Practical Minimal Perfect Hashing Functions
for Large Databases

By Edward A. Fox, Lenwood Heath,
Qi Fan Chen, and Amjad M. Daoud

TR 90-41

Practical Minimal Perfect Hash Functions for
Large Databases *

Edward A. Fox Lenwood S. Heath Qi Fan Chen
Amjad M. Daoud
Department, of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106

August 8, 1990

Abstract

have been used to access very large databases (i.e., having over 1 million keys). This method
extends earlier work wherein an O(n®) algorithm was devised, building upon prior work by
Sager that described an Ofn*) algorithm, Our first linear expected time algorithm makes uge
of three key insights: applying randomness wherever possible, ordering our search for hash
functions based on the degree of the vertices in a graph that represents word dependencies,
and viewing hash valye assignment in terms of adding circular patterns of related words

Virginia Disc One includes a demonstration of a minimal perfect hash function running
on a PC 1o access a 130,198 word list on that CI-ROM. Several other microcomputer,
minicomputer, and parallel processor versions and applications of onr algorithm have also
been developed. Tests including those with French word list of 420,878 entries and a
library catalog key set with over 3.8 million keys have shown that our methods work with
very large databases.

*This work was funded In part by grants from the National Science Foundation {Grant IRF-8703580), the
Virginia Center for Innovative Technology (Grant INF-87-012), Nimbus Records, OCLC, and the State Council
of Higher Education, AT&T and Apple Computer have provided equipment used in some of onr experiments,

CR. Categories and Subject Descriptors: E.2 [Data Storage Representations]:
Hash-table representations; H.2.2 [Database Management]: Physical design—access meth-
ods

General Terms: Algorithms, Expenimentation, Performance

Additional Key Words and Phrases: Hashing, perfect hash functions, minimal perfect
hash functions, CD-ROM

1 Introduction

Ubiquitous in areas including artificial intelligence, data structures, database management, file
processing, and information retrieval is the need to access items baged on the value of a key.
Classification systers use descriptors of various types, identifiers of myriad forms are assigned
to items, and names for objects are commonplace. While various approaches to finding items
through use of such keys have been explored, the promise of ‘instant’ access promised by hashing
schemes is particularly enticing. However, most hashing methods involve a certain amount of
wasted space (due to unused locations in a hash table) and wasted time (due to the need to
resolve collisions).

Our objective is to improve upon current hashing techniques by eliminating these problems
of wasted space and time. OQur approach is to exploit the fact that there are many static
collections of keys where it is worthwhile to undertake some preprocessing to build a minimal
perfect hash function (MPHF) that will totally avoid the common problems of wasted space
and time. Indeed, we have developed fast algorithms to search for MPHFs for large static key
sets (i.e., over 1 million keys), and have used the resulting functions to improve access to large
CD-ROM (compact disk, read-only memory) data, collections, as well as to provide rapid access
to a large lexicon built from machine readable dictionaries.

Static collections are rapidly becoming more common as non-erasable optical disc publishing
activities increase [12]. CD-ROM production is increasing, and the use of WORM (write-once,
read-many) units for archival storage or as part of a multi-level hierarchical memory system Is
growing. In addition to situations where the storage media enforces use of static files, there
are natural cases where files rarely require revision. Dictionaries are published infrequently,
and lexical databases generally expand rather slowly. Classification systems like the Computing
Reviews Category System or the Library of Congress system for cataloging are slow to change.
Our work with producing the first in the Virginia Disc series of CD-ROMs [13] and in constructing
a large lexicon from machine readable dictionaries (18,17] thus naturally led us to commence an
exploration of improved approaches to hashing.

1.1 Hashing

We begin with a collection of objects each of which has a (unique) associated key, say k, selected
from U, a (usually finite) universe of keys. The cardinality of U is N = |U|. While some
researchers assume that U is the set of integers

U:{l‘..N}

set, possibly involving phrases as well,

The actual set of keys used in a particular database at a fixed pomt in time is § C U
where typically |S| < |I7|. The cardinality of S is n = |S]. Records are stored in (objects are
accessible through) a hask table T having m > n locations (or slots), indexed by elements of
Zm ={0,1,...,m— 1}. We measure the utilization of space in T by the load factor, o = n/m.
Depending on the application, 7' may be in primary memory, magnetic disk, optical dise, or
recorded on some other device; in all cases it is desirable for T to be as small as possible and for
us to be able to quickly find the appropriate siot in T for any given key k.

The retrieval problem is to locate the record corresponding to a key k € U or to report that
no such record exists. We do this by hashing, i.e., applying a hash function b that is computable
In time proportional to the size of the key %, and examining the slot in T with address hik).
If there are two keys k1,k3 € S such that h(kr) = h(ky), then there is a collision of k; and
ky. Much effort is expended in traditional work on hashing in resolving collisions. Collisions
force more than one probe (reading a slot) of T' to access some keys. If h is a 1-1 function when
restricted to S, b is called a perfect hask function (PHF) since there is no need to waste time
resolving collisions. A PIF # allows retrieval of records (objects) keyed from $ in one access,
which is clearly optimal in terms of time. For any form of hashing, optimal space is atiained
when the hash table is fully loaded, i.e., when o = 1; we use the name minimal hash SJunction
for any function with this property. The best situation, then, is to have a minimal perfect hash
Jfunction (MPHF) where o = 1 and there are no collisions, so £ is a 1-1 onto mapping when
restricted to 5,

1.2 Outline

In the following sections, we describe work mvolving perfect hash functions. In Section 2 we
discuss related work, including the approach of Sager which was the starting point for our
investigations. We begin that discussion with an explanation of some of the theoretical issues
relating to perfect hash functions, and return to that perspective in Section 3 where we explain
the key concepts that underpin our approach. For those less interested in the theory underlying
our work, Section 3 can be largely ignored. (To make it possible to skip Section 3, some terms
defined in Section 3 are defined again in Section 4.) Section 4 describes our first fast (i.e., linear
expected time) algorithm for finding MPHF’s, and Section 5 illustrates the procedure using a
very small but realistic example. Section § reports on some of our experimental results, giving
a characterization of the internal representations required during MPHF construction, timings

on space and time. Section 8 deals with efforts to use MPHFs in connection with our lexicon
construction effort, and design of a Large External Network Database (LEND) that involves
MPHF access at the lowest level. Section 8 concludes the discussion.

2 Related Work

Hashing has been a topic of study for many years, both in regard to practical methods and
analytical investigations [23]. Recently there has been renewed interest in hashing due to the
development of techniques suitable for dynamic collections [10]. A less extensive literature has
grown up, mostly during the lasg decade, dealing with perfect hash functions; it is that subarea
that we consider in this section,

2.1 Mapping to Integers
Give
cardinality N, our object is to find a function A that maps each k to a distinct entry in the hash

simplest cases, keys are positive integers bounded above by N. This situation was assumed, for
example, by Sprugnoli [32], Jaeschke [22], and Fredman, Koml6s, and Szemerédi [19].

We focus here, however, on the more general case where keys are strings (since clearly integers
can be represented ag strings of digits or strings of bytes, for example). The usual approach is
to associate integer values with af] or some of the characters in the string, and then to combine
those values into a single number, Chang [4] used four tables based on the first and second
letters of the key. Clichelli [6] used the length of the key and tables based on the first and last
letters of the key. Note, however, that the length of a key, its first letter, and its last letter are
sometimes insufficient to avoid collisions; consider the case of the words ‘woman’ and ‘women’
n Cichelli’s method.

Cercone et al. {3] enhance the discriminating power of transformations from strings to integers
by generating a number of letter to number tables, one for each letter position. Clearly, if the
original keys are distinet, numbers formed by concatenating fixed length integers obtained from
these conversion tables will be unique. In practice, it often suffices to simply form the sum or
product of the sequence of integers.

