invoke the search. Factual
names, but procedural knowledge describes the
put is generated from the search, the user must

escription). This is another example of procedural
€ output, and also know the next action base on the
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Correct and accurate task description also involves modeling the ordering constraints among
tasks. Tasks may be ordered in many different ways. In command line interfaces a sequential
task ordering is standard; however, with direct manipulation windowing systems and the
increase of desk-top computer power, users are now challen
once, possibly sequentially, concurrently,
these new interaction possibilities to users,

of user tagks.

If a user may perform a given task in several different ways, then TMM should capture that
ability in the task descriptions. TMM provides several notations to model timing relationships.

ged with performing several tasks at
or interleaved. User interface designs have taken
and in many cases, seriously changed the complexity




TMM task descriptions use brackets to delineate tasks and sub-tasks into related aggregates.
The timing relationships defined in this section can be applied to either single tasks or
aggregates of tasks grouped within brackets.

If tasks are serially ordered in time, then they are sequential tasks. This timing relationship
among tasks is very common. For example, consider using your car’s compufer to SET CRUISE
CONTRCL SPEED TC 55 MPH. The sub-tasks are (1) GET CAR TO 55 MPH, (2) SET CRUISE CONTROL
SPEED. These tasks are ordered in time. Setting the cruise control before the correct speed is
attained leads to a task execution error. TMM task description notation for this example is:

Task: Get Car to 55 mph.
Task: Set Cruise Control Speed

Often a task is performed based on a condition that the user evaluates. For example, consider
the task EXAMINE DATASET FOR ERRORS. The sub-tasks could include: EvALUATE DATASET, and
CORRECT DATASET. However, the execution of correct dataset is dependent on whether an error exists
in the dataset—a user evaluated conditional. The TMM notation for this uses ‘IF <condition>’ as
in:

Task: Examine dataset for errors

Task: Evaluate Dataset

[IF an error exists in the dataset

Task: Correct Dataset

Conditionals can also be associated with task mappings—an alternative notation for conditional
task performance. These notations allow designers to build up conditional execution sequences
(using nesting) based on user evaluation of conditionals.

If a task is to be performed several times, then it is defined to be a repeating task. For example,
if the task is CHANGE FONT TYPE FOR CITY NaMES which are dispersed throughout a document,
this could be defined as the grouped tasks LOCATE CITY NavE and CHANGE FONT TYPE repeated
Zero or more times. The TMM notation for this uses ‘DO * as in:

DO*
Task: Locate City Name

Task: Change Font Type

The “*' represents zero or more occurrences of the tasks within the brackets. Sometimes it is
known that the task(s) will be executed at least once, and in this case, the ‘+' notation represents
one or more executions of the tasks within the brackets. The following example provides the
same task timing relationships but with two different notations; one uses the ‘DO + operator,
while the other uses the “DO ¥ operator.




Notation Alternative 1:

Notation Alternative 2:

DO +
Task: Locate City Name

Task: Change
Font Type

Task: Locate City Name
Task: Change Font Type

rDO*
Task: Locate City Name

Change Font Type

Of course it is also possible that a task ig repeated a specific number of times. In this case, a
numeric count, or a range of counts, is applied to the bracket,. For example, imagine three new
boxes of diskettes and the task FormaT DISKETTES. There are ten diskettes to a box, so the task is
described as: )

I—DO 3

DO10
Task: Ingert Diskette

Task: Format Diskette
Task: Name Diskette

Task: Name Box of Digkettes

This example also shows how task groupings can be nested.

The previous notation is used when the number of repetitions is known, however, in many cases
the number of repetitions is controlled by a condition. Conditional task repetition can be
represented by two different task description structures: a test-before loop and a test-after loop
(much like computer programming looping constructs). A test-before looping construct
describes tasks that are performed only if a condition is evaluated first, whereas, a test-after

oopmg construct describes tasks that are performed {irst and then the condition Is evaluated.

A test-before loop structure that TMM uses in task description is ‘Do -wHILE", Natural language!
statements represent the conditions associated with the looping structure. The conditions are
evaluated by users during task performance, and the user determines if the tasks are to be
executed again. For example, if the task is to update files the description could be:

P While natural language (English, or other human-spoken language) is used to specify conditions, an imposed syntax
would be helpful. This syntax is left to the interface specialist.
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DO WHILE more <File_Icon> to Update

Task: Locate next file, <File_Tcons
Task: Update <File Tcons

The test-after loop description structure used by TMM is ‘00-UNTIL’. Like the test-before loop
condition, the test-after loop condition is specified in natural language which the user should be
able to evaluate. One difference between the test-before loop and the test-after loop is that the
tasks will be performed at least once in a test-after loop. Our previous example could be
restated with a test-after loop, if and only if, there is an assumption that there is always at least
one <File_Icon> to update:

DO

Task: Locate next file, <File_Icons
Task: Update <File_ Tcons

UNTIL no more <File_Icon> to Update

Notice in both of these examples, the test-before and test-after looping constructs, that the
conditions are evaluated by the user. The user determines if the loop is executed or re-executed.
This implies that the user must know the condition and how to evaluate it. These conditions are
included in procedural knowledge.

The previous examples all involve sequential tasks, but many higher-level tasks provide time
independent sub-tasks where the selection order does not matter. In this case, the task is
composed of disjoint sub-tasks—non-concurrent tasks that are not ordered in time.

