Rapid Prototyping
in Human-Computer Interface Development

H. Rex Hartson and Eric C. Smith

TR 89-42

In revision for Interacting with Computers, Butterworth Publishing, U.K,

RAPID PROTOTYPING IN
HUMAN-COMPUTER INTERFACE DEVELOPMENT

H. Rex Hartson
Erc C. Smith

Department of Computer Science
Yirginia Tech
Blacksburg, VA 24061

October 1989
(Revised)

ABSTRACT

Some conventional approaches to interactive system development tend to
force commitment to design detail without a means for visualizing the resuit
until it is too late to make significant changes, Rapid prototyping and
iterative system refinement, especially for the human interface, allow early
observation of system behavior and opportunities for refinement in
Iesponse to user feedback. The role of rapid prototyping for evaluation of
interface designs is set in the system development life cycle. Advantages
and pitfalls are weighed, and detailed examples are used to show the
application of rapid prototyping in a real development project. Kinds of
brototypes are classified according to how they can be used in the
development process, and system development issues are presented. The
futare of rapid prototyping depends on solutions to technical problems that
presently limit effectiveness of . the technique in the context of present day
software development environments.

Key words: rapid prototyping, human-computer interaction, prototyping,
user interface, development environment, development methodology,
evaluation, life cycle, software tools, user interface management

1. INTRODUCTION
1.1 The Concept of Prototyping

In a television interview [CBS 1986] Anthony Perkins described 2 technique
used by Alfred Hitchcock for developing and refining the plots of his movies.
Hitchcock would tell the stories ar cocktail parties and observe reactions of
his listeners. He would experiment with various sequences and mechanisms
for revealing the story line. Refinement of the story was based on listener
reactions as an evaluation criterion, Psycho is one notable example of the

results of this technique,

Automobile makers, architects, and sculptors make models; circuit designers
build "bread-boards"; aircraft developers test prototypes: artists experiment
with working sketches. In each case the goal is to provide an early ability to
observe something about the nature of the final product, evaluating ideas
and weighing alternatives before committing to one of them.

In contrast, conventional approaches to development of large interactive
software systems--a highly complex process that requires enormous
quantities of time, money, and personnel--tend to force a commitment to
large amounts of design detail without any means for visualizing the result
until it is too late to make significant changes. It is little wonder that there
is so much user dissatisfaction with many of the products so developed.

Recently, however, the techniques of prototyping, especially rapid
brototyping, and iterative refinement have emerged in the context of
software development, especially for the human-computer interface. Such
techniques allow the software development process to share the essence of
the Hitchcock story development scheme: refinement of the product based

on feedback from users.

One interesting point should be made concerning the Hitchcock approach: in
spite of the vast difference between prototype and finished product (i.e.,
verbal storytelling versus motion picture), the prototyping technique was
used to great effect by a master dialogue designer.

The protoryping approach to interactive software system development
involves production of at least one early version of the system that
illustrates essential features of the later, operational system. With rapid
prototyping, the process of constructing system prototypes is accelerated, so
that the time from beginning a prototype to evaluating user interaction is
much shorter. This, in turn, allows multiple iterations through the
refinement process and a finer tuning to the needs of the user, leading to a
high degree of confidence in the usability of the resulting system.

The technique of rapid prototyping may be applied to development of any
part of a system. For quite some time there has been considerable interest
in prototyping as part of the general software development process, without
specific emphasis on the user interface [Tanik and Yeh 1989]. However, the
focus in this paper is on the user interface and user-oriented issues such as
learnability, usability, and functionality. Often this can mean prototyping
only the interface portion of a system. Computation of results, storage and
retrieval of information, and other tasks not directly observable by the user
can be "stubbed" in the prototype, saving time in its construction.

1.2 A Natural Technique

Although prototyping, especially rapid prototyping, has been closely
associated in the literature with automated tools, it is important to recognize
that prototyping is q technique, not just a tool. The technique can be
effective even when performed manually, especially in the early, conceptual
stages of development. Creative use of paper and pencil prototypes, flip
charts, movable "stick-on" felt cutouts, and other props can sort out
important aspects of an early design before any implementation effort is
expended. One such prototype interface even included a borrowed
telephone receiver for the user to seek help information. Members of the
development team act out the role of the computer and evaluators act the
part of the user. Typically, a great deal of discussion accompanies the
interaction and weaknesses in the interface design are highlighted by the
amount of extra-system dialogue required to clarify the meaning of various
features and how to use them. Such theatrical dialectics seem to work best
when oriented toward a specific task, user goal, and situational context. The

interaction is concrete and fairly detailed. The results can often, however,
be generalized to cover other parts of the design as well.