While in some schemes (e-g., [6]) the resulting integer is actually the hash address desired,
in most algorithms, the A function must further map from the integer valuye produced into the
hash table.

2.2 Existence Proofs

One might ask if 2 MPHF A for a given key set exists. Jaeschke [22] proves this and indeed
Presents a scheme guaranteed to find such a function (though his method requires exponential
time in the number of identifiers). Assuming that the task is to map a set of positive integers
{k1, ks, .. -y kn} bounded above by N without collisions into the set of m indices of T, we also
have demonstrated a fast algorithm to define a suitable (though large!) PHF [18).

Anocther way to view this situation is to realize that perfect hash functions are rare in the
set of all functions. Knuth (23] observes that only one in 10 million functions is a perfect hash
function for mapping the 31 most frequently used English words into 41 addresses. Cur task
then can be viewed as one of searching for rare functions, and of specifying them in a reasonable

amount of space.

2.3 Space to Store PHF

Using an argument due to Mehlhorn [25] (see also 124]), we have shown an approximate lower
bound of 2 1.4427 bits per key to represent an arbitrary MPHF [16]. It is important to realize
that this cost is reguired for one-probe access, no matter what scheme is employed. In addition
to the lower bound, Mehlhorn also gives a method of constructing MPHFs of size O(n) bits.
However, the construction requires exponential time and therefore is not practical. A more
practical algorithm of Mehlhorn constructs MPHFs of size O(nlog, n) bits.

It is more typical to state the size of PHFs in terms of the mumber of computer words
used, each of logy n bits. Then Mehlhorn’s lower bound is Q(n/log, n) computer words, and
his practical upper bound is O(nlog, n/log, n) = O(n}) computer words. Our initial algorithm
(sections 3-8) achieves MPHT size of less than O(n) computer words, and our newest algorithm
(section 7} approaches the theoretical lower bound.

2.4 Classes of Functions

There are several general strategies for finding perfect hash functions. The simplest one is to
select a class of functions that is likely to include a number of perfect hash functions, and then
to search for a MPHF in that class by assigning different values to each of the parameters
characterizing the class.

Carter and Wegman [2] introduced the idea of a class H of functions that are universals,
i.e., where no pair of distinct keys collide very often. By random selection from H, one can select
candidate functions and expect that a hash function having a small number of collisions can be
found quickly. This technique has also been applied to dynamic hashing by Ramakrishna and
Larson [29].

Sprugnoli [32] proposes two classes of functions, one with two and the other with four pa-
rameters, that each may yield a MPHF; searching the parameter values of either class is feasible
only for very small key sets. Jaeschke [22] suggests a reciprocal hashing scheme with three pa-
rameters that is guaranteed to find 2 MPHF, but it is only practical when n < 20. Chang [5]
proposes a method with only one parameter, though its value is likely to be very large, and
requires a function that assigns a distinet prime to each key; however, he gives no algorithm for
that function, so the method is only of theoretical interest. A practical algorithm finding perfect
hash functions for fairly large key sets is described in [7]. They illustrate the tradeoffs between
time and size of the hash function, but do not give tight bounds on total time to find PHFs or
experimental details for very large key sets.

The above-mentioned ‘search-only’ methods may (if general enough, and if enough time
is allotted) directly yield a perfect hash function when the right assignment of parameters is
1dentified. However, analysis of the lower bounds on the size of a suitable MPHF suggests that
if parameter values are not to be virtually unbounded, then there must be a moderate number
of parameters to assign. Thus, in the algorithms of Cichelli [6] and of Cercone et al. [3] we
see two lmportant concepts: using tables of vahues as the parameters, and using a mapping,
ordering, and searching (MOS) approach (see Figure 1). While their tables seem to be too small
to handle very large key sets, the MOS approach is an important contribution to the field of
perfect hashing.

MAPPING — ORDERING — SEARCHING|

Figure I: Method to Find Perfect Hash Functions

In the MOS approach, the construction of a MPHF is accomplished in three steps. First,
the Mapping step transforms the key set from the original universe to a new universe. Second,
the Ordering step places the keys in a sequential order that determines the order in which
hash values are assigned to keys. The Ordering step may partition the order into subsequences
of consecutive keys. Such a subsequence is called a level, and the keys of each level must be
assigned their hash values at the same time. Third, the Searching step attempts to assign hash
values to the keys of each level. If the Searching step encounters a level that it is unable to
accommeodate, it backtracks, sometimes to an earlier level, assigns new hash values to the keys
of that level, and tries again to assign hash values to later levels. Sager’s method is a good
example of the MOS approach.

2.5 Sager’s Method and Improvement

Sager [30,31] proposes a formalization and extension of Cichelli’s approach. Like Cichelli, he
assumes that a key is a character string. In the Mapping step, three auxiliary hash functions are
defined on the original universe of keys U/

ho: U—1{0,...,m-1}
hi: U—={0,...,r =1}
hyt U—{r,...;2r -1}

where r is a parameter (typically < m/2) that ultimately determines how much space it takes
to store the perfect hash function (ie., || = 2r). These auxiliary functions compress each key

k into a unique identifier
(ha(k), 1(k), ha(k))

which is a triple of integers in a new universe of size mr2. The class of functions searched is

h(k) = (hok) +9 (ks () + 9 (ha(k))) (mod m)

where g is the function whose values are selected during the search.

Sager studies a graph that represents the constraints among keys. Indeed, the Mapping step
goes from keys to triples to a special bipartite graph, the dependency graph, whose vertices are
the A1 () and k() values and whose edges represent the words. The two parts of the dependency
graph are the vertex set {0,...,» — 1} and the vertex set {r,...,2r — 1}. For each key k, there
is an edge connecting hy (k) and hy(k); that edge carries the label k. See Figure 2.

In the Ordering step, Sager employs an ordering heuristic based on finding short cycles in
the graph. This heuristic is called mincycle. At each iteration of the Ordering step, the mincycle

hl

2 <o
r r+1 r+2 r+3 e 2r-2 2r-1

Figure 2: Dependency Graph

heuristic finds a set of unselected edges in the dependency graph that occur in as many small
cycles as possible. The set of keys corresponding to the set of edges constitutes the next level in
the ordering,

There is no proof given that a minimum perfect hash function can be found, but mincycle
is very successful on sets of a few hundred keys. Mincycle takes O(m?) time and O(m3) space,
while the subsequent Searching step usually takes only O(m) time. The time and space required
to implement mincycle are the primary barriers to using Sager’s approach on larger sets.

Sager chooses values for » that are proportional to m. A typical value is » = m/2. In the case
of minimal perfect hashing (m = n), it requires 2r = n computer words of log, 7 bits each to
represent g. This is somewhat more than MehThorn’s lower bound of 1.4427n/ log, n computer
words. The ratio (2r/n) must be reduced as low as possible, certainly below 1. Our early work to
explore and improve Sager’s technique led to an implementation, with some slight improvements
and with extensive instrumentation added on, described by Datta [9]. After further investigation
we developed a modified algorithm [15] requiring O(m?) time. With this algorithm we were able
to find MPHF’s for sets of over a thousand words.

2.6 Summary of Related Work

Hashing has been used in many applications and, with recent development of dynamic hashing
techniques, has witnessed a resurgence of interest [10]. However, most dynamic hashing involves
low load values, on the order of 0.6 to 0.9, and requires resolution of collisions. In most dynamic
hashing schemes, hash addresses identify buckets or bins wherein a number of records can be
stored, and which are usually only partially full. The work of Gonnet and Larson does improve
upon the typical approach, however, allowing high load factors, through the use of a small
amount of extra storage used in buckets [20].