For example, if the task were spr VCR CLOCK TC WEDNESDAY 7 :21rM, then the sub-tasks
represent setting the hour, minute, and weekday. However, their execution order is not
important—the user may set the weekday before setting the hour, or whatever order is desired.
If the order of sub-task execution is not important (or left to user discretion) then the ‘&’
operator is used;

Task: Set VCR Weekday to Wednesday
& Task: Set VCR Hour to 7 pm

Task: Set VCR Minute to 21

Many higher-level tasks may be performed by any one of several different methods. Each
method should be captured within a TMM's task description. TMM’s notation for alternative
method selection is ‘" or ‘OR’. As an example, consider the task pDUPLICATE rILm in the
Macintosh Operating system. One of two duplication alternatives can be used, either the ‘€D’
short-cut or the ‘DuypLIcATE F T LE-menu item is selected:




Notation Alternative 1:

Notation Alternative 2:

Task: select File F—Task: Select File

Task: Xey D

Task: Key D

_ Task: Select 'Duplicate:
rTask: Select File CR item from 'File

Task: gelect 'Duplicate’ menu

item from 'File:’
menu

“ Task: Depress the Clutch

Task: Release the Accelerator

Task: wWrite
L=

Task: Look up a word in Thesaurus
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Task: Turn curise Control on

-
Task: Scan Dash for Speed

Task: Relsase Accellerator Pedal
1 Task: Press Accellerator Pedal Down
Task: Set Cruise Control Speed

This example has a double nested task timing relationship. The first action is to turn cruise
control on. Then, at least once, the speed is assessed and the proper action is chosen among
three alternatives. That example shows how timing relationships can be combined in a task
described using TMM notation,

VI.  TMM View of User Classes
_

VL1,

are collectively referred to as user class profiles. For example, an interface may need to
accommodate both novice and frequent users, vet the user class profiles are different which
implies different approaches to the tasks and interfaces.

Dealing with Different User Classes

A designer faced with a user population consisting of several distinet user classes must create a
design that addresses the needs of all user classes. TMM incorporates support for different user
classes into a design in several ways:

* switch among several interfaces depending on the uset’s class,
* provide an intelligent interface that anticipates needs and addresses them, or
* create a single composite interface for all the user classes.

The first method, switch among several interfaces, is the simplest to design. In this case, several
interfaces are created. TMM analysis is performed for each interface for each salient user task,
and a specific user class profile is coupled with the corresponding interface for the analyses.
Also, an analysis of the user task of switching from one interface to another may be important.

The second method, an intelligent interface, is far more complicated, and a complete discussion
is beyond the scope of this guide Basically, a meta-theory of user knowledge based on the
different user classes is necessary for the interface to anticipate the users’ class and actual
knowledge requirements.
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V1.2

The third and final method, a composite interface that provides support for all the various user
classes, involves a TMM analysis of the interface with an intersection of all user class profiles.
The intersection gives the analysts and designers a description of the “lowest-common users’”
knowledge.

User Class Profiles

Once a method is selected to gather user class profile information, it is important that this
information be organized to aid TMM analyses. Mappings are analyzed by examining items
being mapped and the domains in which they reside. Because of this, it is beneficial to isolate
user profile information into groups identified by TMM domain-pairs (e.g., problem/ computer
semantic domain pair). This grouping will reduce the analysts time searching the profile
definition.

Analysis Manual

Using TMM in User Interface Design
—_—

The basic TMM analysis life cycle has three stages. The first stage generates TMM descriptions
for user problematic tasks identified within formative evaluation. These candidate tasks are
broken down hierarchically into sub-tasks. The task description is based on the task, sub-tasks,
current interface (if any), and user observables {both user requirements and task performance),
In stage two, the descriptions are analyzed with the user class profile(s) to produce a list of
unsupported-knowledge elements. And in the final stage, a list of new user interface design
requirements are synthesized from the unsupported-knowledge elements. If the interface is
redesigned then this process can be repeated, The following figure represents the TMM process
life cycle:




VIIL1.

Phase 3:

Phase 1: MM
TMM Task Synthesis of
Description Phase 2: Design
TMM Requirements
Knowledge
Analysis |Store for |
terative

| Design

P ———— (7117

o Lsein
Trainin
Materials

This section describes methods used within the TMM life cycle. Alsoe, this section discusses
mefrics collectable over TMM descriptions and analyses.

Generating TMM Task Descriptions (Methodology)

The first, and most important, step in performing any analysis with TMM is generating a task
description. Task descriptions can be generated for tasks with or without existing computer
interfaces—both of which are related to the design processes (initial design or redesign}. It is
wise to examine, through description and analysis, the most common user tasks and highly
complex user tasks. Usability of an interface can be affected most when these classes of tasks are
examined.

When generating a task description for a task that is not yet automated (a computer interface
does not exist), it is important for analysts to have a good understanding of the problem
domain. The analyst must examine the problem domain and user requirements, gleaning the
most important (common and complex) tasks for description and analysis. After an initial
design, further analysis, prototyping, and usability evaluation can drive the redesign process.

Generating task descriptions for already existing interfaces is more straightforward. Qualitative
and quantitative formative evaluation results give analysts basic structure of user tasks. From
this analysts extrapolate domain items and mappings in order to create full task descriptions.

Following is a general outline for creating task descriptions using the TMM Task Description
Form (see Analysis Templates section). This does not represent a hard-and-fast dictum, but only
one possible approach to generating TMM task descriptions.




[~ TMM Task Description

Decompose
User Task
Structure

& Select Candidate

for Analysis

Define items in
Problem Domain

Define items in
Computer Semantic |
Domain '

Define items in ;
Computer Syntactic
Domain

{ Defineitemsin |
\| Articulation Domain f

= Iterate =

Show
Mappings

Identify
Knowledge
Requirements

= Jterate =

— = Repeat for Execution & Evaluation Paths = —
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VIL2.

