Preconditioned Iterative Methods for
Sparse Linear Algebra Problems
Arising in Circuit Simulation

William D. McQuain, Calvin J. Ribbens,
Layne T. Watson, and Robert C. Melville

TR 92-07

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

- March 16, 1992

PRECONDITIONED ITERATIVE METHODS FOR SPARSE LINEAR
ALGEBRA PROBLEMS ARISING IN CIRCUIT SIMULATION

WILLIAM D. MCQUAINT, CALVIN I. RIBBENST, LAYNE T. WATSONT,
AND ROBERT C. MELVILLEf

Abstract, The DC operating point of a circuit may be computed by tracking the zero
curve of an associated artificial-parameter homotopy. It is possible to devise homotopy algo-
rithms that are globally convergent with probability one for the DC operating point problem.
These algorithms require computing the one-dimensional kernel of the Jacobian matri x of the
homotopy mapping at each step along the zero curve, and hence the solution of a linear system
of equations at each step. These linear systems are typically large, highly sparse, nonsym-
metric and indefinite. Several iterative methods which are applicable to nonsymmetric and
indefinite problems are applied to a suite of test problems derived from simulations of actual
bipolar circuits. Methods tested include Craig’s method, GMRES(k), BiCGSTAB, QMR,
KACYZ (a row-projection method) and LSQR. The convergence rates of these methods may be
improved by use of a snitable preconditioner. Several such techniques are considered, includ-
ing incomplete LU factorization (ILU), sparse submatrix ILU, and ILT allowing restricted fill
in bands or blocks. Timings and convergence statistics are given for each iterative method

and preconditioner.

Key words. globally convergent, homotopy algorithm, hemotopy curve tracking, iterative
methods, nonlinear equations, preconditioned conjugate gradient, sparse matrix

AMS(MOS) subject classifications. 65F10, 65550, 65H10, 68U20, 94C035

1. Introduction. The cost and difficulty of producing a prototype of a proposed
design for an integrated circuit provide substantial motivation for the development of
accurate, efficient computer simulations of such designs. The mathematical models
for common components of such circuits are nonlinear, and so the simulation of such
integrated circuits requires solving large systems of nonlinear equations F'(z) = 0,
where ' : E™ — E" is C?. Algorithms that solve such nonlinear systems through
the use of an artificial-parameter homotopy mapping have been studied for some time
[35]. Under reasonable hypotheses these algorithms are guaranteed to be convergent
for almost all starting points {24].

The application of homotopy algorithms to a variety of problems has been consid-
ered in [29], [30] and [33]. The curve tracking that is inherent to homotopy algorithms
requires solving a rectangular linear system whose coefficient matrix is the Jacobian
matrix of the homotopy. For many applications, the Jacobian matrix of F is symmetric
and positive definite, or nearly so. It is possible to take advantage of these properties
when implementing the homotopy algorithm. However, for the DC operating point
problem in circuit simulation, the Jacobian matrix of I will usually be nonsymmetric,
indefinite, sparse, and unstructured. A detailed description of the DC operating point

T Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061-0106. The work of these authors was supported in part by De-
partment of Energy Grant DE-FFG05-88ER25068, National Science Foundation Grant CTS-
89013198, and Air Force Office of Scientific Research Grant 83-0497.

T AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-2070C.

problem, and the justification of the application of homotopy methods to it, are given
by Melville et al. [17], [24], [25].

Since the linear systems under consideration here arise in the context of homotopy
curve tracking, §2 gives a brief summary of globally convergent homotopy theory, The
various iterative methods are described in detail in §3, followed by the preconditioning
strategies in §4. Section 5 presents the circuit simulation test problems. Numerical
results are given and interpreted in §6, and §7 concludes.

2. Globally convergent homotopy algorithms. Consider the problem of
solving a nonlinear systern of equations

(1) Flz)=0,

where F': E™ — E™ is a C* map defined on teal n-dimensional Euclidean space E™.
Equation (1) may be solved by use of a suitable homotopy, a continuous mapping
H(A, %) such that H(0,2) = 0 is easily solved and H(l,2) = F(z). Given a solution
of H(0,2z) as a starting point, a homotopy algorithm will attempt to track a curve in
the zero set of H(A,), terminating at a solution of F(z) = 0 when XA = 1. A glob-
ally convergent probability-one homotopy algorithm is based upon the construction
of a homotopy whose zero curves are well behaved and reach a solution for almost
all starting points. Such homotopies are easy to construct for Brouwer fixed point
problems.

Let B be the closed unit ball in E", and Jet f: B — BbeaC? map. The
Brouwer fixed point problem is to solve z = f(z). Define p, :[0,1)x B — E" by

(2) pe(M2) = Nz = f(2)) + (1~ Nz — a),

where @ is some point in the interior of B. The fundamental result [3] is that for
almost all ¢ in the interior of B, there is a zero curve 7 C[0,1) X B of p,, along which
the Jacobian matrix Dp, (),) has rank n, emanating from (0, a), and reaching a point
(1,%), where Z is a fixed point of f. Thus with probability one, picking a starting
point ¢ € intB and following 7 leads to a fixed point Z of f. An important distinction
between standard continuation and modern probability-one homotopy algorithms is
that, for the latter, A is not necessarily monotonically increasing along . Indeed,
part of the power of probability-one homotopy algorithms derives from the lack of a
monotonicity requirement for A.

The zero-finding problem (1) is more complicated. Suppose that there exists a
C? map

(3) prE™ x[0,1)x E® — E*

such that
(a) the n X (m + 1+ n) Jacobian matrix Dp(a, A, z) has rank n on the set

PO ={(a,A\2) | a € E™0< A< Lz E", p(a, A, z) = 0},

and for any fixed a € E™, letting pa(X, z) = pla, A,),
(b) £a(0,2) = p(a,0,2) = 0 has a unique solution zg,

2

(c) pa(l,x) = F(z),

(d) p71(0) is bounded.,

Then for almost all ¢ € E™ there exists a zero curve 7 of pg along which the Jacobian
matrix Dp, has rank n, emanating from (0, zp), and reaching a zero Z of F at A = 1.
7 does not intersect itself and is disjoint from any other zeros of Pa- The globally
convergent homotopy algorithm is to pick @ € E™ (which uniquely determines o),
and then track the homotopy zero curve 7 starting at (0,2q) until the point (1,7) is
reached.

There are many different algorithms for tracking the zero curve 7¥; the mathemat-
ical software package HOMPACK [32], [34] supports three such algorithms: ordinary
differential equation-based, normal flow, and augmented Jacobian matrix. Small dense
and large sparse Jacobian matrices require substantially different algorithms. For the
circuit simulation problems considered in this paper, the Jacobian matrix DF(z) is
an invertible, nonsymmetric n x n matrix, possibly with diagonal blocks, but with
largely unstructured nonzeros outside those blocks.

For practical computational reasons, it is convenient to reverse the order of \ and
z, and write p,(z,A). In this case the n x (n + 1) Jacobian matrix Dp,(z,A) has a
dense last column and the sparse nonsymmetric DF(z) as its leading n X n submatrix.
If #(z) is C*, 4 is such that the Jacobian matrix Dpa(z, A) has full rank along v, and
7 is bounded, then the zero curve 7 i1s C' and can be parameterized with respect to
arc length s, Moreover, the unit tangent vector (da/ds,d)/ds) to 7 lies in the kerpgel
of Dp,. Since curve tracking algorithms require tangent vectors to v, it is necessary
to compute the one-dimensional kernel of Dp, at points along ~.