An examination of previous schemes for perfect hashing shows that many are generally only
applicable to small sets, or require a prohibitive amount of space to store. Some approaches
require input keys to already be integers in some restricted range, while others are really two
level searches where extra storage in each bucket supports the second level of search. An example
is the work of Brain and Tharp, which extends Cichelli’s approach, but still cannot handle very
large key sets [1].

The most competitive alternative to our approach comes from the work of Fredman, Komiés,
and Szemérdi [19] and others who have built on their work (e.g., [31]). These methods assume
a universe that is the set of integers {1,..., N} in contrast to our assumption of keys that are

arbitrary character strings. Membership queries are accommodated in constant time, and the
hash function requires n+o(n) space. Construction has random expected time O(n). Our bounds
are tighter, and really practical algorithms for very large key sets have been demonstrated for
the first time only in our work.

3 Key Concepts of New Algorithms

After careful analysis of Sager’s algorithm [31] and our enhanced version [15], Heath made three
crucial observations that serve as the foundation of our new algorithms:

1. First, it appears that we must exploit randomness whenever possible. We trade a small
probability of failure for an outstanding average case performance.

2. Second, the vertex degree distribution is highly skewed; this can be exploited to carry out
the Ordering step in a much more efficient manner.

3. Third, assigning g values to a set of related words can be viewed as trying to fit a pattern
into a partially filled disk, where it is important to enter large patterns while the disk is
only partially full.

These three insights allow our new algorithms to obtain an Ordering in linear expected time.
Since Mapping and Searching have expected time O(n), the time complexity of our method is
O(n) in the expected sense.

We consider each of these key concepts in more detail in the next three subsections. Because
we are primarily concerned with minimal perfect hash functions, we assume m = n and use
only n. All results easily generalize to the case m > n.

3.1 Randomness

Our first use of randomness is in the Mapping step where a good set of triples is obtained to
serve as identifiers for the original word strings. Here it is essential that the triples are distinct.
Our technigue is essentially to obtain a random number for each key (mod n), making use of
all of the information in the key to give maximum discrimination. The pseudo-random number
generator we selected, to allow machine independence and to ensure good behavior, is due to
Park and Miller [27]). The random integers generated by their random number generator are
between 0 and 23! — 2. Now consider the use of these random numbers to obtain the desired
triples. First, three tables (tableg, tabley, tabley) of random mumbers are constructed, one for
each of the functions hg, 1, and hy. Each table contains one random number for each possible
character at each position 7 in the key. Let a key be the character string k = k1ko. .. ky. Then
the triple is computed using the following formulas:

ho(k) = (i tableg; (k,)) modn

i=1

hi(ky = (Zy: tables; (kt)) modr
i=1
ho (k) = (i tabley; (k,)) modr + 7.

Assuming the triples (ho(k), h1(k), ha(k)), k € S, are random, it is possible to derive the prob-
ability that the triples are distinct. Let ¢ = nr? be the size of the universe of triples. The
probability of distinctness for n triples chosen uniformly at random from ¢ triples is

(=1 -(t=—n+1l) ()
in ot

pln,t) = -

By an asymptotic estimate from Palmer {26],

and for typical values of r = ¢n/log, n, where ¢ is a constant,

n2(log2n)2} :exp{_M} 1 (logyn)?

(3R] -
p(n,1) exp{ on(cn)? 2¢%n 2¢2n

so that p(n, 1) goes to 1 quite rapidly with n. We almost always find a suitable set of triples the
first time, and even have good success when ho, i1, and hy are all determined using permutations
(different views) of one random table.

Pearson [28] advances an alternative approach that might allow smaller tables than ours.
Further research can investigate this possibility.

3.2 Vertex Degree Distribution

Our second key concept is that the distribution of degrees of vertices in the dependency graph is
decidedly skewed, and indeed has a number of interesting properties. In particular, we show that
in a random dependency graph most vertices have low degree. We exploit this fact to obtain
small levels in the ordering. Concentrate on a particular vertex v and the edges incident on it.
The probability that a particular edge from edge set E is incident on v is p = 1/r. Let X be the
random variable that equals the degree of v. Then (see [11]), X is binomially distributed with
parameters n and p. Since the case of large n is of interest, the Poisson approximation to the
binomial distribution applies:

E—AAd
d!

where A = np = n/r. From the Poisson approximation, the expected number of vertices of
degree d is given by

Pr(X =d) =

Ore=nT (g)d

2rPr(X =d) ~ p

When » = n/2 (A = 2), the expected number of vertices of degree 0, 1, 2, 3, and 4 are ap-
proximately 0.27r, 0.54r, 0.54r, 0.36r, and 0.18r, respectively. The skewed distribution of vertex
degrees provides the inspiration for a new Ordering heuristic. Instead of ordering the edges
(keys) of the dependency graph as mincycle does, the new heuristic orders the vertices. Let

v1,Va,..., Ve be any ordering of the vertices of the dependency graph. For each v, there is a
set of edges K (v;) that go from v; to vertices earlier in the ordering

K'(’Ug) = {(’Ug,’vj) [El_} < 3}

This set of edges is also a set of keys, and every key occurs in exactly one K(v). K(v;) may be
empty, but cannot be larger than the degree of v; (it is often smaller). The ordering of the set
of keys into levels is just the ordering of the nonempty K(v:).

As discussed in the next section, it is desirable to have levels that are as smal] as possible and
to have all large levels early in the ordering. This suggests that a vertex of larger degree should
be processed earlier than a vertex of smaller degree. This also suggests that a vertex whose
K set is (currently) larger should be chosen next in the ordering over a vertex whose K set is
(currently) smaller. Finally, it is imperative that the Ordering heuristic be able to choose the
next vertex in the ordering quickly and simply. The new Ordering heuristic described in Section
4 evolved from these insights gained by examining the skewed distribution of vertex degrees and
from the imperative of choosing the next vertex quickly.

3.3 Fitting into a Disk

At each iteration of the Searching step, one level of the ordering is to be placed in the hash
table. Each level is the key set K(v;) corresponding to a vertex v;. For purposes of illustration,
assume that v; € {r,...,2r — 1}. Each key k € K(v;) has the same hs value hy(k) = v; and,
therefore, will have the same g o hy value g (h2(k)) = g(v;). By assumption, the g o by value of
k is already selected. Since all kg values are already defined, h(k) is determined by the selection
of g(v;). Consider the sum of the two values already known for k. Let

b(k) = ho(k) + g(hl(k))
Then

h(k) = (b(k) + g(vi}) (mod n).

The b(k) values for all keys k € K (v;) yield offsets from g(v;) (mod n) to the hash values of the
keys.

The set of b(k) values constitutes a pattern (mod n). The pattern may be viewed as being
in a circle of n slots and subject to rotetion by the amount g(v;). The hash table is viewed
as a disk with n slots, some of which may already be filled. To successfully assign hash values
to the keys in K(v;), the Searching step must determine an offset value g(v;) that puts all the
b(k) + g(v:) values in empty slots of the hash table simultaneously. This process we refer to as
fitting a pattern into a disk.

Finding hash values for a set of j related words corresponds to finding suitable g values so
that the pattern of size j can be placed into the disk, with each of the § words fitting into an

10

empty slot. Clearly, when j = 1 this is possible as long as there is an empty slot. Further,
regardless of the size of j, it is always possible to fit a pattern into an empty table. We would
expect, therefore, to be able to find a hash function if vertices of large degree are handled when
the disk is mostly empty, and if when the table is starting to get full, remaining vertices are of
low degree, preferably degree 1. In {16] we derive the probability of fitting a pattern of size j
into a m slots disk with f slots occupied already:

Pr{fit) = 1—e7*

b= ((h%)j_l(m—f)) .