Ldentify the mappings -+ - oL

. .8 For éat:h"c_i_br_nain itein creaté mappings (arcs) to the corresponding adjacent
domain items. - . S S S

. 9. For :each."mapping List all the knowledge requirements. -

10. Iterate steps 8 thirough 9 until a comfortable degree of cér'teihity_fisg.. attained as to
the completion of the translation and mapping identifications: © -+ -

Repent process for the evaluation paths. R _
- "1, Fach system feedback creates-an evaluation path. -Perform: the same process in
o 4:7 in'Teverse to capture the tsers' needs for each evaluation path. And then,
perform the same process in 8-10 for each evaluation path.

Steps 8-11 are critical for the success of TMM analysis. These steps identify the mappings and
translations among domain items. A finer task description granularity produces a better
identification and analysis of user knowledge requirements. :

Step 10 begs the question: What is ‘A COMFORTABLE DEGREE OF CERTAINTY'? Here the
analysts must examine the description’s mappings and knowledge requirements determining if
the they adequately capture of the underlying user needs. The analyst gathers task mappings
and knowledge requirements by brainstorming, asking colleagues, and observing user
performance. Analysts’ experience will guide this process, failing that, observing users is the
best method for capturing user needs. As with other task analysis methods, the TMM analyst is
warned against analyzing arcane task methods—methods that very few users employ.

Unsupported-Knowledge Analysis {Methodology)

At this point in the TMM analysis life-cycle, the analyst has a descriptior of a task is within the
TMM framework. This description is replete with mappings and necessary user knowledge
requirements. An analysis is performed on each of the knowledge requirements within the
mappings to ascertain whether the knowledge requirement is supported. User knowledge
requirements are supported if:

* theuser possess the knowledge (i.e., the user class profile identifies the knowledge as
possessed or understood by the user class) , or

* the interface models or gives reasonable access to this knowledge (i.e., the interface provides
the knowledge in a symbolic/metaphor/iconic representation or as textual prompts).

If either of these two conditions hold, the knowledge requirement is supported, otherwise it is
an unsupported user knowledge requirement. This stage of analysis focuses on generating a list
of unsupported user needs in terms of knowledge. Generating this list is referred to as an
unsupported knowledge analysis.

Following is a general outline for generating an unsupported knowledge list using the
completed TMM Task Description Form and filling in the TMM Identified Knowledge
Element Form (see Analysis Templates section). This does not represent a hard-and-fast
dictum, but only one possible approach to analyzing a task description for unsupported
knowledge requirements.




[~ TMM Knowledge Analysis

Identify Determine if
Knowledge User Class
Requirement Supports the
from Knowledge
Description |

Determine if
Interface
Supports the
Knowledge

"~ = Repeat for each Knowledge Requirement =
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|19 Gotostep 5.

Determining if knowledge requirements are supported, steps 6 and 7, is the crux of this analysis
stage. Often there are ambiguities as to knowledge support, and in these cases, the analysts’
experience and knowledge play an integral part. For example, consider an interface where a
knowledge element is supported from the analysts” view (it is displayed), but not from the
user’s view (no logical connection can be made). However in this case, the results of usability
testing would indicate the flaw in the designers' assumption of knowledge requirement support.

Interface Design Support Anaiysis (Methodology)

Finally, once a TMM task description and a list of unsupported knowledge requirements are
generated, a final analysis turns this information into design requirements. Following is a
general outline for generating new user interface design requirements using the TMM
Translation Analysis Form (see Analysis Templates section). This does not represent a hard-
and-fast dictum, but only a possible approach.




— TMM Synthesis of Design Requirements

Translate
Unsupported-Knowledge
Requirement
Into New User Interface
Design Requirements

The quality of this analysis relies on the abilities and experience of analysts and interface
designers—steps 5-7 in particular. However, the following templates of user interface design

requirements can aid analysts and designers when faced with unsupported knowledge elements
and user needs.

An example user interface design requirement for an unsupported factual knowledge,
<STATEMENT>, could be:

UIDR: cio
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For example, suppose a factual knowledge requirement of THIRD coLUMN TS DEET. If this
requirement is unsupported, then both the user must be unaware and the interface doesn't give
any cue that the third column represents debt. This requirement is cast into a user interface
design require like:

UIDR:  COMMUNIGATE <THIRD COLmN 1S DEBT>. TO USER
(KT THE APPROPRIATE TIME IN TASK PERFCRMANCE).

Of course, the user interface design specification could outline an interface solution for this
requirement. Within interfaces, requirements for factual knowledge can be dealt with by
displaying the knowledge requirement either textually or graphically, and for a short duration
Or continuous. So a possible user interface design specification could be:

UIDS: ALL DISPLAYED COLUMNAR DATA I§ TO BE CLEARLY LABELED.

With conceptual knowledge, <CoNcEPT>, the UIDR could be:

UIDR: - PROVIDE UNDERSTANDING OF <CONCEPT> TO USER
(AT THE APPROPRIATE TIME TN TASK PERFORMANCE).

For example, Apple Macintosh-OS helps users conceptualize files by using icons. These file
representations can be used with other icons that represent actions (e.g., trashcan represents
deletion). The use of icons and software widgets to support conceptual information is not new;
however, it is very complicated.

For example, consider the user conceptual knowledge requirement of CHEMTCAL PROCESS
TEMPERATURE CONTROL within an interface that controls some chemical reaction. Temperature is
common physical phenomena; however, in this case the temperature has direct bearing on a
chemical process, where too hot or too cold can corrupt the process. If the user class profile does
not indicate that the user class is intimately familiar with the ranges, settings, and outcomes
based on temperature, and the interface is poor at conveying this information (found through
usability testing)—then a UIDR could be cast as:

UIDR  PROVIDE UNDERSTANDING OF <CHEMICAT, PROCESS TENMPRRATURE

CONTROL> ‘TO USER o
(AT THE APPROPRIATE TIME IN TASK PERFORMANCE) .