3. lterative methods for nonsymmetric invertible systems. Since the
Jacobian matrix is n x (n + 1), the rectangular linear system [Dp,(z,A)z = 0 is
converted to an equivalent square linear system of rank N = n + 1:

' Dops Dip, 0
(22 9p)un (1),

by augmenting Dp, with an additional row. The row (w' d) was taken to be a
standard basis vector e}, where k was the index of the largest magnitude component
of the unit tangent vector ¥ to v found at the previous step along y. Other choices
are possible, such as (w' d) = # or using w = (D,\pa) and choosing d so as to
make A nonsingular. All these choices were tested. Taking ef for the augmenting
row maintained the high sparsity of the Jacobian matrix, and yielded lower execution
times, although slightly higher iteration counts. In the numerical experiments reported
below, €} was used as the augmenting row, and ¢ was taken to be the max norm of
the previous unit tangent vector to v,

This paper is primarily concerned with solving the linear system (4). The co-
eflicient matrix A will be invertible, nonsymmetric, unstructured, and highly sparse.
Available iterative methods offer a number of advantages when dealing with a large,
Sparse, unstructured, linear system. The coeflicient matrix A4 is usually needed only
to perform a few matrix-vector multiplications at each iteration, and that is gener-
ally cheap for a sparse problem. In addition, the iterative methods considered avoid
generating any matrix fill-in, and thus require the storage of only a small number of

3

anxiliary vectors at each iteration. Some of the leading iterative methods applicable
to our class of problems are described in the following subsections.

Let @ be an invertible matrix of the same size as A; then the linear system Az = b
is equivalent to
(5) Ar=Q 4z =@ p=}
The use of such an auxiliary matrix is known as preconditioning. Ideally, the precon-
ditioned linear system (5) requires less computational effort to solve than does 4z — b,
due to a reduction in the number of iterations required to achieve convergence. The
choice of an effective preconditioning matrix @ is often tied to some special structure
or other property of the coefficient matrix A, Since the Jacobian matrices arising in
the circuit simulation problems considered here lack symmefry and are almost cer-
tainly not positive definite, the selection of an effective preconditioner is nontrivial,
Several choices are discussed in Section 4,

3.1, Craig’s method. Craig’s method [12] applies the conjugate gradient algo-

rithm to the problem
AAtz =, r=Alz,

without using either z or AA? directly. Given a starting point z, at the k-th itera-
tion Craig’s method determines z;, so that lexllz = flz = 4]y is minimized over the
transiated space

Zg + (At’f'o, At(AAt)To, e, Ai(AAt)k_ﬁl?"g%
or equivalently
(6) ex L (Alrg, AH(AA), - - AN AATR gy,

The error norm |[ef]; is guaranteed to decrease at each Iteration, so progress
is assured. However, the rate of convergence of Craig’s method depends upon the
condition number of the matrix AA*, and for that reason an effective preconditioner
is desirable.

Craig’s method (with preconditioning matrix Q) is:

choose zy, @
set 7p = b — Axg;

7o = Q@ 1ry;
Po = A*Q™tFy;
for i=0,1,... until convergence do
begin
& = M;
(pi, p:)

Titr = T + aip;;
Pir1 = 7y — a; Q™" Ap;;
b — (Fiv1,Fig1).
’ (Fo,)
Pivr = A'Q ™ oy + bypy;
end
With preconditioning, Craig’s method requires, at minimum, storage of 5 vectors
of length N, and each iteration requires two preconditioning solves, two matrix-vecior
products, two inner products and three SAXPY operations.

4

3.2. GMRES. At the k-th iteration, GMRES [21] computes z;, in the translated
space
Zo + (o, Arg, -+, AF1pg)

to minimize the residual norm |[ry)|, = b — Azy |z, or equivalently to guarantee
(7) e L (Arg, A%rg, - -+, AFry),

In contrast to Craig’s method, the rate of convergence of GMRES does not depend on
the condition number of A, Let P be the space of complex polynomials of degree & or
less, and for any bounded set § of complex numbers and p;, € P, define lpx(2))ls =
Sup,es|pr(2)]. Let A, be the set of e- pseudo-eigenvalues of A: all complex numbers »
which are eigenvalues of some matrix A4 + E with IE]] < €. Let L be the arc length
of the boundary of A.. For arbitrary invertible 4 and ¢ > 0, the residual norms must
satisfy [18]:

lI7xll2

7ol

L

< — 3 .

S p:g*;,k (2 (2)]|a.
Pr(0)=1

Speaking laosely then, the rate of convergence of GMRES depends on the spectrum
of A. Also in contrast to Craig’s method, the reduction of the residual norms is not
necessarily strictly monotonic,

GMRES (with preconditioning matrix Q) is:
choose g,
set ro = b — Azy;

Fo = Q7 1ry;
™M = FO N
L Tl

for m =1,2,... until convergence do
begin

for j=1tomdo

Pijm = (Q_IAvm’”j)§
Tmp1 = Q7 Ao = Y by g
i=1

hmttm = B |2

Umt1 = Vg /hm+1,m;

Find g, to minimize |[[I7; /|6, — HmyH2 where H,, is described in [21];

m
Tm =20+ > (U)03
j=1

end
The m-th iteration of GMRES Tequires one preconditioning solve, one matrix-
vector product, a least-squares solution and O(m) SAXPY operations and inner prod-
ucts. Unfortunately, GMRES also requires the retention of a potentially large number

5

of vectors of length N. In order to control the storage requirements, the algorithm js
frequently used in a truncated or restarted form, GMRES(k), in which the inner loop
is limited to & iterations, for some & <« & , and the algorithm is restarted unless the
residual norm has been reduced to an acceptable size. The price of this restarting is
that the residual norms may not converge to zero, but may stagnate at some positive

3.3. BiCGSTAB. At the k-th iteration, the biconjugate gradient method BiCG
[5], [18] computes Tk in the same translated space as GMRES, but does not attempt
to choose zj so as to minimize the residual norm. Instead, z; is chosen to satisfy the
orthogonality condition

(8) T L ('F(),Atfg,' ",(Ai)k_lﬁj),

where 7 is chosen so that (7o, 76) # 0. BiCG cannot achieve convergence in fewer iter-
ations than GMRES, but may require less time since BiC'Q Herations are significantly
cheaper than those of GMRES. The BiCG iterates are computed using three-term
recurrences, and each iteration of BiQQ requires a constant number of vector opera-
tions and a fixed amount of storage, in conirast to GMRES. The conjugate gradients
squared (CGS) algorithm [23] reorganizes the BiC'Q algorithm to eliminate multipli-
cations involving A® and increase the rate of tonvergence hy up to a factor of 2,
since BiCG and CGS do not minimize the residual norm on each iteration, their
convergence can be irregular [18], [26]. BiCGSTAB [26] is a recent modification of
the BiCG algorithm that attempts to achieve both faster and smoother convergence
than BiCG. The iterates in the BiCGSTAB method are also obtained with three-term
recurrences, so the storage and complexity advantages of BiCQ are not lost,

BiCGSTAB is;
choose gz,
set 7 = b — Az
Po = =uwy=1;
Yo =py =0
choose 7, such that (ro,70) # 0;

fori=1,2,3,... until convergence do

begin
pi = (7o, ric1)i B =1{ps/pis)(a/“"iwl);
Pi = 1oy + B(piq —Wio1 Ui);
vi = Aps; @ = pif (o, v;);
8§ =711 — avy; t = As;

wi = (t,8)/(1,1);

Ti =Ty + ap; + w;s;

if z; is accurate enough then quit;