Note that if f is a function of m such that f < (1 — ¢)m, for some constant ¢ > 0, then p — 0
and Pr(fit) — 1. For our purposes, this means that the disk must be slightly less than full
(f < (1 — €)m) when the last pattern of size j > 1 is placed.

where

4 Algorithm 1 Outline

Our first algorithm for finding MPHFs for large key sets is an extension of earlier work by Sager
[31] and builds on our new insights. To aid in subsequent discussion, we therefore summarize
the terminology introduced by Sager and later extended by us as our method developed. Please
refer to Table 1 for clarification in the discussion below. Because the algorithm that we describe
finds minimal perfect hash functions, m = n, and we only mention n.

Recall that the class of functions from which the perfect hash function is selected is

hik) = (ho(k) +g(h(k)) + g(hg(k))) mod n
where
g:{0,...,2r—1} - {0,...,n—1}

is a function whose values are to be determined during the Searching step. r is a parameter that
is typically n/2 or less. The larger r is, the greater the probability of finding a MPHF, but the
greater the size of the resulting MPHF,

Our algorithm for selecting h has three steps: Mapping, Ordering, and Searching.

4,1 The Mapping Step

The Mapping step takes a set of n keys and produces the three auxiliary hash functions ho, Ay,
and hy (see Section 2.5). These three functions map each key & into a triple

(ho(k), By (), ho(R))-

11

universe of keys

cardinality of U/

key for data record

subset of I/, set of keys in use

cardinality of S

hash ordering, with slots numbered 0,...,(m — 1)

number of slots in T'

function to map key k into hash ordering T

space to store hash function

parameter specifying the number of vertices in one part of the dependency graph
three separate random functions easily computable over keys
function mapping 0,...,(2r — 1) into 0,...,(m — 1)

number of levels in the ordering

ot

-.,E;S SRR

nuna

ho,hi,h

i

ok

Table 1: Summary of Terminology

Because the ultimate MPHF must distinguish any two of the original keys, it is essential that
these n triples be distinct. As discussed in Section 3.1, if hg, k1, and hs are random functions,
it is very likely that the triples will be distinct. The hg, Ay, and hy values are used to build a
bipartite graph called the dependency graph. In turn, the graph can be employed to verify that
triples are distinct.

Half of the-vertices of the dependency graph correspond to the h; values and are labeled
0,...,r—1. The other half of the vertices correspond to the hy values and are labeled », ..., 2r—1.
There is one edge in the dependency graph for each key in the original set of keys. A key &
corresponds to an edge labeled k between the vertex labeled hq(k) and the vertex labeled hy (k).
Notice that there may be other edges between hy (k) and ha(k), but those edges are labeled with
keys other than k. If the value ho(k) is associated with the edge k, then all the information
that the Ordering and Searching steps need to construct a MPHF is present in the dependency
graph.

Two data structures describe the dependency graph, one for the edges (keys) and one for the
vertices (h1 and hy values). Both are implemented as arrays. The vertex array is

vertex: array [0..2r-1] of record
firstedge: integer;
degree: integer;
g: integer;
end

firstedge is the header for a singly-linked list of the edges incident on the vertex. degree is
the number of vertices incident on the vertex. g is the g value for the vertex, which is assigned
in the Searching step. The edge array is

edge: array [1..n] of record

12

(1) build random tables for hg, hq, and ho
(2) foreachve[o...2r— 1] do
vertex[v].firstedge =0
vertex[v] .degree =0
{3) for each 1 €{1...n] do
edge[il.hg = hp(k;)
edge [i} .hy hi(ki)
edge[i] chy = hg(ki)
edge[i] .nextedge = 0
add edgel[i] to linked list with header vertexlhy(k;)].firstedge
increment vertex[hy(k;)].degree
edge[i].nextedgey, = 0
add edge[i] to linked list with header vertex[hy(k;)].firstedge
increment vertex[hy(ks)l.degree
(4) for each ve [0...r — 1] do _
check that all edges in linked list vertex[v].firstedge have
distinet (hg,hy,hq) triples.
(3) if triples not distinct then
repeat from step (1).

it

Figure 3: The Mapping Step

hg, hy, hg: integer;
nextedgeq: integer;
nextedges: integer:
end

ho, hy, and hg contain the kg, hy, and hy values for the edge (key). Also, nextedge;, for side
i (= 1,2) of the graph (corresponding to hy, ho, respectively), points to the next edge in the
linked list whose head is given by firstedge in the vertex array.

Figure 3 details the Mapping step. Let ky,kp,...,kn be the set of keys. The kg, hy, and
hy functions are selected (1) as the result of building tables of random numbers as described in
section 3.1. The construction of the dependency graph in (2) and (3) is straightforward. In (3)
when edges are added to the appropriate linked list, values for nextedge; in the edge array are
updated as needed. (4) examines sets of edges having the same hy value to check for distinct
{hg, hy, ho) triples; since vertex degrees are small (section 3.2), (4) takes expected time that is
linear in n. In the rare (recall section 3.1) circumstance that distinet triples are not produced
(8), new random tables are generated, defining new hg, hy, and hy functions. The probability
that random fables must be generated more than twice is exceedingly small. Therefore, the
expected time for the Mapping step is O(n).

13

4.2 The Ordering Step

‘The Ordering step explores the dependency graph so as to partition the set of keys into a sequence
of levels. The step actually produces an ordering of the vertices of the dependency graph (at
least those that do not have degree zero). From the vertex ordering, the sequence of levels is
casily derived. If the vertex ordering is vy,...,v;, then the level of keys K(v;) corresponding
to a vertex v;, 1 < ¢ < ¢, is the set of edges incident both to v; and to a vertex earlier in the
ordering. More formally, f 0 < v; <r—1,thenlet z =1, y = 2, while if »r < v; < 2r — 1, then
let 2 =2 y=1.

I{(’U,‘) = {kjlhm(kj) = U,;,hy(kj) = Y, § < Z}

The rationale for the vertex ordering is discussed in section 3.2.

An analogy with Prim’s algorithm {33] for constructing a minimum spanning tree will help
Hluminate the heuristic for ordering vertices. At each iteration of Prim’s algorithm, an edge is
added to the minimum spanning tree that is lowest in cost such that one endpoint of the edge
is in the tree and the other endpoint is not. Of course, when an edge is added to the tree, so is
a vertex. One implementation of Prim’s algorithm maintains the unexamined edges that have
at least one endpoint in the tree in a heap so that the cheapest edge can always be selected in
logarithmic time.

Our ordering heuristic initiates the ordering with a vertex v, of maximal degree. At each
iteration of the Ordering step, a previously unselecied veriex v; is added to the ordering. wv; is
selected from among those unselected vertices that are adjacent to at least one of vy, ..., v;_y;
from among these vertices, v; is selected to have maximal degree. If there are no such unselected
vertices and there remain unselected vertices of nonzero degree (i.e., another connected compo-
nent needs to be processed), then select any vertex of maximal degree to be v;. The algorithm
maintains the unselected vertices that are adjacent to selected vertices in a heap VHEAP ordered
by degree. Figure 4 gives the Ordering step.

‘The heap operations are initialize (start an empty heap), insert (add a vertex to the
heap), and deletemax (select a vertex of maximum degree and remove it from the heap). Each
heap operation can be accomplished in O(logn) time (since r = O(n)). Because the vertex
degrees of a randomn dependency graph are (mostly) small, there is an optimization possible to
speed the heap operation. In this optimization, VAEAP is implemented as a series of stacks and
one bounded size heap. Most vertices have degree 1, 2, 3, or 4. One stack is provided for each
degree, so that the size of the heap is kept below a constant. Usnally, the heap VOHEAP contains
all vertices of degree > 5. When a vertex w is to be added to VHEAP, the degree of w is checked.
If the degree is < 4, then w is added to the appropriate stack; otherwise, w is inserted in VOHEAP,
All list operations take constant time. The time for the Ordering siep is thus actually linear.