The redesign associated with this UIDR is not as straightforward as that of the factual
knowledge example. In this case, an entire concept must be conveyed. A user interface
specification defines a possible solution:

UIDS:  CONTINUOUSLY BISPLAY A W'I’DGE_T THAT ENCAPSULATES ALL
NECESSARY OPERATOR INFORMATTON BASED ON A 'SCALE' METAPHOR.

There are many possible design sotutions for this interface specification, including:




Too E rIncrease Reaction 58.6
Hof Temperature
724 29.1
: 58.6
H Stop Reaction
. and Report
23.1 i :
i Temperature (*Kelvin)
8
Too ] -
Cold B Reduce Reaction
B Temperature op Reaction Reduce
Temprahxre anI:j Report Reaction
{°Kelvin) Temperature

In this example, the critical temperatures are identified for the user, as well as, buttons for
changing the reaction temperature (either increasing or decreasing the temperature).

Procedural knowledge of actions or courses of actions could generate the following UIDR:

Informing users about possible courses of action is difficult. Sometimes performing a task
requires the user be aware of several sub-tasks and their outcomes. Also, alternative task
methods may be available to the user. Yet, with the increasing complexity of user interfaces and
user tasks, identification of procedural knowledge becomes more important.

For example, consider a barik teller's task of DEPGSTT MONEY TNTO BANK ACCCUNT using the bank's
computer system. This task is made up of several different tasks: IDENTIFY CURRENCY TYPE
(cash, check, or another account), LOCATE DEPOSIT ACCOUNT, PERFORM TRANSACTION, and
VERIFY TRANSACTION. These tasks may also have sub-tasks (e.g., identify currency type for a
check may involve verifying the check against an account, etc.) So the procedural knowledge
necessary for the user (bank teller) would generate the following UIDR:

Each sub-task would also have a UTDR associated with it to outline the tasks required.
However, for this example we will focus on this UIDR.

The question comes up, how can this UIDR be converted into an UIDS or user interface design
solution. Specifications that try to communicate procedural knowledge to users include: task
tree (a flow diagram of possible courses of actions), user prompting, etc. In our example the
UIDS could be:

with the possible solution:
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Deposit
Money info
Bank
Account

Identify Locate Perform Verify

deposit y
CUITENCY f—pw o r
type account transaction ~—® transaction

R

Verify account on
PERSONAL CHECK

S

Verify Bank on Cashiers'
CHECK

In this example, a task-tree is implemented so that users (bank tellers) know at all times their
location within the task (identified here as rectangular boarder). Users also know what they

but may be an impediment to expert users.

It is worth restating that TMM is used to synthesize new user interface design requirement, and
not new interface designs. The examples provided here show the utility of transferring TMM
design requirements into specifications and redesign; however, TMM does not directly support
the designer's creative problem solving process.

TMM Metrics
Another style of analysis that can be performed over TMM task descriptions and analyses is

metrics collection. Metrics are measurements and functions of measurements that can indicate a
strength or weakness within the measured object.

Currently two different metrics exist: goodness of fit and task stacking. TMM metrics are still
growing and need validation.

Vif4.1 Goodness of Fit

The goodness of fit (GOF) metric measures the “fit’ of specific interface to a task. The ‘fit’ is
defined as the ratio of number of supported knowledge requirements to the total number of
knowledge requirements derived from TMM analysis, Logically, the goodness of fit metric is
bounded between zero and one—worst and best respectively. A high ratio indicates that a large
portion of the knowledge requirements were supported either by the users or the interface.

Number of Supported
Knowledge Requirements/{ Number of Unsupported »  Number of Supported
Knowledge Requirements Knowledge Requirements

Z30 .
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We feel that these metrics can provide an empirical way to compare different tasks over
alternate interface designs; however, currently this metric needs validation.

Vil4.ii. Task Stacking

Another metric that can be gathered over a TMM task description is task stacking. Task stacking
is the user process of suspending the current task, performing another task to completion, and
then returning to the previous task (that had been stacked). The user must maintain a stack of
the current tasks that s /he is performing and that can be counted by examination of a TMM task
description. Task stacking has been explored in other models to determine user cognitive
workload, and our approach is similar. (Card, Moran, & Newell, 1983; Kieras & Polson, 1985;
Lewis & Polson, 1992)

While it is useful to count the number of suspended tasks at any task level, this method does not
attempt to access the complexity of each task stacked. Therefore, this metric can only served to
indicate the number of suspended tasks, but not the overall effect of suspending a particular
task. If, however, you are examining short duration, low complexity, sequences of tasks then
this metric can help to identify location of cognitive overload—where there are t0o many tasks
stacked.

TMM as a Teaching/Documentation Device

TMM task descriptions can also be used for documentation and teaching purposes. TMM is
based on a domain structure where natural language specifies items, also the clarity of UAN at
the articulation level helps. (Hartson, et al., 1990) The straightforward nature of the descriptions
lends itself to non-expert interpretation, and thus, a description can, to a degree, be understood
by users. If users can follow a task description and identify necessary knowledge, then their
training needs are met.

In the arena of teaching, TMM task descriptions can support, through guidance, task
performance. TMM descriptions outline necessary information that users must have—hence,
users only need to parrot the actions within TMM descriptions.

VIlIl. Common Questions
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Yes, eventually. For any theoretical endeavor to make its way to the practical world there must
be some physical manifestation. Currently, there are preliminary thoughts towards creating a
shareware C/X11 application that will provide ability to create and analyze task descriptions
using the TMM framework and methods.