Ty =8 —wt;

end
Fach iteration of BiCGSTAB requires two matrix-vector products, four inner

products and five SAXPY operations. If preconditioning is used, then two precondi-
tioning solves are also required,

3.4. QMR. The quasi-minimal residual method (QMR) [8] is based on a mod-
ification of the classical nonsymmetric Lanczos algorithm [16]. Given two starting
vectors, v; and wy, the Lanczos algorithm uses three-term recurrences to generate

sequences {v;}; and {w;}L . of vectors satisfying, for m = 1,..., L,

) span{vy, ..., vy, } = ('vl,Avl,---,Am_ivl),
span{wi,...,wy,} = (wy, Ay, - - (AR Ly,

and

(10) wiv; = d;f;j, with d; # 0, for all Li=1,...,1,

where 6;; is the Kronecker delta. It is possible that the classical Lanczos algorithm
can break down, where Vm and w,, are orthogonal and nonzero. The look-ahead
Lanczos [6] algorithm attempts to avoid such failure by generating different sequences
of vectors v; and w;, imposing a block biorthogonality condition in place of (10). These
look-ahead Lanczos vectors also satisfy three-term recurrences, so the computational
cost is comparable to that of the classical Lanczos algorithm,

At the k-th iteration, QMR computes an iterate Tt in the same translated space
as GMRES. If the initial residual o is taken as one of the starting vectors v; for the
look-ahead Lanczos method, then the residual at the k-th iteration satisfies

(11) Ty = V('H-l) (”Tb“zel - Hék)Z) s

where the columns of the matrix V*+1) are the right (look-ahead) Lanczos vectors

U1, V2,000, Vgty, and Hé’“) is a k x k block tridiagonal matrix augmented with a row
of the form pef. In equation (11), the vector z is the unique minimizer of

(12) ””7"0 llaer — Hék)zﬂz ,

which can be found with considerably less work than would be needed to minimize
the residual norm, since the matrix 7/ (5+1) will not usually be unitary. This choice
of z gives an 7, minima) with respect to the norm f|7|f = [ally, r = VE Do, and
satisfying (8) in a generalized sense. The next iterate is then given by

Tpr1 = zo + VEFD 4

3.5. LSQR. The algorithm L5QR [19] uses a bidiagonalization scheme due to
Golub and Kahan [10] to solve both leagt Squares problems and consistent systems of
linear equations. At the 4-th iteration, LSQR. computes i in the translated space

2o + (Alro, (APA)Alry,- - (ATA)F1 Aty)

to minimize the residual norm (Irellz = 1|b — Azglls. The iterates Ty are analytically
the same as those produced when the conjugate gradient iteration is applied to the
normal equations, and the residual norm is guaranteed to decrease monotonically,

7

At each iteration, the residual satisfies the equation
(13) i = U ((irofloer — B9),

where U*+1) is orthogonal and B(*¥) is hidiagonal. Thus the residual norm may be
minimized by finding » to minimize

(14) “”To”gel - B("‘)zuz .

The special form of B(¥) allows the computation of the next iterate Tp+1 as an update
of &y, requiring only two matrix-vector products, four SAXPY operations, and two
vector norm calculations.

A description of the LSQR algorithm follows., The scalars o; and f; are chosen
to normalize the corresponding vectors v; and u;. So the assignment By u; = b implies
the calculations f§; = ||b||, and u; = (1/7;)b.

set 9 = 0; Prug = b gy = Atug;
wy=v; ¢ =Py p=

fori=1,2,3,... until convergence do

begin
Birtizs = Av; — ity oyavir = Alugyy — Biyros;
pi = (PF + B W% ¢ = pifpi; 8 = Baya /i
0ip1 = Sitiy1; Pit1 = —Ci041;
¢; = Ca‘ﬁgﬁ ¢3i+1 = Si&é;
T =T+ (Gifpi)wis wipr = viga — (Bipr /s)ws;
end '

3.6. KACZ. There are a number of iterative projection methods which are
suitable for large, sparse, nonsymmetric lincar systems [2]. Kaczmarz [14] proposed
an iterative method in which each equation is viewed as a hyperplane so that the
solution is simply the point of intersection of the hyperplanes. The initial guess is
then projected onto the first hyperplane, the resulting point is projected onto the
second hyperplane, and so on. This approach applies equally well if the hyperplanes
are defined by blocks of equations. Partition A into m blocks of rows ag

A=A, 4y, A,
and partition b conformally. The orthogonal projection of a vector # onto the range
of A; is given by Piw = A;(Al4;)1Ale, Let Q, = (I=Pn)y--(I-P), b =
A;(ATA) 7Y, for 1 < i < m, and
b= b+ (T PoYbpoy 44 (I = B+ (I = By,
Then for & > 0 the Kaczmarz iterates are given by
Tht1 = QuiTk + by

8

This method will converge for any system with nonzero rows, even if the system is
rectangular, singular or inconsistent. Unfortunately the rate of convergence depends
on the spectral radius of the iteration matrix @u, and may be arbitrarily slow. In
order to improve the rate of convergence, Bjorck and Elfving [1] proposed the row
projection method KACZ, in which the forward sweep through the rows of A is followed
with a backward sweep, effectively symmetrizing the iteration matrix. The general
formulation of the KACZ method involves a relaxation parameter w; for a number of
reasons the best choice for w is generally 1, and that value was used in the experiments
reported in this paper. A full discussion of this method may be found in (2].

Let AA* = L+ D+ L', where I is block lower triangular and D is block diagonal,
Let b = AY(D + L)=*D(D + L)~'b and Q={I-P)I-PB) (I-P,)2 (I~
Py }(I — Py). Then for k > 0 the KACZ iterates are given by

Tri1 = Quy + b,

4. Preconditioning strategies. The rate of convergence of the iterative meth-
ods considered here depends upon the spectrum and condition number of the coef-
ficient matrix. For the problems in the test suite, many of the Jacobian matrices
along the homotopy zero curve 7 have condition numbers on the order of 106 to 10°,
Moreover, many of the Jacobian matrices have a significant number of eigenvalues far
from one. As a result, the performance of each of the methods would be expected to
suffer. It may be possible to improve the spectrum or conditioning through use of a
Jjudiciously chosen preconditioning matrix).

The preconditioned iteration matrix Q'A in (5) is not usually formed explicitly;
the sparsity of A provides no guarantee that ¢! A will not be relatively dense, Thus
the extra work required for preconditioning lies in the computation of matrix-vector
products involving @~1, and preconditioning will be effective when the cost of these
matrix-vector products is outweighed by the reduction in the number of iterations re-
quired to achieve convergence. Use of preconditioning also requires additional storage.
For a sparse problem, this typically amounts to one extra array to store the elements
of ¢ and another to store the associated indices, or roughly the same amount of stor-
age needed for the matrix A. The preconditioning schemes that were examined were
selected in an attempt to balance the density of the matrix) against the desirable
property that Q! approximate A-!, Throughout the rest of this paper it is assumed
that the diagonal of A contains no zeros, This assumption is always valid for the
circuit models under consideration.

4.1. ILU preconditioning. The first preconditioner considered is the incom-
plete LU factorization (ILU) [13] of the coefficient matrix A. Let Z be a subset of the
set of indices {(7,7) | 1 < i,5 < Nyt # 7}, typically where A has structural zeros,
Let Z be the complement of Z, Then the ILU factorization of Ais given by Q = LU
where L and U are lower triangular and unit upper triangular matrices, respectively,
satisfying

Qi; = Ay, if(i,5)€ Z.
Taking the ILU factorization of A as the preconditioning matrix allows the preservation

of the exact sparsity pattern in A, and 5o permits the arrays storing ¢} and A to share
the same array of indices,

{Lij = Uij =0, if(z',j)E Z;

4.2. Sparse submatrix preconditioning. The Jacobian matrices considered
in this paper have substantial numbers of off-diagonal entries that are very small
in magnitude relative to the majority of nonzeros, This suggests constructing an
inexpensive preconditioner by ignoring some of these relatively small values.