In fact, since rapid prototyping is a technique that begins with specific
details of an interface design, then structures and refines them into a
system, there are sound theoretical reasons for believing that it is a nafuraj
technigue, grounded in the precepts of developmental psychology [Piaget
1952; Whiteside and Wixzon 1985]. Working from concrete to abstract is the
way humans naturally investigate new concepts and solve problems. To
both users and developers, a prototype is concrete while specifications are

more abstract.

Rapid prototyping is also essential to the notion of iterative refinement. It is
not that developers must be afforded a chance to be lazy or sloppy with the
initial design, but it is simply not possible, using design principles alone, to
get it right the first time. They are thus forced to adopt the "artillery
method™: Ready, fire, aim! The first shot serves to provide a reference point
from which successive adjustments are made in order to hit the target,

Ehn [1989] views design as a cooperative process and describes
communication among participants. Drawing on language philosophy of
Wittgenstein, Ehn focuses on a shift from language as description to
language as action. The prototyping approach is supported by his conclusion
that some design requirements are best conveyed by showing rather than

by just saying.

Not only is rapid prototyping a natural technique, but it is highly suitable
for the special situation in which various parties of the development team
find themselves. 1In the cooperative development activity of behavioral
scientists and computer scientists, a gap exists berween the skills and goals
brought to the task by each of these roles [Hartson 1985]. Computer
scientists often do not fully understand the need for user-centered design or
the behavioral scientist's concern for human factors or how good human
factors are achieved. Alternatively, the behavioral scientist often does not
appreciate the limitations and difficulties of building large interactive
Systems and of integrating the user interface with the rest of the software.

The behavioral scientist, trained in analysis and evaluation, is now part of
an environment primarily intended for synthesis and design. That
environment must, however, include analysis and evaluation. This is not
just a temporary situation, either, until developers learn how to do it right
the first time. Because, as Carroll and Rosson [1985] state, design activity is
essentially empirical "...not because we don't know enough yet, but because
in a design domain we can never know enough.” Conversely, knowledge on
the part of the designers that they do not have to get it right the first time
offers greater opportunities for exploration and experimentation with a
higher probability of a more innovative design. System design is inherently
more art than science, and art is where analysis meets synthesis because the
possibilities are infinite. The two developer roles must work together to

achieve an artful result.

The primary function of human factors work is testing. But at the beginning
of the development cycle there is nothing to test--a dilemma for the
behavioral scientist. Building a system to test is expensive and time
consuming and is a large investment in design concepts that have not been
evaluated; thus the dilemma affects the computer scientist, too. The needs
and constraints of each role conflict with those of the other role. Through
rapid prototyping, an early opportunity is afforded the behavioral scientist
to build good human factors into an interface design. By building ease of
testing and ease of modification into the prototype, the computer scientist is
providing human facrorability. Rapid prototyping is an important factor in
harnessing the sometimes opposing forces of these roles and helping them

work together.

1.3 Organization of This Paper

Section 2 weighs the advantages and pitfalls of prototyping, and section 3
introduces some dimensions from classifying various kinds of prototypes.
Section 4 describes some experimental and commercial prototyping systems
as examples to illustrate the classification scheme of section 3. Section 5 is
devoted to an example of the application of prototyping to a real
development project. In section 6, we look at the methodological and tool

environment that surrounds prototyping in the development process, and
some technical problems involved with prototyping are discussed in section

7.

2. WEIGHING RAPID PROTOTYPING
2.1 Advantages

Use of prototypes in the design and implementation of software systems
represents a significant departure from traditional development techniques.
To justify such a change in practice, some substantial benefits must be
obtainable. There are a few experimental studies on the subject of
prototyping versus classical system development methods in which benefits

to both developers and users are cited.

In an experiment conducted at UCLA [Boehm, Gray, and Seewaldt 1984],
some development teams used conventional development methodologies
while others employed prototypes in the software development process
(with no particular emhpasis on the interface). Systems produced by the
groups using prototypes were judged to be easier to learn and use than
those produced by standard methods. Groups using the prototyping
approach also appeared to be less affected by deadline pressures. Code of
the final systems produced by prototyping groups was only about 40
percent as large as that of their counterparts, possibly at a cost in generality
of design. Finally, the prototyping groups accomplished their task with 45
percent less effort than the other groups.

In a similar study [Alavi 1984], users of systems developed using the
prototyping approach were better disposed toward the product than were
users of non-prototyped systems. Developers felt that prototyping
enhanced communication about the proposed system. One developer
commented that, "The end-users are extremely capable of criticizing an
existing system but not too good at articulating or anticipating their needs.”
The prototype created a common baseline or reference point from which
potential problems and opportunities could be identified. Discussions could
take place between developers and users about good and bad features in the

evolving design. The prototype allowed these discussions to be conducted in

concretfe terms.