If time and money permitted than a full analysis could be done; however, in most cases the time
to analyze an entire system is too great. We feel that a strength of TMM is its ability to be used
in situational analysis—examination of a particular situation or task. This focuses the designer on
real problems instead of allowing them to wander through other unfruitful analyses. Using
situational analysis, TMM can be more easily incorporated into the iterative design process,
during initial design as well as between formative evaluation and redesign.




Whiy all s work for

design requirements?

-+ Should we always.

g based on

MM analyses?.

Often, the interface design requirements gathered from users are incomplete and vague. TMM
task modeling and analysis can help further define the requirements, and these interface design
requirements are then used in interface specification and high level design. By providing a
systematic method to derive new design requirements, as opposed to ad hoc methods, TMM can
help reduce design time.

No. TMM modeling and analysis only derive interface design requirements and possibly
interface design specifications, Using these requirements and specifications to create a usable
interface is still the job of interface designers.

As with most endeavors, the interface design process is limited by finances and time.
Obviously, the goal of all interface designers is to produce a highly usable interface design,
however, decisions must be made when confronted by deadlines. The decision to commit to a
redesign, based on analyses, is a function of time, cost, and user Impact. It is a context-
dependent decision that cannot be addressed in this forum.




IX. Example
-_—

X1

demonstrated, albeit condensed for $pace reasons.

Genealogy Project Description

Punctional requirements specify the basic functionality of the project—these form a minimum
set of commands and actions available to users. Lastly, interface requirements were users’
requests concerning the project’s human-computer interface. An abbreviated list of these user
defined requirements is presented to define characteristics of the genealogy project.
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The designer examined the three sets of requirements, performed a high-level task analysis and
functional decomposition, created an essential (logical) model of the system, developed initial
interface designs, and then developed a working prototype.

Functional decomposition and task analysis provides a list of important tasks that users
commonly perform while using interactive systems. These lasks are generic in form, so they are
translated into specific benchmark tasks for use during formative evaluation. A sub-set of tasks
are chosen for this project design’s formative evaluation, and they are:

Generic Tasks Benchmark Tasks

Task: Add a Personal Dataset Task: Add George Alfred Mayo
to the database. to the database.

Task: Change Relationship Task: Change George Alfred Mayo's
within a Personal Dataset. wife to Rebecca Rennick J ochnson
{This includes the tasks of
adding/?emoving children, Task: Add Gregory Thomas Mayo
spouses, and parents.) as a child of George Alfred Mayvo

Task: Change George Alfred Mayo's
mother to Inda Inskeep

Task: Traverse Tree Structure Task: Pull-up Ancestor Chart for
through Ancestor Chart George Alfred Mayo

Task: Pull-up Ancestor Chart for
Gregory Thomas Mayo

Task: Pull-up Personal Dataset Task: Pull-up Personal Dataset of
for a given Person from Rebecca Rennick Johnson
the Ancestor Chart

A prototype was created to evaluate the interface design. This prototype was implemented in
Hypercard™ and consisted of several (>10) “cards’ over various ‘stacks’. There are several
problems with this interface design. The problems range from simple consistency (e.g., card
name position) to more detailed conceptual difficulties (e.g., how to navigate through the
interface family tree structure). The following prototype screens show the basic user interface
design.

Main Card | Lhis is the ‘start-up’ screen seen by users when the
project software is launched. This provides a rough
/ button-menu driven approach to system functionality.
o — At this level the user may add/delete personal datasets
’ from the database, search the database, or produce
database reports. Help is also available for all
commands.

e
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X.2

This screen represents the general “name query’ sub-

o B B *F task common to many of the system’s functions. In this

soeio o Vederth case, the query screen interacts with the user to gain a

new name to add to the database. One of the users’

data requirements specifies the database be indexed by

names, and this screen lists all names in the database
helping users in name specification,

New_Person

CMck 6n & nama to 1he right,
ar type in a name below.

Personal Information Cardg] This screen shows .the general form for displaying
¥ Personal datasets, with an example dataset for ‘MAYO,
GREGORY THOMAS’. The user may interact with this
interface design to add/delete children, spouses, or
parents. Any name may be selected to display the
corresponding personal dataset (this functionality
fraverses the family tree structure). The user may also
‘pull-up’ an ancestor chart by selection the ‘Ancestor
Chart’ button.

Maya, Gregory Thomas

B2 Spouses =

Ancestor Chart

Ancestor Spouses This final screen example shows an ancestor chart
Card wever | (card). The chart shown focuses orn one person at a
lime-—MAYO, GREGORY THOMAS’ for this example screen.

<3 : . . . .
The chart displays all spouses, children, and siblings;
there is also a partial display of father and mother

Mayo, Gregory Thomas

Children lineage—only two levels deep (i.e., only to

% grandparents). There are two modes of searching for

. Sivlngs —smer ] traversing ancestry charts, and name selection on this
chart will invoke a search.

The formative evaluation on the prototype serves several functions, it (1) provides testing for
functional completeness, (2) furnishes users access to working prototype for task analysis, and
{3) grants users input into the user interface design process.

Situational Analysis of Genealogy Task

The discussion, to remain short, concentrates on a single problem that several novice users
encountered while traversing the ancestor chart.! To reiterate, the ancestor chart is traversed by
name selection with two different search modes: Tree Trace (displays another ancestor chart for
selected name), and Information Search (displays personal dataset for selected name). Users found it
difficult to understand these modes, and to traverse the ancestor chart.

To explore this user problem, an analyst examined a task highlighting the use of search modes—
the user must use the ancestor chart to locate a person and display the associated personal
dataset. The benchmark task was: Frou THE ANCESTOR CARD (FOCUSED ON MAYO, GREGORY
THOMAS) PULL-UP THE PERSONAL TNFORMATION CARD FOR JOHNSON, REBECCA RENNICK.