Let 5 be a matrix formed from A by taking the diagonal of 4 and a percentage of
the largest off-diagonal elements of A, and zero elsewhere, The ILU factorization, o,
of § may be used as a preconditioner for A. We refer to this as ILTJS preconditioning.
This is similar to the ILUT(k) preconditioner [8], [20] but does not allow any fill-in.
Taking the percentage of off-diagonal entries retained to be 100 yields the usual ILU
preconditioner. Retaining a smaller percentage of the off-diagonal entries may pro-
duce a superior preconditioner; i.e., the condition number or spectrum of Q=1 A may
be better than if ILY preconditioning were used. In any case, the increased sparsity
of the ILUS matrix @) will reduce the amount of work necessary to apply the pre-
conditioner. If the ILUS preconditioner yields an iteration matrix whose conditioning
or spectrum is only slightly worse than with ILU preconditioning, then use of ILUS
preconditioning may reduce execution time, even though more iterations are required
to achieve convergence.

Assuming that the percentage of off-diagonal entries to be retained is specified,
the matrix § may be extracted with work proportional to |Z]. The off-diagonal entries
of A must be examined to determine threshold value to serve as a lower bound for the
retained off-diagonal entries. This may be done by using an order statistics algorithm
[22], rather than a full sort of the off-diagonal entries. The nonzero part of the matrix

value, since there may be many equal elements in A, The Jacobian matrices to which
this scheme was applied typically had 5 to 6N nonzeros, so the cost of computing
the threshold was not large, so long as the value of the threshold did not need to
be recomputed too often. The ILU factorization of § may be computed in the usual
manner,

If we proceed naively, there is little difference between the use of ILU and ILUS
preconditioning. Consider the application of an iterative method with ILUS pre-
conditioning to a sequence of Jacobian matrices along a homotopy zero curve. The
value of the threshold may be determined from the first Jacobian matrix. For each
Jacobian matrix A, we extract a sparse matrix S from A in the manner described
above, compute the ILU factorization Q of § » and perform preconditioned iterations
of the method until it converges to a solution of (5). ILUS preconditioning potentially
requires increased storage, since A and Q cannot share array indices,

However, the entries of 4 may vary considerably in magnitude as the zero curve
7 is tracked. I the value of the threshold obtained from the initial Jacobian matrix
is used along the entire zero curve, the actual percentage of off-diagonal entries re-
tained will also vary. It is therefore desirable to consider the actual percentage of
ofl-diagonal entries retained at each step, and recompute the threshold whenever the
actual percentage retained differs excessively from the target percentage, In the fol-
lowing discussion, this variant will be called threshold-adaptive ILUS or simply ILUSt.

Care must be taken to avoid recomputing the threshold too often—experiments
indicate that allowing the actual percentage retained to vary 10% or 15% from the

10

target percentage produces good performance. In the experiments reported here, the
threshold was not recomputed unless the actual percentage retained differed from the
target by at least 15%.

Experiments with threshold-adaptive ILUS indicate that using a denser matrix
S will generally produce lower iteration counts. However, use of a relatively sparser
matrix § may result in smaller execution times, so long as the increase in the iteration

according to the number of iterations required for convergence in the previous step
along the zero curve. In this way, a sparse preconditioner can antomatically be used for
relatively easy problems and a denser one for relatively hard problems. In the following
discussion, this variant will be called bybrid-adaptive ILUS o simply ILUSh. Given a
desired iteration coumt, a current target percentage, a corresponding threshold value,
and the actual percentage of off-diagonal entries retained at the previous step along
¥, ILUSh preconditioning is implemented ag follows:

if lactual_pet — target_pet| > tol; then
recompute the threshold.
Extract sparse matrix § from A.
Compute ILU factorization @ of §.
for iteration_count ;= 1 step 1 until convergence do
perform preconditioned iteration and increment iteration_count,
teration_ratio := iteration_count/iteration_limit.
if (iteration_ratio < toly) or (iteration_ratio > tols} then
reset {arget_pct.

The values of toly and tols, which determine when the target percentage will be reset,
should not be too close to 1. Experiments indjcate that taking tol, = (.75 and foly =
1.5 produces good results, and those values were used in the numerical experiments
reported below. The experiments also indicate that the target percentage is reset far
more often than the threshold is recomputed, i.e., when the target percentage is reset,
the actual percentage of off-diagonal elements retained still falls within an acceptable
range. A reset of the target percentage requires only a few flops in each step along v,
$0 these unnecessary resets are acceptable.

The experiments with threshold-adaptive TLUS indicate that setting the target
percentage too low can result in a dramatic increase in the iteration count. Therefore
a lower bound of 50% was established for the target percentage in the experiments
reported below. Two schemes for adjusting the target percentage were examined, The
first was a simple averaging scheme:

if (iteration_ratio < toly) then

target_pct := (target_pet + minimum._pct) /2;
else if (iteration_ratio > tol;) then

target.pet := (target_pet + 100)/2;

while the second used a proportional adjustment:

11

if (iteration_ratio < toly) then
target_pct ;= target_pct
~ (target_pct minimum_pet) ¥ (1 — iteration_ratio)
else if (iteration_ratio > toly) then
larget_pcl := target_pet + (100 — larget_pet) + (1 -1/ iteration_ratio)

Tests indicated that the proportional adjustment scheme held a slight advantage, and
the experiments reported here used that approach.

The iteration limit Tepresents a target for the iteration count on each step along
the zero curve. In order to adjust expectations to experience, it is necessary to recom-
pute the iteration limit ip order to reflect the number of iterations actually required
for convergence. In the codes tested, whenever the target percentage was reset, the jt-

here, the iteration limit was initialized to ¥ /2.

Finally, an initia] target percentage must be specified. The hybrid-adaptive ILUS
codes were tested using starting percentages ranging from 100% down to 40%, in
Increments of 5%. While there was some variation in the results, taking an initial
value of 100% produced results that were generally as good as for any other initial
value. In the absence of & reason to do otherwise, it seems reasonable to initialize the
target percentage to 100%, and that was done in the experiments reported below,

4.3. ILU preconditioning with limited fill. The Jacobian matrices for

diagonal and relatively unstructured nonzeros elsewhere. The diagonal blocks (which
correspond to the internal variables in a particular transistor model} are structured,
nearly symmetric, and approximately 78% full. Most of the nonzeros in the Jacobian
matrices occur within thege blocks, so it is possible that allowing fil] to occur within
these blocks when the ILU factorization) is computed will result in a Q- that js g
better approximation to A™L In the following discussion, this scheme is referred to

as block-fill ILU or simply ILUB,

every case. Limited experiments were also conducted with a hybrid-adaptive variation
of the band-fill ILU preconditioner, in which small entries outside the hands were dis-
carded. The results indicated that this approach was likely to increase iteration counts
and execution times substantially. A variation of ILUB preconditioning, in which the

that lie on the diagonal or within the diagonal blocks. Again, limjted experiments
showed these preconditioners to bhe relatively ineffective. All these minor variations
add no substantially different information from the JLUB preconditioner, and results

5. Numerical analysis of electronje circuit equations. Computer simula-
tion is a necessary adjunct to the design of integrated circuits. The high cost of design
iterations, combined with market pressure in the chip business place a high premium
on design methodologies which produce working silicon ag quickly as possible. Com-
buter simulation techniques provide important performance information to a designer
without the expense and delay of building a prototype circuit,

A necessary component of almost any simulation task is the computation of a DC

5.1. Equation formulation and device models, The DC operating point
problem is typically formulated as 3 system of n equations in unknowns to be solved
for zero, j.e., F(z) = 0, where F : E» _ E™. The unknowns are node voltages and
branch currents and the equations represent the application of Kirchoff’s current and
voltage laws at various points in the circuit, Different circuit components (resistor,
transistor, diode, etc.) impose linear and nonlinear constraints among the unknowns.