Users also tended to be more enthusiastic about a project in which they
were involved through the use and evaluation of prototypes. According to
the developers, this enthusiasm, together with the enhanced communication
of requirements, led to increased user acceptance of the systems. The first
version that users can experiment with, whether prototype or end product,
can cause them to change their view about what they want the system to do
[Wasserman and Shewmake 1982]. Use of prototypes in design evaluation
can facilitate earlier response to these changes and can increase the
likelihood that the end product will be what users really want.

The advantage that rapid prototyping has to offer in addition to the
prototyping concepts in the above studies is that of iterative refinement. In
each of the studies mentioned above, prototypes were manually coded by
the developers. Due to time constraints there was little opportunity for
multiple passes through the prototype phase of development. The rapid
prototyping technique can be enhanced by automated tools that allow
developers quickly to record the design of important components of the
proposed system--documenting its behavior, especially that of the interface.
Often, non-coding techniques, such as direct manipulation construction of
interface displays and state diagram representations of logical sequencing,
are used to represent the design. This representation of the design can then
be executed and used as a prototype. A prototype, however embryonic, can
be available for experimentation and evaluation very early in the
development cycle. Changes in the prototype can be made rapidly using the
same design representation tools. Because the tools allow rapid
representation of design ideas, users can be presented with many options
instead of a single design, increasing their ability to maneuver toward a
design that meets their needs. Because of the many advantages of rapid
prototyping, it is difficult to avoid the conclusion that no interactive system
ought to be produced without at least a simple paper and pencil prototype,

evaluated with user feedback.

2.2 Pitfalls

Prototyping, however, is not without potential drawbacks as an approach to
interactive system development. These are mostly pitfalls, rather than
disadvantages; with some caution they can be avoided.

One of the biggest dangers is found in attempts to use prototyping as a
development technique without first securing cooperation from the parties
involved and without establishing a thorough understanding of the process.
First, iterative refinement depends on the willingness and ability of
customers and users to provide useful feedback. Also, established
management procedures can make it difficult to deal with planning and
scheduling of a development life cycle quite different from the traditional

one. Managers may view as wasteful the application of resources to
building a prototype. System developers themselves also must have the
proper attitude. For example, Alavi [1984] noticed a reduction in

programmer discipline, possibly because the process was viewed as an
exercise rather than as "the real thing.” Also, prototypes of large systems
can themselves be large. The misconception that a prototype is just a toy
can lead to its development without a methodology to aid in its
management, resulting in a failed, unmanageable project. These problems
can be addressed by methodologies and tools built around a prototyping-
based approach (see section 6 on system development issues).

Some of the most serious problems occur if various parties begin to view the
prototype as the final systemm. User and developer enthusiasm for continued
development may diminish after a "working" prototype is provided [Alavi
1984]. Managers, upon seeing the prototype, can be tempted to rush it
prematurely to the market--often to the astonishment and frustration of the
developers. Both cases are abuses of the prototyping technique and
represent management problems that can be avoided by having an early
agreement about the role of prototyping in the overall development process.
The reader is referred to the subsection on management concerns under
section 6.1 on methodology and life c¢ycle for further discussion of

management problems and solutions.

Prototypes with emphasis on the user interface usually have a bottom-up
flavor to their development, because details of the interface design tend to
surface early. It can be difficult for a software engineer trained in the ways
of top-down, step-wise decomposition to accept such a different approach to
the interface portion of the system. Also, emphasis on the interface in the
prototype almost always leads to stubbing of computational functionality.
The temptation is to stub the difficult parts of the computational design
without first understanding their design requirements. Later, development
of the stubbed functions can reveal basic problems that affect the system at
many levels above the stub in question. The effect can even reach the
interface component. The result is upheaval rather than a smooth
progression toward an implementation. This kind of problem is a good
reason for mixing some bottom-up development--such as with (rapid)
prototyping--with the top-down step-wise decomposition process of the
computational software of the design [Hartson and Hix 1989b]. Another
reason is the development of error handling {McFarland 1986]. Strict
adherence to a top-down approach makes it difficult to specify an accurate
description of a system's error handling functions,

Finally, as Weiser [1982] points out, a prototype is a scale-model of a real
System and is limited regarding the accuracy with which it can represent
the real system. Prototypes usually focus on one aspect of a target system--
the wuser interface, system functionality, or system performance. If a
prototype is accurate in one of these areas, it is unlikely to be accurate in
either of the other two. Scaling back up to the real system will require
attention to where these inaccuracies oceur,

3. KINDS OF PROTOTYPES

There are a large number of techniques for prototyping. Gutierrez [1989]
highlights the need for a model of problem types to help fit the techniques
to the nature of the problem domain. Carey and Mason [1983] survey
several specific techniques and tools used for large information system
development efforts, along with a wealth of referemces to case studies.