I'Novice USers are novice to the genealogy project software, not to direct manipulation computer system interfaces,
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- Ending Screen

The user starts the task at this screen—ancestor chart
focused on Mayo, GREGCRY THOMAS,

Return to Main
l

My, Crogiy Thomar 143
Mayw, Kevin And e

Jehnson, Rebbecor Rennick,

o

Mods: Tree Traga Sibl 1ngs

ﬁi;fg&aim {ﬁg’jﬁ:ﬂiﬂ Card This is the final screen. Getting to this sereen indicates
that the user successfully completed the task.

|

Mayo, Kevin Anrew
Fayo, Gregory Thomas

Maye, George Alfred

18]
cﬂ: Children ==

< Spouscs =

These two screens show the user’s dilemma. The user must interact with the interface in the first
screen to get to the personal dataset shown in the second screen.

Following is an exam

ple analysis scenario with analyst/designer quotes in highlighted-italic
text,

Analyst/Designer: “Okay, I've just Sinished some user testing, and the prototype interface has
some problems. [ will analyze the task: PULL-UP PERsCNAr DATASET OF REBECCA RENNTCK
JOHNSON. I know the user's performed two different methods o accomplish this task, either the user

will traverse the ancesior card fo find the necessary information, or the user will return to the main
card and start a search from theve. These gre the represeniative task methods”

Problem Domain

Computer
Sewmantic
PE: Domain

Task: / r—Task: Search globally for >
I;ull—uo Persenal Rebecca Rennick ]

Dataset of Rebecca ” lg:;r;]sont}sgename with
Reanick Johnson Y

Task: Search for Rebecca
Rennick Johnson by
relationships and \_-..._)
names within family
tree

High Abstraction Level

RENNICK JOHNSON.




for a description of this sub-task. (Example Figures 3,4, and 5 are at the end of this section due
to their size )

This task description gives an outline of the task Locate Fami ly Member Position in
Family Tree (LFMP-FT), In order to accomplish this task, the user must first examine the
tree and change it's focus (possibly more than once). This represents the user traversing
through the family tree within the Information Trace’ search mode. Here the user must

Analyst/Designer: “| feel pretty good about these descriptions.. Of course, I realize that there gre

other ways a user might perform this task—but, these represent. the methods that most users

performed. I know ( through user testing) users were having problems with segrch modes, but let’s see
what the analysis turns up.” ' . ' :

Next the designer performed an Unsupported-Knowledge Analysis. Listing and examining the
knowledge elements yielded several knowledge elements that were unsupported. (See Example
Figure 4.)

Analyst/Designer: *Hymm. The users complained about modes, and the TMM analysis showed
modes were not supported! I wish | had done this analysis before paying for all that user testing! I
hope I'm not fived for this,”




Personal Information Card
Click on sny Name for more informstion,

Help

Mayo, Kevin Andrew
Mayo, Gregory Thomas

This button is catifusing to the leser; therefore, if
st go.

A different selection method st be wsed 1o indicate
the search mode.

Two different solutions are proposed—ihey differ
onlyy irt the seleciion iconfmethod, One yses radia
bitttons and e other uses & sitch metaphor. {User
testing can help show e users’ Preference.)

Ancestor Chart

Lresign Solution 1:

Sefection of a name will display:
& Personal Dataset Information Design Solution 2:

Q  Ancestor Chart

Display Display Personal
Ancestor Chart s Dataset Information

Analysis Manual
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Identified User
Knowledge Needs

=] Family tree is indexed by person's
2] proper name

Notes (e.g., justification of support or non-support)

Task/Design:
DESigIIeI'(S)_‘ Joe Designer

Reviewed By:

Locate Family Mermber Position in
Family Tree

Date: 1z

This is supperted by the user profile. A user defined data requirement is that the ree is indexed by the person’s
name,

Tie Boss
@
g
&, F
2 T
%8 32
o T =
[~ T e
=
=y BE
HR oAz

] Two types of trea searching modes:
Sl Tree Trace’ and "Informatign, Trage

There is no indicatipn a5 to what ‘Tree Trace' or ‘Information Trace' means. Also, there is no
number of searching modes, This information is not in the user profife.

indication as to the

Can search in only ene moda

The interface does not Pravide this infomation, and it isnok in the user prafile.

- Search node is selected by toggling
‘Y}% <Muixde Buttonz

There is no indication that the mode button toggles between search tvpes.

<Muode Buttons identifies search
<Modex

The mode button identifies the seareh type.

;}5\ <Modez is Tree Trace' The mode button identifies the search type. V
B
g}" <Mode> is "Information Trace' The trode button idenifies the search type. /

Factual Knowledge Elements

Selocting a name field whije rnode =
Information Search' will gonerate a now
oo Ancestor Carg With name field the focys

B

RS

B

There is 00 indication that selecting a field waiy generate any feedback based on search mode.