Values of n range up to 100,000, For large n, the Jacobian matrix of F is very
sparse, with only a few nonzero elements per row. In present fabrication technologies,

sparse Jacobian matrix,
If a circuit containg only the familiar two-terminaj elements_volta,ge source, cur-
rent source, resistor and diode—it is possible to formulate equations so that the result-

matrix. Thus, except for rather special cases, circuit equations lead to large, sparse
flonsymmetric matrix problems. In SOIMe cases, a circuit element like 5 transistor is
represented as a small “subcircuit”, which is installed in place of every transistor in

13

the network., This policy results in a replication of structurally identical submatri-
ces throughout the overall system Jacobian matrix, This structure can be used to
advantage during the solution of linear systems involving the Jacobian matrix,

Of course, electronic devices operate in a fashion which is mathematically smooth,
although device modeling subroutines might not always reflect this. Semiconductor
physics often analyzes the behavior of a circuit element by considering qualitatively
different “regions” of behavior, For example, the operation of a diode is classified as
“reverse biased” or “forward biased”. Equations describing the operation of the device
within one region of operation are naturally ¢"*° smooth, however, transitions hetween
regions are problematic, A simple method of ac ieving smooth modeling is to sample
the operation of the device at various voltages and currents, then fit a spline through
the sample points. Such tgble models are popular and allow a model for a device to
be built before the detailed physics of the element is known, However, each different
setting of the parameters of the device requires a new table. Also, in some cases it is
useful to compute sensitivity information, which shows how the response of the circuit
element changes with a perturbation in one or more of jts parameters. This kind of
analysis is easier with so-called analytical models, which represent the behavior of the
device with equations derived from an understanding of the semiconductor physics of
the device. These equations are symbolic expressions involving the device parameters,
voltages and currents. Thus, it is possible to compute exact analytic derivatives of
voltage and current with respect to device parameters. There is a difficulty with
analytic models, however, in getting smooth transitions between regions of operation.

5.2, Homotopies for circuit equations. Homotopy (continuation) methods
allow reliable solution of DC operating point equations. However, the performance
of such methods is sensitive to the maanner in which the homotopy parameter) is
introduced into the equations. The standard embedding H/(z, A) = AF(z) 4+ (1 -
A)(z~a) is widely used in continuation work, but our computational experience shows
that this is a very poor embedding for circuit equations. Generally speaking, good
performance can be obtained only by pushing the continuation parameter down into
the device model equations. This requires minor modifications to the device model
code, but the results are well worth the effort [17], Consider, for example, the classic
Ebers-Moll model for a bipolar transistor [9]. Suppose the forward and reverse current
gains (ap, ag) are multiplied by A. The result is a somewhat artificial varigble gain
transistor. The random perturbation required by the probability-one homotopy theory
is accomplished by connecting a leakage circuit from each node of the circuit to ground,
This circuit consists of a conductance in series with a random value voltage source,
At A =0, each transistor reduces to a pair of diodes, and a damped Newton scheme
is able to solve the start system p,(z,0) = 0 quickly. As A approaches one, the value
of the leakage conductance goes to zero, thus disconnecting the leakage elements from
the circuit. Moreover, the transistors are restored to a full-gain condition at) = 1,
$0 the solution to the homotopy equations at) = 1 is an exact DC operating point of

14

[F=LF;
RS R4
1.67K 5K
L73 81
Q4 Q8
s .
X328 S S
LBj
R1® C141 (¢]5
2
TEK — N
Q=2
Ql Q7 £33
£91 ~N £31 S xa.e ~
| fl [21 ﬁlna
Qi1
ole R1
£11 5K R7 s R& s
45K 18K
RrR2
15K

F1G. 1. Circuit diagram for the circuit vief,

the network. The performance results reported below are based on this variable gain
homotopy map.

5.3. Circuit simulation test problems. The test problems consist of real cir-
cuits studied and used by scientists at AT&T Bell Laboratories. Some of the problems
are described in complete detail (with circuit diagrams) in [17], and the data for all of
them is available from the authors or netlib, The test data were obtained by solving

stored in a variation of the compressed sparse row storage scheme [36). The nonzero
matrix entries were stored by rows in a linear array, with a parallel array of column
indices, The starting indices for each row were also stored in a second integer array.
The rows, and column indices for cach row, were assumed to be ig order within the
linear arrays.

blocks. Fig. 1 shows one of the circuits from which the test problems were derived,
This circuit, known as the Brokaw voltage reference circuit [17], is a fairly well known
circuit, The sparsity pattern for the Jacobian matrices corresponding to the circuit
bgatt is shown in Fig. 2; note the diagonal blocks corresponding to the transistor
subcircuits mentioned earlier.

15

F1a. 2. Jecobian matriz sparsilty patiern corresponding fo the circuit bgatt.

TABLE 1
Problem N NZ NJ DB
1li13b 31 - 120 118 N
ups0la 59 342 25 Y
vrefl 67 411 13 Y
bgatt 125 782 14 Y
isTa 468 2871 5 N
| is7h 1854 10849 5 Yj

6. Results. Each iterative method was applied to each of the test problems,
When applied without preconditioning, none of the methods achieved convergence
in 5N iterations except on the problem of order 31; and even for this problem, the
iteration counts and execution times achieved without preconditioning were two or
three times larger than those achieved with any of the preconditioning schemes,

The row projection method KACZ, consistently required substantially more time
than any of the other methods. For example, KACZ required about 8 times as long
to solve the problem of order 31 as did Craig’s method. Thus KACZ was not tested
with the full range of preconditioners, nor are numerical results for KACZ given in the
tables. However, it must be noted that a sequential implementation of KACZ was used,
and the row projection methods are perhaps best suited to a parallel environment,

16

TABLE 2

Eraigs method with ILUSt preconditioning IEMRES(;;) with ILUS preconditiom‘nﬂ

N , avg¥ min, max, avg time] N { avg® min, max, avg time
31 100 1,382, 17 4.83 31 100 1,27 11 2.41
90 2,32, 17 4.75 (k=6) 90 1,27, 11 2.32
80 2, 58, 16 5.14 80 1,35, 13 2.46
70 3, 64, 21 5.44 70 1,42, 13 2.55
60 3,56, 21 5.22 60 1,39,13 2.36
50 3,60, 22 5.25 50 1,46, 14 2.53
41 4,93, 30 6.88 41 1,75, 20 3.32
31 7,95, 33 7.20 31 5,113, 28 4.43
25 7,115, 33 7.53 26 5,136, 34 5.22
59 100 23, 76, 42 5.93 59 100 12,26, 17 172 |
78 36,97, 57 7.31 (k=7) 78 14, 35, 22 2,00
70 36, 88, 57 7.05 70 14, 35, 22 1.93
65 37, 87, 57 6.89 65 14,35, 22 1.87
59 37,108, 58 6.91 59 14,48, 24 1.94
50 44, 116, 69 7.74 50 21, 61, 33 2,57
41 107, 228, 163 17.94 41 "
87 100 75, 134, 89 7.50 67 100 58,115, 04 6.21
75 82,132, 95 7.22 {k=20) 75 72,111, 92 5.61
65 81, 137, 96 7.07 65 70, 111, 92 5.41
55 81,133, 96 6.81 55 70,108, 90 5.14
46 82,123, 9g 6.57 50 59,108, 88 4.96
13 93, 142, 103 7.13 49 72,120, 93 5.23
125 160 13g, 359, 232 38.79 125 160 52, 81, 68 7.7
80 221, 535, 331 51.24 (h=11) 80 63,175,106 11.48
70 221, 556, 337 50.00 70 64,175,106 11.91
64 221, 570, 340 49.39 80 70,220,102 10.21
57 234,619, 308 58.27 i 35 83,209,114 11,16