There is one issue not addressed in Figure 4: the dependency graph may not be connected.
Typically, the dependency graph consists of one large connected component and a number of
smaller components. By choosing v; as a vertex of maximal degree, the algorithm is almost cer-
tainly choosing v; in the large component. Therefore, the algorithm selects the large component
first. After that, it must process the remaining components in the same fashion. The algorithm
maintains a list of those vertices not yet selected and can easily find an unselected vertex of
maximal degree. Therefore, the Ordering step is able to order all vertices of degree > 0.

14

initialize(VHEAP)
vy = a vertex of maximum degree
mark vy SELECTED
for each w adjacent to v4 do
insert(w, VHEAP)
i=2
while some vertex of nonzero degree is not SELECTED do
while VAEAP is not empty do v; = deletemax(VHEAP)
mark v SELECTED
for w adjacent to v; do
if w is not SELECTED and w is not in VEEAP then
insert{w, VHEAP)
i=i+41

Figure 4: The Ordering Step

In our most recent implementation, we have refined the Ordering step to take advantage of
the cycle structure of the graph [14). In cach component, we identify any maximal subtree that
attaches to the remainder of the component through a single cut point. It is easy to verify that
each edge of such a subtree can always be made to appear in a level of size 1. We identify these
subtrees in linear time and place them at the end of the ordering. This improves the probability
of success for the Searching step.

4.3 The Searching Step

The Searching step takes the levels produced in the Ordering step and tries to assign hash values
1o the keys, a level at a time. Assigning hash values to X (v;) amounts to assigning a value to
g(v;), as is indicated in Section 3.3. To this end, we define a hash-table data structure

hash-table: array [0.n —1] of record
key: integer
assigned: boolean
end

where key is the index to the key that has hash value i, and assigned is a flag as to whether
the hash value i has been assigned to any key yet,

When a value is to be assigned to vertex[i].g, there are usually several choices for vertex[i].g
that place all the keys in K (v;) into unassigned slots in hash-table. The analysis and the empirical
results mentioned in section 3.3 indicate that an acceptable value for vertex[i].g should be picked
at random rather than, for example, picking the smallest acceptable value for vertex[il.g. In
looking for a value for vert ex[i].g, the Searching step uses a random probe sequence to access
the slots 0,...,n — 1 of the hash-table.

15

(1) for ieo...n~1]do
hash-table[il.assigned = false

(2) for i=1 to t do

(3) establish a random probe sequence sq, sy, . .. ySp_y for [0...n—1]
i=o0
do

collision = false
ifvi €[0...r— 1] then w=1else w =2
for each k € K(vy) do
(4) h(k) = edgellk].hg + vertexfedge[k].hg_g] + s j (modn)
(5) if hash-table[h{k)].assigned then
collision = true
collision = true
(6) if not collision then
for each k € K(v;) do
hash-tablelh(k)].assigned = true
hash-table[h(k)].key =k
else
j = J +1
(7 if j >n—1 then
fail
while collision

Figure 5: The Searching Step

Figure 5 gives the algorithm for the Searching step. A random probe sequence of length n
Is chosen in step (3). The probe sequence actually used in our implementation has only a weak
claim to randomness: that is, just a small amount of randomness is sufficient to make a good
Searching step. At the beginning of the Searching step, the current implementation chooses a set
of 20 small primes (or fewer if n is quite small) that do not divide n. Each time (3) is executed,
one of the primes g is chosen at random to be 5; and is used as an increment to obtain the
remaining s;, j > 2. Thus, the random probe sequence is

0,9,2¢,3¢,...,(n - 1)q.

A more robust random probe sequence would choose the increment ¢ at random from 0,...,n—1
such that the greatest common division of qand nis 1. As just mentioned, such a robust sequence
does not appear to be necessary.

A detail that is omitted from Figure 5 is the action taken when the Searching step is unable
to insert a level into the hash table (fail in (7)). This is such a rare occurrence that for a large
enough value of » and an appropriate choice of r, it is very unlikely to occur even once in the
execution of the algorithm. Therefore, one reasonable response to this rare event is to restart

16

Word ho-value | hy-value | As-valne
Asgard 2 0 5
Ash 3 0 5
Ashanti] 2 3
Ashcroft 3 1 5
Ashe 5 i 3
Asher i 1 3

Table 2: Example: Set of Words with Associated hg, h1, s Values

the algorithm from the beginning with new random tables for hg, k1, and h,. Our current
implementation actually uses a simple backtracking scheme. It assigns new g values to earlier
vertices and then tries to complete the g function for the entire graph. More sophisticated
backtracking schemes are possible, but, as mentioned above, it is unclear whether the added
effort is justified.

5 Example

We illustrate our algorithm using a key set of 6 words that has actually been processed to yield
a MPHF. The set of words was drawn from the initia] portion of the Collins English Dictionary
[21). The 6 words with their ho,hq, and hy values are given in Table 2. The hg, hy, and hy
functions are the auxiliary hash functions found in the Mapping step.

From this assignment of A; and hy values, the bipartite dependency graph shown in Figure
6 is produced. Note that some vertices (1, 3, and 5) are quite “popular” while vertex 4 is left
out. Each word is associated with edges; there are two pairs of words, (Asgard, Ash) and (Ashe,
Asher), that each have the same endpoints. This is allowed here, since the hg values will allow
separation between words when the final hash value is computed.

The Ordering step finds an order for the vertices 0,1, 2,3, and 5 (those of degree > 0). The
process of selecting the order is shown in Figare 7. In 7(a), an arbitrary vertex, 1, of maximum
degree (3) is selected to be vi; the result is v; = 1. Next, in 7(b), the vertices 3 and 5 adjacent to
vertex 1 are examined to find one of maximum degree; the arbitrary selection of vy = 5 has been
made. In 7(c), the vertices 0 and 3 (each adjacent to one of the vertices 1 and 5) are examined;
the selection v3 = 3 is made becanse vertex 3 has higher degree than vertex 0. In 7(d), vertices 0
and 2 are examined; the selection v4 = { i1s made because vertex 0 has higher degree than vertex
2. Finally, in 7(e), the selection vs = 2 is made.

The result of the Ordering step is the vertex order 1, 5,3, 0, 2. We obtain an ordering of 4
levels, shown in Table 3. Level 5 corresponds to the set of keys K (vig1) for vertex w;y;. Thus,
level 2 corresponds to the set of keys K (vs) = {Ashe, Asher}. The level sizes are bounded above
by the degree of the corresponding vertex and are typically smaller. For example, the degree of
v is 3 but [K(v3)} = 2.

The Searching step assigns g values to the vertices 1, 9, 3, 0, and 2, in that order. The

17

Figure 6: Example: Dependency Graph

0] 2 0 1 2
Ko K
3 4 5 3 4 5

(a) Vertex selected: 1 (b) Vertex selected: 5
Initialization Level: (1,5)
0 1 2
o <o
3 4 5 3 4 5
{c) Vertex selected: 3 (d) Vertex selected: 0
Level: (1,3),(1,3) Level: (0,5, (0,5
0 1 2
(o]
3 4 5
(¢} Vertex selected: 2
Level: (2,3)

Figuze 7: Example: Ordering Step

18

| Level [Size of Level | Keys in This Level |

1 1 Asheroft
2 2 Ashe, Asher
3 2 Asgard, Ash
4 1 Ashanti

Table 3: Example: Levels in the ordering
assignment process is illustrated in Figure 8. The g value for v; = 1 is arbitrary; in 8(a), the
assignment g(v;) = 2 has been made. Vertex vy = 5 is next; K(v2) = {Ashcroft}. We know

ho(Asheroft) = 3
g(hl(Ashcroft)) = g{v) =2

In 8(b), slot 1 has been selected for Asheroft. Therefore,

h(Ashcroft) — ho(Asheroft) ~ g(h1(Asheroft)) (mod 6)
= 1-3-2 (mod6)=2.

g(va)

The next vertex is vz = 3; K{v3) = {Ashe, Asher}. We calculate

b(Ashe) = ho(Ashe) + g(h{Ashe)) (mod 6)
5+2 (mod6)=1

and
b(Asher) = ho(Asher) + g(hi(Asher)} (mod 6) = 3.