R A s

LT RIT T ISR e

2 1 Understand representation of family | This information s in the user profile.
o history as a trep
5
o

m B

@

20
e

L
%
5
—

]

£

g

=

<
o

]

)
h=t Decomposition / Timing of Computer | The yser knows to search this iree and if not found to change tree focus, 1/
5 Semantic Domain Tepresentation
—
E | Df.’mmpnsition,lTiming of Task: The interface supplies visual clues 1o changing the focus of the tree. However, because of unsupported factual /
i) | Change Focas of Tree Display knowledge, the user 5 unable o uses these clyes.
e
a3 Understand task/auteomes of Task: User knows how o visually search tree, and when to stop.
gJD Examine Tree for Family Member
Fg Understand task/outcomes of Task: | Thisis suppaited in the interface, V}
Montify <Modes of <Mode Duttons
T— e
kS —
Q‘O Task: Change <Modes to ‘Teve Trace' | Thereis no indication in the interface, and the user does not know how 1 periorm this task. /
S—
'(—U! =1 Recall & Visual Search Tasks The user knows how ta perform visual searches, and perform memory recall. 4/
i
o]
T
8 5] o
L]
2




TMM Transaction
Analysis Form

All relative fiolds

<CNames

<Mode Butrons
<Mode

<Mode Buitonz
<Mode>

<CiNames

Cmp Synix Demain

Task/Design:
Designer(s):

Date:
1 Reviewed By:

FK: <Mode Button> identifies search
<Mode>

FK: Selecting the <Mode Button> wil] toggle
the search mode,

FK: Selecting a name field while
mode="Information Search’ will generate a
new Ancestor Card with name field the focus,

User Articulation

Articulation Domatn

User Needs
(T ranslations,/Mappings)

Uscrs understand standard direct menipulation artifacis (windows, buttons,

icons, poiniing, ete.)

Interface curmently emp}

modes. ‘There is no indi
indication a5 1o the num|
get help.

Deductions and Inferences
from user profile(s)

selecting (clicking on) the bwion will loggle between the two different search

0YS & button that identifies the Lureent scarch mode, and

ication thal the bution will Loggle among search nodes, oo
ber of szarch moddes, and there is no way tha ihe user can

Design Requirement

User interface Design
Specification

Current Interface
Characteristics

UIDR: Commupicate <The twa types of tree searching modess 1o Usar {at the
appropriate time in task Derformance),

UIDR: Communicate <The tree can be searchey in only mode> to User (at the
Sppropriate tme in task pecformance).

GIDR: Communicate <The tree search mode can be easily identificd, selected, or ;

toggled with the «Mode Rustons. > ta User (at the appropriate time in lask
Terformance),

UIDR: Communicate <The functonatity of selecting a name fields 1o User (at the
appropriate Gme in task performance),

Change current representation of tree search maodel selectio
more standard representation,

Provide help for the user.

nioa




Analysis Templates




TMM Task Description Form
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TMM Identified Knowledge Requirement Form

' * (e Task/Desion:

I'MM Identified Knowledge Designerty), ————
Element Form Date:
e e Reviewed By:

Identified User
Knowledge Needs

Notes (e.g., justification of support or non-support)

within Interface

Not Supported

Supported by
User Profile
Supported

ge Elements

Factual Knowled

Conceptual Knowledge Elemenis

Procedural Knowledge Elements




Translation Analysis Form

ITMM Transaction Task/Design:

. Designer(s):
Analysis Form Date:

Reviewed By:

——— . Domain

Domain
User Needs
{Translaﬁons/Mappings)
Deductions and Inferences Current Interface
from user profile(s) Characteristics

Design Requirement

User Interface Design
Specification




This section contains definitions of commonly used terms within this document and also within
del.

the task mapping mo.

Analysts: A person concerned with the description
and analysis of user tagk ¢ for performance and
usability improvements of human-computer
interfaces,

Analysis Orientation Modeling Characteristic;
Models with this orientation generally attempt to
analyze tasks and performance for currently
existing interfaces, These analyses can be used
within formative evaluation with limitations
(because of size and complexity); these models are
more suitable for fina) analysis within the
Sumimative evalyation phase.

Articulation Domain: The lowest leve] of
abstraction in the domain structure of TMM. The
actual physical user actjons are recorded within
this domain.

Closed-Loop Modeling Characteristic: Closed.
loop modeling views tasks a5 cyclical involving a
user action-feedback-reaction processes. Models
that approach tasks in this manner have this
characteristic,

Computer Semantic Domain: A domain of the
TMM domain structure, This domain containg
generic computer artifacts translated from the
problem and computer syntactic domaing.

Computer Syntactic Domain: A domain of the
TMM domain structure. This domain contains
abstract grammaticaj components for conveyance
to the computer,

Conceptual Knowledge: the understanding of
relationships between collections of factug]
knowledge, ideas, and other conceptual
knowledge.

Concurrent Tasks: Tasks that are executed at the
same time are concurrent,

Design Support Modeling Characteristic; Thig
characteristic is represented in models whose
results are directly applicable to designs or the
design process. These models feed results directly
into the iterative user interface desi gn process,

Domain: A region populated with items
characterized by a single feature. (E.g., all items
are defined within the problem scope = problem
domain.)

Domain Items: Any objects, operations, or suyb-
tasks defined within specific domain.

Error-Free Performance Modeling
Characteristic; Models with this characteristic
can perform analysis with the assumption of error-
free user behavior, This assumption is very
common in prediction and interface models,

Error Performance Modeling Characteristic:

Models that can analyze user behavior with errors
have this characteristic, This characteristic is
much more problematic for task analysis
techniques, and requires an extended view of task

performance and analysis.

Essentially Analytical Modeling Characteristic:

Models that examine and manipulate
Tepresentations of tasks and interfaces apart from
empirical measurements/observations are
analytical. This is a common characteristic among
several models.

Essentially Empirical Modeling Characteristic:

Modeis based on and incmporating enpirical
evidence have thig characteristic, Empirical
evidence could be verbal protocol, timing values,
user satisfaction surveys, and critical incidents
among others,

Evaluation Path: A sequence of translations and

associated domain items from lower to higher
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levels of abstraction. These paths represent a
reflective mode of the user, often spawned by
system output.

Execution Path: A sequence of translations and
associated domain items from higher to lower
levels of abstraction. These paths represent the
user taking higher level domain iterns into lower
level items, often all the way to articulation.