Each of the other iterative methods was applied in combination with each of the
preconditioning schemes to each of the test problems, if appropriate, The remainder of

the performance of the threshold-adaptive preconditioner. Section 6,2 discusses the
relative performance of ILU, ILUGSh and ILUB preconditioning, Section 6.3 compares
the overall performance of the various methods,

In the tables that follow, avg% refers to the average percent of off-diagonal ele-
mments of the Jacobian matrices along v retained in S, The minimum, maximum, and
average number of iterations along the homotopy zero curve 7 are shown, and the
CPU time is in seconds op a DECstation 3100. The reported times are the medians
of times obtained on from three to five runs. All code is double precision, since that is
the default for the homotopy software HOMPACK. An asterisk denotes convergence
failure at some point along the zero curve 7. In particular, a method was deemed to
have failed if, at any step along v, it required more than 5N iterations to converge,
Convergence was construed to mean a relative residual less than 100 times machine

epsilon; such high accuracy is frequently crucial for homotopy curve tracking [17].

6.1. Performance of ILUSt Preconditioning. In order to begin to under-
stand the potential of sparse submatrix preconditioners, the performance of the ILTUSt
preconditioner was tested with Craig’s method and GMRES (k). Table 2 summarizes

17

the results for the test problems 1li13b (N = 31), upsOla (N = 59), yref (N = 67),
and bgatt (N = 125), respectively. In testing GMRES(k), the value of k was chosen
as the smallest for which convergence was achieved for relatively sparse precondition-
ers. Using ILU preconditioning, it was possible to solve each problem with a slightly
smaller value of £.

For each method, using a slightly sparser preconditioner produced a slight reduc-
tion in execution time for the problem of order 31, even though the iteration count
increased. For the problem of order 67, using a substantially sparser preconditioner
with GMRES(%) actually reduced the iteration count. For cach method, the execu-
tion time on that problem decreased significantly as the density of the preconditioner
decreased, until the percentage of off-diagonal entries retained dropped below 50%.
However, it is possible that the ILUS preconditioner is far less effective than ILU pre-
conditioning on some problems, as the results on the second and fourth test problems
show. Using the ILUSt preconditioner with a target percentage of 100% results in
somewhat higher times than using the ILU preconditioner, since the ILUSt precon-
ditioner requires separate storage for column indices and hence some additional data
movement,

The results obtained using ILUSt preconditioning suggested that the use of a
sparse preconditioner could improve performance in some cases. However, there was
1o obvious way to determine in advance what target percentage would produce the best
performance. Moreover, comparing the performance of ILU and ILUSt preconditioning
at each step along v indicated that a denser preconditioner usually produced a lower
iteration count when the Jacobian matrix was badly conditioned, but that a sparser
preconditioner usually reduced execution time if the Jacobian matrix was not badiy
conditioned. The hybrid-adaptive preconditioning scheme was devised to provide a
practical implementation of these ideas.

6.2. ILU, ILUSh and ILUB preconditioning. The results obtained using
each iterative method in conjunction with ILTU, ILUSh and ILUB preconditioning are
presented in Table 3. The Jacobian matrices for the problems of order 31 and 468
do not have diagonal blocks, so the ILUB preconditioner is not appropriate for those
problems. That is indicated in the table by the annotation NA.

The ILUB preconditioner was applicable to sixteen combinations of problem and
method in which convergence was achieved. In terms of iteration counts, the ILUB
preconditioner did as well as or better than either ILU or ILUSh preconditioning for
every combination of problem and method, except when BICGSTAB was applied to the
problem of order 67. The increased cost of applying the denser ILUB preconditioner
led to the highest execution time in five cases. In three cases the execution time using
ILUB preconditioning was more than 10% greater than the best achieved with either
of the other preconditioners. However, ILUB preconditioning reduced execution times
by 10%, versus ILU, in two cases and by 75% in a third case. Execution times using
ILUB preconditioning ranged from 25% to 119% of those achieved with the other
preconditioners,

There were twenty-four combinations of problem and method in which conver-
gence was achieved with ILUSh preconditioning. In eleven of those combinations, the
number of iterations needed for convergence was so large that 100% of the off-diagonal

18

TaBLE 3

E Craig’s method
ILUSh ILG ILUB
N | avg% min, max, avg time | min, max, avg time | min, max, avg time
31 73 1,33, 17 4.60 1, 32,17 4,78 NA
59 190 28,76, 42 3.84 28,76, 42 5.46 28, 72, 37 5.24
67 100 75,134, 89 7.40 75, 134, 89 8.87 68, 127, 82 6.80
125 1060 1586, 359, 232 38.49 156, 359, 232 35.32 i34, 270, 187 31.79
468 * * NA
1854 * * *
LSQR
31 87 1, 30, 16 5.65 1, 30, 16 4.93 NA
59 100 24, 53, 32 4.91 24, 53, 32 4.49 24, 50, 29 4.73
67 100 69,89, 77 6.96 69,89, 77 6.36 63, 83, 70 6.68
125 100 147, 276, 195 34.52 | 147, 278, 195 32,63 | 126, 216, 155 29.24
468 * * NA
1854 * * *
GMRES(&)
31 84 1, 24, 11 2.42 1,27, 11 2.36 NA
59 71 12, 35, 22 1,98 i2, 26, 17 1.70 7,26, 16 1.81
67 100 58, 115, 94 6.36 58, 115, 04 6.19 20, 20, 20 1.55
125 100 52,81, 68 8.11 52, 81, 68 7.03 53, 86, 67 8.37
468 84 107, 323, 162 33.60 106, 323, 161 33.20 NA
1854 100 839, 1038, 926 1072.94 | 839, 1038, 926 1066.29 748, 1079, 898 1069.77
BiCGETAB
31 66 1,21, 9 2.51 1,18, 8 2.56 NA
59 66 8, 19, 14 1.86 8,16, 11 1.80 8,17, 11 2.04
67 100 33, 97, 59 4.97 35, 97, 59 4.%6 27,114, 64 5.86
125 71 23, 42, 35 5.37 22, 39, 28 512 21, 35, 26 5.18
468 78 72, 124, 98 23.07 67, 124, 87 20,97 NA
1854 * * *
QMR
31 78 2,14, 9 4.59 2,14, 9 4.72 NA
59 69 10, 22, 16 3.30 10,17, 13 3.15 10, 17, 12 3.38
67 100 27, 45, 33 3.66 27, 45, 33 3.68 24, 43, 32 4.12
125 75 28, 44, 34 6.86 26, 38, 29 6.34 25, 32, 27 6.32
468 80 77,182, 113 32.62 | 77, 182, 104 30.69 NA
Eset * * *

entries of the Jacobian matrix were retained for the preconditioner, essentially reduc-
ing the ILUSh scheme to ILTU preconditioning. The overhead in the ILUShL code is

apparent in the timings for those cases.
ciated with the largest execution time in

19

Overall, the ILUSh preconditioner was asso-
sixteen of the twenty-four problem/method

combinations, including seven of the thirteen cases in which a sparse preconditioner
was selected. ILUSh preconditioning produced the lowest execution time in only two
cases, both involving the smallest test problem. Even in those cases the reduction
in time was less than 4%, when compared to the best time achieved with the same
method and ILU preconditioning. In six combinations of problem and method, the
time required for convergence with ILUSh preconditioning was at least 10% greater
than the best time achieved with the other preconditioners.