Therefore, this level gives a pattern 11,3} to fit into the hash table. There are, of course, many
values of g(v3) that make the pattern fit. In 8(c), the random value selected is g(vs) = 3, which
makes

h(Ashe) 143 (mod6)=4

H

h(Asher) = 3+3 (mod 6) = 0.

The next vertex is vq = 0; K (vs) = {Ash, Asgard}. The pattern for this level is {4,5}. There
is only one value for g(u4) that fits this pattern into the hash table. In 8(d), the value g(v4) = 4
is selected, which fits the pattern in slots 2 and 3.

The last vertex is vs = 2; K{(v;) = {Ashanti}. Slot 5 is the only one remaining in the hash
table. The selection g(vs) = 2 is necessary to place Ashanti in slot 5.

19

0 0
1
<o 2 o
3 4 5 3 3 4 5
@ Vertex assigned: 1 4 (b} Vertex assigned: 5
Initialization: glv))=2 5 Slot filled: {1}
0 1 2 0 1 2
o L -
3 4 5 3 4 5
(c) Vcrtex_assigned: 3 (d) Vertex assigned: 0
Slots filled: {0,4] Slots filled: {2,3}
0 1 Note:
El stands for a slot open for fill;
stands for a slot filled in at
3 C: current level;
(€) Vertex assigned: 2 stands for a slot that already
Slot filled: {5} has been filled.

Figure 8: Example: Searching Step

[Vertex [g Value |
t

TV ohe QO B =
S SURN LR SR U

Table 4: Example: Vertices with Computed g Values

20

O S T T N

L P S o =]

| Keys | Hash Address |
Asgard
Ash
Ashanti
Ashcroft
Ashe
Asher

S o = O WS B

Table 5: Example: Keys with Computed Hash Addresses

The selected g values are summarized in Table 4. Note that an arbitrary g value has been
assigned to vertex 4, even though it was not in the sequence of ordered vertices, because it is of
degree 0. In general, the Searching step assigns an arbitrary g value to each vertex of degree 0
so that g (and, hence, h) is a total function. No keys in the get S will actually access the ¢ value
of a vertex of degree 0.

"The ultimate hash values for the six keys are given in Table 5. As required, the six hash
values are distinct (we have a perfect hash function £), and the hash values are all less than 6
(h is a minimal perfect hash function).

6 Experimental Resulis

determination, we collected distribution data regarding the vertex degrees in dependency graphs
and level sizes in the ordering. For a detailed discussion of these data, refer to [16].

A variety of experimental tests have been made with versions of Algorithm 1, using ports to
Apple Macintosh, IBM PC compatible, IBM PS/2, Cray XMP, and other systems. A comparison
for Macintosh and Sequent Symmetry is given in [16]. For consistency, we focus below on timings
using a Sequent Symmetry with 32 megabytes of main memory, running on a single (80386)
processor running at about 4 MIPS, reporting UNIX “times()” results.

Table 6 shows timings for each phase of the algorithm, omitting only time required to double
check that an MPHF has heen found. Total time is given, along with two metrics for the size
of the hash fimction, which we here fix by selecting r = 0.3n, F irst, since we claim less than
O(n) words/key is required, words/key is fixed at 0.6. Second, since O(n) bits/key is the lower
bound, we show bits/key. Note that key set sizes are given as successive powers of 2, from 2°
through 21%, so it is'easy to see the time required is O(n). By our selection, O(n) words/key
is required; we have also found that fewer words/key are needed as the key set size increases,
suggesting < O(n) words/key.

In summary, our algorithm processes large key sets well, and while there is some variation in
processing time because of the probabilistic nature of the operations, with an appropriate value
for r the algorithm finds a MPIF with high probability.

21

n | bits/key Mapping Ordering Searching | Total

32 3.0 0.37 0.02 0.03 0.42

64 3.6 0.75 0.03 0.07 .85

128 4.2 0.60 0.05 0.08 0.73
256 4.8 0.97 0.05 0.18 1.20
519 b4 1.23 0.08 0.35 1.67
1024 6.0 1.50 0.17 0.67 2.33
2048 5.6 2432 0.30 1.67 4.38
4096 7.2 347 0.62 3.13 7.22
8192 7.8 5.53 1.27 5.92 | 12.72
16384 8.4 9.87 2.52 12.05 24.43
32768 9.0 18.78 5.05 24.62 | 4345
65536 9.6 35.68 10.20 50.02 | 95.90
131072 10.2 69.70 20.15 101.08 | 190.93
262144 16.8 137.97 40.30 201.67 | 379.83
524288 114 275.25 §1.23 406.58 | 763.07

Note: for all runs,
Words/key = (.6;
Number of Stacks — 12;
Machine = Sequent;
Time (CPU) is in seconds.

Table 6: Timing Results for Algorithm 1

22

6.1 Large Key Sets

The largest sets of keys we have been able to handle directly with our initia) algorithm are a
collection of over 420,878 French words and a set of 219 = 524, 288 names taken from the Online
Computer Library Center {OCLC) catalog, since our data structures have been tuned to require
a maximum of 9n computer words. Our Sequent has sufficient primary memory for this to work
well. For the French words, the graph used has r = -25n, so |h| required 0.5 words/key. The
Ordering step was modified to use 12 stacks, one for each vertex degree between 1 and 12. This
modification led to a fast Ordering time of 53 seconds, while the time for the Searching step was
608 seconds. The total time, ncluding the Mapping step, for our algorithm to find a MPHF for
the 420,878 words was 812 seconds. For the OCLC keys, total time was 763 seconds.

For very large key sets, the primary limitation on the efficiency of our algorithm comes from
the size of main memory. If litile of the dependency graph can fit in the main memory of
a virtual memory machine, then Swapping occurs with a large proportion of the references to
the dependency graph. This is because the graph is a random one and, therefore, violates the
Principle of Locality.

With the modified implementation, a MPHT for a key set consisting of 1.2 million words was
constructed on the Sequent Symmetry. The dependency graph was partitioned into 6 subgraphs
of approximately equal size. In one run r = .30n, so |k| required 0.60 words/key. The total time
to construct the MPHF was 4804 seconds.

6.2 CD-ROM Versions

As mentioned earlier, one application for our MPHF method is to improve access time on OD-
ROMs where records addressed by single keys are sought. We have prepared a demonstration of
this for Virginia Disc One (13]. In particular, we took a 130,198 word collection and stored the
g function and other parameters, along with the word strings corresponding to the hash table,
on the CD-ROM. Users can ask for words in the Collins English Dictionary [21] or in files we
have extracted from the AlList Digest (distributed over the Internet), the two sources for this
set, and be told instantly what hash value has been assigned.

7 Algorithm 2

Algorithm 1, developed in 1989 [16] and summarized in sections 4-6 above, has O(n) time
complexity and less than O(n) words space complexity. An extension of that algorithm, yielding
order preserving minimal perfect hash functions, is discussed in (14]. This development led to
further work in Spring 1990, leading to Algorithm 2, which has O(n) time complexity and O(n)
bits space complexity [8]. An overview of this method is given below.