Expert Performance Modeling Characteristic:
The ability to model and analyze expert behavior
and performance is represented by this
characteristic. Many models have this
characteristic,

Factual Knowledge: single or collections of
declarative Tacts; something said to be trye.

Globat Modeling Characteristic: This
characteristic is present in models that analyze
entire representations of the interface and task,
Performance models are often of this type because
the predictions need the entire system described to
be accurate.

Interface: The collection of devices (hardware and
software) that allows the communication between
two different systems. (In this case, the
communication is between humans and
computers. )

Interface Design: The developed requirements and
speciiications of an interface,

Interface Designer: A person who performs the
necessary chores for interface design. This could,
under loose interpretation, also include
implementers of the interface design,

Interface Design Requirement: A design
statement of a goal that must be present in the
interface, E.g., The interface myst be
Motif compliant,

Interface Design Specification: A design
requirement translated into hardware or sofiware
terminology. E.g., There will be four
menus: File, Edit, View, and
Special,

Interleaved Tasks: A set of tasks of which only
One can execute at a time, but they may be
suspended and resumed at anytime and in any
order,

Knowledge: Facts, concepts, and procedural
knowledge. Also see conceptual knowledge,
Jactual knowledge, and procedural knowledge,

Open-Loop Modeling Characteristic: Open-loop
modeling views a task as performing actions to a
desired result without benefit of feedback, or that
feedback is irrelevant. Models with expert
behaviors assumptions often ignore feedhack.

Performance Prediction Modeling Characteristic:
Models that calculate performance predictions are
most commonly used in summative evaluation for
comparisons against usability specifications. A
complete (or greatly extended) design is necessary
for these models to approach accuracy.

Problem Domain: The highest abstracted domain
of the TMM domain struciure. This dotnain
contains items defined in, and only in, the user
task (problem) domain,

Procedural Knowledge: Knowledge of a particular
action, or course of action,

Mapping: A knowledge element crucial to a
translation. One or more mappings constitute a
transiation.

Method: A plan or course of action.

Method Selection: The determination of which
method from a list of alternative methods,

Methodology: A system of methods, principles and
rules.

Metric: A measurement taken on an object. In this
Case, measurements taken to increase usability or
performance from a software Interface.

Multiple User Classes Modeling Characteristic:
Users are no homogenous. Methods that allow
analysis and modeling of multiple user classes per
task have this characteristic. Models that center
On expert error-free performance often cannot
have this important characteristic,

Non-Sequential Non-Concurrent Tasks: Tasks
that are not ordered in time and each task is atomic
(non divisible) in nature.

Novice Performance Modeling Characteristic:
This characteristic is present in models that can
model and analyze novice performance. Novice
users comptise a growing class of users that must
be addressed, yet, many modeis only partially
support them.

Repeated Tasks: A set of tasks that are repeated
2€ro or more times.
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Sequential Tasks: A set of tasks where the
ordering is linearly based on time.

Situationat Modeling Characteristic: Models that
allow analysis of sin gle tasks or interface features
are situational and have this characteristic. Often
these models are employed during formative
evaluation due to their utility.

Sub-task: A task subordinate to another task. Its
completion or failure impacts the primary task(s).

Synthesis Orientation Modeling Characteristic:
Models that derive new designs or requirements
are synthesis oriented. The new design or
requirements can be incorporated into a design
revision within the iterative design process, and
thus, aid the designer.

Task: “A taskis an arrangement of behaviors
(perceptual, cognitive, motor) related to each other
in ifme and organized to satisfy both an immediate
and a longer-range purpose.” (Meister, 1985)

Task Abstraction: To examine and redefine a task
form and function away from the actyal
manifestation; to reconceptualize in high-level
ideas and concepts.

Task Analysis: “Task analysis is a process of
identifying and describing units of work, and
analyzing the resources necessary for successful
‘work performance. Resources in this context are
both those brought by the worker (e.g., skilis,
knowledge, physical capabilities) and those which
may be provided in the work environment fe.g.,
controls, displays, tools, procedures/aids).”
(Drury, Paramore, van Cott, Grey, & Corlett,
1987)

Task Description: To examine and reiferate a task
form and function within a pre-defined task
description notation.

Task Mapping Model: A task-/user-centered
approach to synthesizing user interface design
requirements from task analysis,

TMM: Task Mapping Model.

TMM Identified Knowledge Need Form:
Template of a analysis form that helps designers
examine task descriptions to produce a list of
unsuppoited knowledge needs,

TMM Task Description Forn: Template of a user
interface task design form that is crafted to work
with TMM.

TMM Translation Analysis Form: Template of a
analysis form that helps designers examine
unsupported knowledge elements in order to
produce user interface design requirements
(UIDR).

UAN: See User Action Notation.

UIDR: User Interface Desi £n Requirement. See
design requirement.

User: Any person that performs a task on a
computer.

User Action Notation: A symbology and notation
for describing user physical actions during human-
computer interaction. (Hartson, et al., 1994)

User Class: A pre-defined set of similar users.

User Class Population: The set of all salient user
classes defined for a particular application.

User Class Profile: A description of knowledge,
skills, and attributes of a particular user class.

User Knowledge Modeling Characteristic:
Models that have this characteristic attempt to
capture necessary user knowledge. This differs
from user mental ntodeling in that this
characteristic does not in any way represent the
mental state of user, but only necessary user
knowledge.

User Mental Modeling Characteristic: Models
that rely on a basis user mental model have this
characteristic. A user mental model, as this
research defines it, is a collection of user menta]
states, translations among the states, and cognitive
Operators to effect the state changes. This could
include a representation of an interface or user
knowledge within a context. Interface modeling
techniques have an underlying user mental model
of the system (interface).
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