There were also twenty-four problem /method combinations in which convergence
was achieved with ILU preconditioning. There were no cases in which the ILU pre-
conditioner was either clearly best or worst among the three preconditioners tested.
ILU preconditioning was associated with the lowest execution time in fourteen cases.
In seven cases, the time required using the ILU preconditioner was second lowest, and
within 5% of the best time for that problem/method combination. In only three cases
did the ILU preconditioner correspond to an execution time more than 10% greater
than the best time achieved with the other schemes.

6.3. Comparison of the iterative methods. Aside from KACZ, Craig’s
method and LSQR were clearly the slowest of the methods examined. Craig’s method
and LSQR were the only methods which failed on the probilem of order 468. Craig’s
method did reduce the error norm at each Iteration, as expected, but the rate of
convergence was extremely slow, and the iteration limit of 5§ was exceeded before
convergence. LSQR managed a similar reduction of the residual norm, but again
convergence was very slow. It is worth noting that L5QR, in combination with each
preconditioner, solved the problems of order 99, 67, and 125 in significantly less time
than Craig’s method.

QMR did not produce the lowest overall execution time on any problem. How-
ever, with all three preconditioners, execution times with QMR were lower than for
GMRES(k) on the problems of order 125 and 468, QMR with ILUSh and ILU pre-
conditioning was also faster than GMRES(k) on the problem of order 67. QMR,
with each preconditioner, was also faster than BiCGSTAB on the problem of order
67. The implementation of QMR that was used here requires the specification of an
upper bound m on the number of look-ahead Lanczos vectors retained (m = 5 was
used here). Changing the parameter m had little effect on the iteration count, and
increasing m increased the execution time because of the overhead for the m x m
blocks.

BiCGSTAB with ILU preconditioning achieved significantly better times on the
problems of order 125 and 468 than any other combination of method and precon-
ditioner. In addition, BiCGSTAB was only slightly slower than GMRES(%) on the
problems of order 31 and 59. In almost every case, BICGSTAB required fewer itera-
tions to solve the problems of orders 31, 59, 125 and 468, when compared to the other
methods using the same preconditioner.

The results for the six problems shown in Table 3 for GMRES(k) were obtained
using k = 6, 7, 20, 11, 25 and 40, respectively, For smaller values of k, GMRES(%)
failed to converge at some point along the zero curve if a relatively sparse precondi-
tioner was used, Larger values of £ can make a dramatic difference, but not always.
For example, GMRES(20) with ILU preconditioning takes 6.19 seconds on the prob-
lem of size 67, but GMRES(25) takes only 1.79 seconds. Similar sensitivity to k occurs

20

for the structural mechanics problems in [13]. The problem of order 67 was solved
in considerably less time using GMRES(%) with ILUB preconditioning than with any
other combination of method and preconditioner. The problems of order 3] and 59
were solved in slightly less time with GMRES(k} than any other method. Moreover,
GMRES(%) was the only method which solved the largest problem.

6.4. Low rank perturbations. As suggested by Fig. 2, the Jacobian matrices
in the test suite can be decomposed as A = B+ F, where B is symmetrically structured
(but not symmetric) and ¥ is a matrix of low rank. Depending on the spectrum or
conditioning of the matrix B compared to A, it may be advantageous to use B as the
Iteration matrix and apply the Sherman-Morrison formula to account for the low rank
correction £. This approach has been used effectively in a number of applications [13],
and was considered for the circuit simulation problems examined here., Unfortunately
there was little difference between the condition numbers and spectra of the Jacobian
matrices A and their symmetrically structured components B. Limited experiments
with Craig’s method and GMRES(%) did not show a significant advantage in overall
performance and the approach was abandoned.

Whether an examination of the spectrum of the iteration matrix does, in fact,
yield much useful information regarding the convergence rate of GMRES(%) is doubt-
ful. For example, the eigenvalues of the eleventh Jacobian matrix for the vref circuit
(N = 67) were computed after explicitly applying the ILU and ILUB preconditioners.
The two spectra are only a Hausdorf distance of 0.18 apart, and have over fifty values
in commeon. The performance of GMRES(%) on these two matrices 1s, however, strik-
ingly different. Taking 2o = 0, GMRES(20) converges in only 20 iterations if the ILUB
preconditioner is used, but requires 275 iterations when ILU preconditioning is used.
Clearly, the spectrum of the iteration matrix alone does not predict the performance
of GMRES(k).

7. Conclusions. Although the results are mixed and the interactions between
the specific problem, the preconditioner, and the iterative method are complicated,
some well supported conclusions can be drawr.

¢ None of the preconditioning schemes appears to be substantially better in terms
of robustness or efficiency. Convergence on each problem was either achieved with
every applicable preconditioner or not achieved at all. Considering execution times,
the ILUSh preconditioner was clearly the least effective. The fact that ILUB pre-
conditioning produced a spectacularly low execution time with GMRES(k) on the
problem of order 67 must be balanced against the fact the ILUB preconditioning was
associated with the highest execution time for five problem/method combinations. In
contrast, 1L preconditioning produced the highest time in only three cases involving
the smallest test problem, which was not suitable for ILTB preconditioning. More-
over, in those three cases ILU preconditioning exhibited only a slight disadvantage
when compared with ILUSh. If only the three fastest methods are considered, there
was only one combination of problem and method in which ILUB preconditioning led
to substantially faster convergence than ILU. In summary, [LU preconditioning should
be preferred over either ILUSh or ILUB preconditioning; the fancier methods are not
worth the extra complexity.

21

o Of the iterative methods considered here, GMRES(k) and BiCGSTAB are the
best for linear systems with farge, sparse, nonsymmetric, indefinite, unstructured
coefficient matrices, typified by the circuit simulation problems here. GMRES(k)
achieved the lowest execution time on four of the six test problems, and solved the
largest problem on which all the other iterative methods failed, However, the speed of
GMRES(k) requires a substantial increase in storage, compared to the ather iterative
methods considered here. Given the extreme sparseness of the Jacobian matrices, typ-
ically between 5N and 6N nonzeros, GMRES(k) required extra storage that was as
much as six or seven times that required for storing the Jacobian matrix, If mermory
usage is a concern, then BiCGSTAB offers an attractive alternative to GMRES(%).
Using substantially less storage, BICGSTAB solved the problems of order 31 and 59 in
only slightly more time than required by GMRES(k). BiCGSTAB also achieved the
lowest execution times overall on the problems of order 125 and 468, And although
GMRES(k) solved the problem of order 67 in roughly 31% of the time required by
BiCGSTAB, that required the retention of 20 N -vectors,

* Virtually all well known classes of applicable iterative methods have been consid-
ered here, and none have acceptable performance for linear systems with large, sparse,
nonsymmetric, indefinite, unstructured coefficient matrices arising in circuit simula-
tion. The best algorithms were BiCGSTAB and GMRES(k), but BiCGSTAB failed
on the large problem is7b (N = 1854), and GMRES(%) requires an unpredictable and
unacceptably large value of & to converge. To emphasize just how bad these iterative
methods are (for circuit simulation problems, at least), using a proprietary ordering
algorithm of AT&T, a direct stable LU factorization never generates more than 5N
fill elements, and takes an order of magnitude less CPU time than GMRES(k) with
k> 5. Improvements in preconditioning and algorithms are certain, but the gauntlet
has been laid down for iterative methods on the type of linear systems considered
here,

REFERENCES

[1] A. BJérRox awnp T. ELrviNG, Accelernted projection methods for computing pseudoimerse solulions
of systems of linear eguations, BIT, 19 (1979), pp. 145-163.

