Computer Science Technical Reports
CS at VT

Graph Layout Using Queues

Heath, Lenwood S. and Rosenberg, Arnold L. (1989) Graph Layout Using Queues. Technical Report TR-89-45, Computer Science, Virginia Polytechnic Institute and State University.

Full text available as:
PDF - Requires Adobe Acrobat Reader or other PDF viewer.
TR-89-45.pdf (2436738)


We study the problem of laying out the edges of a graph using queues. In a k queue layout, vertices of the graph are placed in some linear order and each edge is assigned to exactly one of the k queues so that the edges assigned to each queue obey a first-in/first-out discipline. This layout problem abstracts a design problem of fault-tolerant processor arrays and a problem of sorting with parallel queues. We relate the queue layout problem to the corresponding stack layout problem using stacks (the book embedding problem) and immediately derive some asymptomic bounds for d-valent graph. We show that every 1-queue graph is a 2-stack graph and that every 1-stack graph is a 2-queue graph. We characterize the 1-queue graphs (they are almost leveled-planar graphs) and prove that the problem of recognizing 1-queue graphs is NP-complete. We give some queue layouts for specific classes of graphs. Relationships to cutwidth, bandwidth, and bifurcators are presented. We show a tradeoff between queuenumber and stacknumber for a fixed linear order of the vertices of G.

Item Type:Departmental Technical Report
Subjects:Computer Science > Historical Collection(Till Dec 2001)
ID Code:182
Deposited By:User autouser
Deposited On:05 December 2001