23

7.1 Basic Concepts

Algorithm 2 still applies the concepts explained in section 3, but adds several more insights.
First, to reduce the size of the hash function to approach the theoretical lower bound, the
domain of g is taken as {0,...,r — 1} where r = [en/logsn], and ¢ is a constant typically less
than 4. The class of hash functions searched is:

) { (Ro(R)g(hi(k)) + ha(k)g?(hi(k)) mod n if mark(hy(k)) =1
k)=
g(hi(k)) if mark{h,(k) =0
where
ho - U - {0,...,n—1}
h1: U —* {O,...,T—l}
Ry : U — {0,...,n~1}

g: {0,...,7—=1} — {o,...
mark : {0,...,r—1} — {0,1}.

Here, hy, hy and h, are random mapping functions as before, while g and mark are parameters
to be determined. Total space for these functions is en(1 4 1/logan) bits, so space is O(n) bits,
typically < 4n bits.

Second, the form of k is such that h; and ha play very different roles. This means that
there is no dependency graph. Use of primary memory is greatly reduced, allowing easier MPHF
constructions for very large key sets.

Third, guadratic hashing is utilized. This leads to the use of the mark bits, and requires
an extra multiplication in cases where the mark bit is set. Yet the power of quadratic hashing
allows smaller MPHFs to be found very quickly. '

yn—1}

7.2 Overview of Steps

As in Algorithm 1, Mapping, Ordering, and Searching are required. This is no dependency
graph, however, so Ordering and Searching simplified.

7.2.1 The Mapping Step

The Mapping step is like the procedure described in section 4.1 but A, ki, and ky are taken
modulo n, r, and n, respectively. The mark bits are set as part of this step, too.

7.2.2 The Ordering Step

Ordering involves two passes through the triplets (ho(k), h1(k), ho(k)). In the first pass, by values
are used to build a one dimensional array A of linked lists labeled 0,...,r — 1. The set of keys
stored in linked list A4;, the ™ record of 4, 0 < i< r—11is :

K(4;) = {k|ha(k) = i}

The A array is

24

A: array [0..r-1] of record
firstkey: integer;
degree: integer;

g: integer;
mark: boolean;
end

firstkey is the header for a singly-linked list of keys with hi(k) = 1. degree is the cardinality
of K(A;). gis the g value for 4;, which is assigned later in the Searching step. mark is set if
[K(A4;)] > 1 and is reset if | K(A;:)] < 1. More formally

o [1 A K(AD] > 1
mark(i) = { 0 if |I{§Az’)l <1

The keys array is

keys: array [1..n] of record
hg, hy, hy: integer;
nextkey: integer;
end

where nextkey points to the next key in the linked list whose head is given by firstkey in the
A array. In the second pass for Ordering, a number of stacks equal to the maximum cardinality,
MaxCard, of the A; are iitialized. Each stack is assigned to store entries of a cerfain size.
For example, Stack[1] is assigned to store entries of the Aj; array of cardinality equal to 1, and
so on. The A; array is scanned and all elements are pushed into their corresponding stacks
Stack{A;.degree]. For very large key sets, these stacks are maintained on external storage.

7.2.3 The Searching Step

As explained in Section 3.3, the set of keys k € K(A;) constitute a pattern. The Searching step
determines an offset g(7) that fits all elements of this pattern in empty slots of the hash table
stmullancously. The Searching step pops entries of A; from stacks and assigns hash values to all
keys in K (4;), in descending order of A;.degree. Thus, stacks for larger patterns are processed
before stacks with smaller patterns. Since h(k) = ho(k)g(i) + ha(k)g?(3), i = Ay (k), assigning
hash values to all keys in K (4;) is done by assigning a value to g(4). This (k) is a variation of
quadratic hashing and has the advantage of eliminating both elementary and secondary clustering
in the hash table. When all patterns of size greater than 1 are processed, assigning the rest of
the patterns of size 1 in A is done by setting g to the addresses of the remaining empty slots
in the hash table using the hash function h(k) = g(i). The mark(hi(k)) function is used to
distinguish which hash function has been used to hash k.

7.3 Experimental Results

In Table 7, we exhibit the strengths of Algorithm 2 in two different ways. The second and third
columns give timing results for our two algorithms under a uniform space assumption of 0.6

25

| Algorithm 1 | Algorithm 2 Near lowest bits/key
n Totals Totals achieved by Algorithm 2
(words/key | (words/key
=0.6) =0.6) bits/key | Mapping Ordering | Searching | Total

32 0.10 2.18 2,28 2.15 0.02 0.62 2.19
1024 1.33 2.95 3.19 2.58 0.05 1.13 3.76
131072 189.28 98.93 3.24 58.18 743 | 14569.12 | 14634.73
262144 374.09 194.43 3.61 117.63 15.82 4606.75 | 4740.20
524288 808.34 383.57 3.60 228.10 34.43 | 14120.87 | 14831.73

Note: for all runs,
Machine = Sequent;
Time (CPU) is in seconds.

Table 7: Timing Results for Algorithms 1 and 2 using internal memory

words/key. While Algorithm 1 is faster for small key sets, Algorithm 2 proves itself significantly
faster for the large key sets. The last 5 columns show the results of pushing Algorithm 2 to
require as few bits as possible. The experiments indicated by these rows were conducted as
follows. Lower and lower bits/key values were tried until Algorithm 2 failed to find an MPHF
consistently. The time for those runs are reported in Table 7. The run for n = 262144 is
anomalous, indicating that bits/key can actually be pushed lower.

Algorithm 2 is also capable of running efficiently using external storage when there is not
suflicient internal storage. Timing results for some very large runs using external storage are
reported in Table 8. Note that the dominant contribution to time is the Searching step. This
time can be decreased dramatically by a modest increase in the bits /key values (see Figure 10).

Figure 9 illustrates the linear time complexity, giving total time (generally dominated by
Searching) for various set sizes. Figure 10 illustrates that few bits/key are required, regardless
of set size, but that time to find a MPHF increases rapidly as the theoretical lower bound on
space is approached.

8 Applications

As mentioned at the beginning of this paper, the most exciting aspect of this work is the wide
range of applications expected for the MPHF scheme. There is utility for MPHF's in regard to
hypertext, hypermedia, semantic networks, file managers, database management systems, ohject
managers, information retrieval systems, compilers, cte.

We have begun to exploit this potential in a number of areas. One, related to our work of
building a large lexicon from machipe readable dictionaries, is to construct a general dictionary
manager able to handle large keys set with associated fixed or variable length records. Our
MPHF system has been suitably embedded into a dictionary manager that can support a variety
of fanctions as can be seen in Figure 11. A version of this is used in connection with an X.500

26

Total Time {sec)

Near lowest bits/key
n achieved by Algorithm 2
bits/key | Mapping | Ordering | Searching Total
524288 3.59 447 .47 597.25 | 11476.13 | 12520.85
1200502 3.60 | 1060.62 | 1432.48 | 48118.00 | 50611.10
3875766 4.58 | 2114.15 | 2955.60 | 28243.25 | 33313.00

Note: for all runs except for n=3,875,766,

Machine =

Sequent;

for n=3,875,766,
Machine=NeXt
Time (CPU) is in seconds,

'Table 8: Timing Results for Algorithms 1 and 2 using external storage

20000 =

15000 4

10000 1

5000

words/key = 0.2

T
400000

Key Set Size ()

T
800000

Figure 9: Total Time vs. Key Set Size

27

T
1200000

50000 =
Q
40000
30000 ~
i —e— 524,288
o —{F— n=1,200,502
% —— n=3,875,766
E
£ 20000 4
£z
2
~
ax
wy
10000 =
—- =
Q4 — 1
10 20 30
Bits/key

Figure 10: Search Time vs. Bits/key

directory server implemented at the VPI&SU Computing Center.