[2] R. BRaMLEY anp A. SAMEH, Row projection methods for large nensymmetric Yneqr systems,
Tech. Report No, 957, Center for Supercomputing Research and Development, Univ.
lincis-Urbana, 1L, January 1990,

318 N. Crow, J. MALLET-PARET, AND T, A, YORKE, Finding zeros of maps: hometopy methods that
are constructive wilh probability one, Math. Comput., 32 (1978), pp. 887-899,

4] C. DESA, K. M. Iran, C. J. RiBBENs, L. T. WaTson, AND H. F. WALKER, Preconditioned
iterative methods for homotopy curve tracking, SIAM J. Sci. Stat. Comput., 13 (1992},
pp. 3046,

(5] R. FLETCHER, Conjugate gradient metheds for inddinite systems, Proc. of the Dundee Biennial
Conference on Numerical Analysis, Springer- Verlag, New York, 1875, pp. 73-89,

[6] R. W. FrEuND, M. H. GUTKNECHT, AND N, M. NACHTIGAL, An implementation of the lookahead
Lanczos algorithm for non-Hermitian matrices, Part I, Tech, Report 90.45, RIACS, NASA
Ames Research Center, Moffett Field, CA, November 1990,

y An implementation of the look-ahead Lanczos algorithm for non-Hermitian malrices, Part

II, Tech. Report 91.069, RIACS, NASA Ames Research Center, Moffett Field, CA,

April 1991,

(7}

22

[8] R. W. FREUND AND N. M. NACHTIGAL, QMR: A quasi-minimal residual method for non-hermition
linear systems, Numer. Math., to appear.
[9] I. GETREUY, Modeling the Bipolar Transistor, Tektronix Inc., Beaverton, OR, 1976, pp. .9-23.

{10] G. H. GGoLUB AND W. KaHAN, Calevlating the singular values and pseudoinverse of @ matriz, SIAM
J. Numer. Anal,, 2 (1965), pp. 205-224.

[11] G. H. GoLUB anD C. F. vaN LoaN, Matriz Computations, Second Ed., Johns Hopkins University
Press, Baltimore, 1989,

{12] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradicnts for solving kinear systems, J. Res.
Nat. Bur. Stand., 49 (1952), pp. 409-436.

[13] K. M. Irani, M. P. Kamar, C. J. RigBEns, H. F. WALKER, AND L, T. WATSON, Erperiments
with conjugate gradient algorithms for homotopy curve fracking, SIAM J. Optim., 1 (1991),
Pp. 222-251,

[14] 8. Kaczmarz, Angendherte auflosung von systemen lLinegrer gleichungen, Bull, Intern. Acad.
Polon. Sci. Class A., (1939), pp. 355-357.

[15] C. KAMATH AND A. SAMEH, A projection method for selving nonsymmetric linear systems on multi-
processors, Parallel Computing, 9 {1988 /1989), pp. 291-312.

[16] C. Lawczos, Selution of systems of linear equations by minimized iterations, J. Res. Nat. Bur.
Stand., 49 (1952), pp. 33-53,

[17] B. C. MELVILLE, LJ. TRaIKOVIC, 5.-C, Fang, aND L. T. WaTsON, Globally convergent homotopy
methods for the DC operating point problem, Tech. Report TR-90-61, Dept. of Computer
Sci., VPI&SU, Blacksburg, VA, 1990,

[18] N. M. NacHTIGAL, S. €. REDDY, aAND L. N. TREFETHEN, How fast are nonsyminelric matriz
tterations?, Preliminary Proceedings of the Copper Mountain Conference on Tterative
Methods, April 1990.

[19] C. C. PaiGE anD M. A. SAUNDERS, LSQR: an algorithm for sparse linear equations and sparse least
squares, ACM Trans. Math. Soft., 8 {1982), pp. 43-71.

(20] Y. Saap, SPARSKIT: a basic tool kit for sparse mairiz computations, Tech. Report 30.20, RIACS,
NASA Ames Research Center, Moffett Field, CA, May 1990.

[21] Y. Sasap anp M. H, SHULTZ, GMRES: a generabized minimum residucl algorithm for solving non-
symmetric linear systems, SIAM J. Sci. Stat. Comput,, 7 (1986), pp. 856-869.

{22] R. SEDGEWICK, Algorithms, Second Ed., Addison-Wesley, New York, 1988,

[23] P. SoNNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci.
Stat. Comput., 10 (1989), pp.36-52.

[24] L3. TRAIKOVIS, R. C. MELVILLE, AND §.-C. Fang, Passivity and no-gain properties establish global
convergence of a homotopy method for DC operating points, Proc, IEEE Int. Symp. on
Circuits and Systems, New Orleans, LA, May, 1990, pp. 914-917.

[25] — |, Finding DO operating poinis of transistor circuils using homotopy methods, Proc. IEEE
Int, Symp. on Circuits and Systems, Singapore, 1991,

[26] H. F. WALKER, Implementations of the GMRES method, Comput. Phys. Comum., 53 (1989), pp.
311-320.

[27] —___, Fmplementation of the GMRES method using Householder transformations, SIAM J. Sci.
Stat. Comput., 9 (1988), pp. 152-163,

[28] H. A. VAN DER VORsT, Bi-CGSTAB: A fast and smoothly converging varant of Bi-C(F for the solution
of nonsymmetric Iinear systems, SIAM 1. Sci. Stat, Comput,, 13 (1992), pp. 631-644.

[29] L. T. WaTson, A dlobally convergent algorithm for computing fized points of 02 maps, Appl. Math,
Comput., 5 (1979), pp. 297-311.

[30] —__ , 4n algorithm that is globelly convergent with probability one for a class of nonlinenr two-point
boundary vafue problems, SIAM J. Numer, Anal.,, 16 (1979), pp. 394—401.

[31] — | Numerical kinear #lgebra aspects of globally convergent homotopy methods, SIAM Rev., 28
(1986), pp. 529 545,

(32} —_, Globally convergent homotopy methods: ¢ tutorial, Appl. Math. Comput., 31BK (1989},
PP- 529545,

[33) A survey of probebility-one homotopy methods for engineering optimeation, Tech., Report
TR-90-47, Dept. of Computer Sci., VPI&SU, Blacksburg, VA, 1990,

[34] L. T. Warson, S. C. BILLurs, AND A. P. MorGaN, HOMPACK: A suite of codes for globally
convergent homeotopy algorithms, ACM Trans. Math, Software, 13 (1987), pp. 281-310.

[35] L. T. WaTsoN anp D. FENNER, Chow-Yorke algorithm for fived points or zeros of €* maps, ACM
Trans. Math. Software, 6 {1980), pp. 252-260.

[36] Z. ZLATEV, Computational Methods for General Sparse Matrices, Kluwer Acad. Pub., 1991,

23