We have integrated MPHT code with a tree manager so that large data collections that are
relatively static can be slowly updated or extended; when a sufficient number of changes (which
are recorded in the tree} have been made the system auntomatically empties the tree and builds
a new MPHF for the current data.

As work continues on our Large External Network Database (LEND), we expect to be able to
apply our MPHF scheme to support a variety of applications involving large semantic networks,
hypertext, hypermedia, and other large object bases. We believe that significant benefit will
result in connection with CD-ROM, optical disc, magnetic disk, and even primary memory
based retrieval.

9 Conclusion

This paper gives theoretical and experimental validation of practical new algorithms for finding
minimal perfect hash functions, suitable for key sets ranging in size from small to very large
(over a million}. Recent efforts have led to versions requiring time and space close to theoretical
lower bounds, and to methods to identify order preserving minimal perfect hash functions. These
algorithms are in use for a variety of applications, and should be of value in many situations
where single access is required for static key collections.

1. Define tables of n-fields. Each field may be an integer, a string of maximum length less than
N, or a string of length without limit. MPHF indexing on several fields may be specified.

2. Load each table with data. MPHF indexing is performed on fields defined to be MPHF
indexed. Duplication on field values can be handled.

Look up rows that have values for MPHT indexed fields that are equal to query terms.
- Retrieve a field value given row number and field name.

. Retrieve a whole row of a table.

= R O S L

. Delete/update a field value of a row.
Figure 11: Functions Supported by Dictionary Manager

10 Acknowledgments

We are grateful to Collins Publishers for allowing us to work with the machine readable copy of
the Collins English Dictionary. Professor Abraham Bookstein arranged for us to obtain the large
French word list in use at the ARTFL Project at the University of Chicago. Dr. Martin Dillon
of OCLC in Dublin, Ohio, arranged for us to obtain the 1.2 million key file from their catalog
records. Nimbus Records has pressed varions versions of Virginia Dise One that demonstrate
our algorithm running on a PC with attached CD-ROM drive.

29

References

{1] Brain, M.D., and Tharp, A.L. Near-perfect hashing of large word sets, Software — Practice
and Ezperience 19 (1989), 967-978.

[2] Carter, J.L., and Wegman, M.N. Universal classes of hash functions. Journal of Computer
and System Sciences 18 (1979), 143-154.

[3] Cercone, N., Krause, M., and Boates, J. Minimal and almost minimal perfect hash function
search with application to natural language lexicon design. Computers and Mathematics
with Applications ¢ (1983), 215-231.

[4] Chang, C.C. The study of an ordered minimal perfect hashing scheme., Communications
of the ACM 27 (1984), 384-387.

[5] Chang, C.C. Letter oriented reciprocal hashing scheme. Information Sciences 38 (1986),
243-255.

[6] Cichelli, R.J. Minimal perfect hash functions made simple. Communications of the ACM
23 (1980), 17-19.

[7] Cormack, G.V., Horspool, R.N -S., and Kaiserswerth, M. Practical perfect hashing. The
Compuler Journal 28 (1985), 54-58.

[8] Daoud, A.M. Efficient data structures for information retrieval systems. Dissertation pro-
posal, Department of Computer Science, Virginia Polytechnic Institute & State University,
July, 1990.

[9] Datta, S. Implementation of a perfect hash function scheme. Master’s Report, Department
of Computer Science, Virginia Polytechnic Institute & State University, 1988. Available as
Technical Report TR-89-9.

[10] Enbody, R.J., and Du, H.C. Dynamic hashing schemes. ACM Computing Surveys 20
(1988), 85-113.

[11] Feller, W. An Introduction 1o Probability Theory and its Applications, Volume 1. John
Wiley and Sons, New York, 1968.

[12] Fox, E.A. Optical disks and CD-ROM: publishing and access. In Annual Review of Infor-
mation Science and Technology, Martha E. Williams, ed. ASIS/Elsevier Science Publishers
B. V., Amsterdam, Vol. 23, 1988, 85-124.

[13] Fox, E.A. Virginia Disc One. CD-ROM developed at Virginia Polytechnic Institute & State
University and produced by Nimbus Records, Ruckersville, VA, 1990.

{14] Fox, E.A., Chen, Q., Daoud, A.M. and Heath, L. Finding order preserving minimal perfect
hash functions in average linear time and applying them to information retrieval, SIGIR
90, 1990.

30

[15] Fox, E.A., Chen, Q., Heath, L. and Datta, S. A more cost effective algorithm for finding
perfect hash functions. In Proceedings of the Seventeenth Annual ACM Computer Seience
Conference, Louisville, K'Y, 1089, 114-122,

[16] Fox, E.A., Chen, Q., and Heath, L. An O(nlogn) algorithm for finding minimal perfect
hash functions. TR 89-10, Department. of Computer Science, Virginia Polytechnic Institute
& State University, Blacksburg, VA, 1989.

(17} Fox, E.A., Nutter, J.T., Ahlswede, T., Evens, M. and Markowitz, J. Building a large
thesaurus for information retrieval. In Proceedings of the Second Conference on Applied
Natural Language Processing, Austin, TX, 1988, 101-108.

(18} Fox, E., Wohlwend, R., Sheldon, P., Chen, Q. and France, R. Building the CODER lexicon:
the Collins English Dictionary and its adverb definitions. Technical Report TR-86-23,
Department of Computer Science, Virginia Polytechnic Institute & State University, 1986.

[19} Fredman, M.L., Komlés, J. and Szemerédi, E. Storing a sparse table with O(1) worst case
access time. Journal of the ACM 31 (1984), 538-544.

[20] Gonnet, G.L. and Larson, P. External hashing with limited internal storage. Journal of
the ACM 35 (1988), pp. 161-184.

[21] Hanks, P., editor. Collins English Dictionary. William Collins Sons & Co., London, 1979.

{22] Jaeschke, G. Reciprocal hashing—a method for generating minimal perfect hash functions.
Communications of the ACM 24 (1981), 829-833. '

(23] Knuth, D.E. The Art of Computer Programming, Volume 3, Sorting and Searching.
Addison-Wesley Publishing Company, Reading, MA, 1973.

[24] Mairson, H.G. The program complexity of searching a table, Proceedings of the 24th IEEE
Symposium on Foundations of Computer Science, 1983, 40-47.

(25] Mehlhorn, K. On the program size of perfect and universal hash functions. Proceedings of
the 23rd IEEE Symposium on Foundations of Computer Science, 1982, 170-175.

[26] Palmer, EXM. Graphical Evolution: An Introduction to the Theory of Random Graphs.
John Wiley & Sons, New York, 1985.

[27] Park, S.K. and Miller, K.W. Random number generators: good ones are hard to find.
Commaunications of the ACM 31 (1988), 1192-1201.

(28] Pearson, P.K. Fast hashing of variable-length text strings. Communications of the ACM
33 (1990), 677-680.

[29] Ramakrishna, M.V. and Larson, P. File organization using composite perfect hashing.
ACM Transactions on Dalabase Systems 14 (1989), 231-263.

31

[30] Sager, T.J. A new method for generating minimal perfect hashing functions. Technical
Report CSc-84-15, Department of Computer Science, University of Missouri-Rolla, Missouri,

1984.

[31] Sager, T.J. A polynomial time generator for minimal perfect hash functions. Communica-
tions of the ACM 28 (1985), 523-532.

[31] Schmidt, J.P., and Siegel, A. On aspects of universality and performance for closed hashing.
Proceedings of the 21st ACM Symposium on Theory of Computing, 1989, 355-366.

[33] Sedgewick, R. Algorithms, Addison-Wesley Publishing Company, Reading, MA, 1988.

[32] Sprugnoli, R. Perfect hashing functions: a single probe retrieving method for static sets.
Communications of the ACM 20 (1978), 841-850.

32