Nielsen [1987] describes some dimensions on which a prototyping technique
can be classified, based on how a target system is scaled down in the
prototype. Vertical prototyping requires the number of features to be
reduced, yielding a narrow system with a depth in functionality maintained.
Evaluation can be realistic but only for a few functions. Horizontal
prototypes offer less depth in functionality, but are kept broad in features,
resulting in a shallow version of a full-featured system. Evaluation is less
realistic but covers the whole system. A “scenario” is reduced in both
dimensions, giving a quick, low-cost early prototype.

From the perspective of the development process there are at least four
(more or less orthogonal) other dimensions along which approaches to
prototyping can be classified. These dimensions are:

* specification: how are interface designs specified?

* maturation: how does the prototype grow into a product?
* Sscope: can prototype include the whole system or just the interface?

* executability: can prototype be executed at any time?

3.1 Specification: Techniques for Representing Interface Designs

Approaches to prototyping can be classified by the techniques used to
specify interface designs. Prototyping tools share this need for interface
specification with other interface development tools. Myers [1989] also uses
specification techniques as a means for classifying interface development
tools. A complete discussion of these techniques is beyond the scope of this
paper, but is treated in Myers [1989] and Hartson and Hix [1989a].

Formal context-free grammars, expressed in Backus-Naur Form (BNF) are
among the earliest ways of representing purely sequential control flow in
dialogue. State transition diagrams (STDs), the graphical equivalent of BNF,
are generally accepted to be easier to understand than BNF [Jacob 1982].
Jacob [1985] and Wasserman and Shewmake [1985] were among the leaders
in using executable state diagram specifications to provide working
prototypes. High-level "dialogue programming” languages have been used
to represent both sequential (e.g., RAPID/USE [Wasserman and Shewmake
1985]) and asynchronous (e.g., CHISL [Gray, Kilgour, and Wood 1988))

dialogue.

Jacob has also adapted STDs for the specification of asynchronous (non
sequential) interaction [Jacob 1986]. Event handlers [Green 1985; Hill 1987]
are used to specify interface and system reactions to internal events that
result directly from asynchronous user actions. In an interface tool called
MIKE, Olsen [1986] uses an approach to generate an interface from a
description of the system's schematic (computational) routines. The current
trend is toward more graphical, direct manipulation specification techniques,
and techniques that specify "by-demonstration” using inference and user
interaction to establish general specifications from specific examples [Myers

1988].

The interface specification techniques mentioned above represent not so
much a spectrum from which to choose as they do a historical progression.
These techniques are evolving and improving with regard to usability for
the developer. BNF represented early sequential dialogue structure.
Graphical diagrams improved readability. The move to asynchronous, direct
manipulation and by-demonstration interaction styles have prompted a
move to similar means for representing interface designs. For interface
developers who wish to concentrate on the interface and not the problem of
its representation, the less the representation technique is like a
programming language, the better. This is especially true as interface
development is falling more and more to behavioral specialists rather than
programmers [Richards, Boies, and Gould 1986].

10

3.2 Maturation: Revolutionary versus Evolutionary Prototyping

During its maturation from prototype to product, it is not unusual for a
software system to pass through several incarnations. The following steps

are common:

1. one or more prototypes
- 2. a development implementation
3. the final product

The scope of this paper includes steps 1 and 2, from which the Ffirst version
that can be called "the product” appears. The process of going from step 2 to
step 3 is a "software manufacturing" step, applied only to a system that is
fully developed. In the third step implementation is streamlined and
optimized by "code-smiths," often into assembly language. This step is
justified only if the potential market is large encugh to amortize the effort
or if there are special requirements for storage space, performance, or
reliability (e.g., in a Department of Defense or NASA contract). A software
company with a modest commercial market will often sell the development
implementation as the final product. If step 3 was involved in the
development, there is a danger that, when modifications are needed,
programmers may attempt to make changes directly to optimized code.
This, however, can cause a loss in project management control and
documentation, not to mention a gross deviation from development
methodology. The software manufacturing step is never considered as part
of the prototyping process; in the long run it is usually easier and more
effective to change the development version and regenerate the optimized
version. This is especially true if there are automated tools to help with the

optimization process.

The prototype-based development process is revolutionary in its maturation
if the prototypes of step 1 are discarded in the process of going to step 2. In
evolutionary maturation, the step 1 prototype eventually becomes complete
enough to be a step 2 implementation. The nature of the evolution to step 2
depends on representation of the design in the prototype. If the prototype
is coded, it may just be a matter of cleaning up the code and adding

I1

computational functionality. If the interface is represented in other ways
(e.g., state diagrams representing dialogue control), implementation can be
achieved by manually coding the state diagrams or, if suitable tools are
available, through compilation of the representation that previously was
interpreted in the prototype. In cases where hardware is involved,
revolutionary software prototypes are often a necessity. To this end Virtual
Prototypes, Inc. of Montreal provides techniques and tools to produce
"virtual prototypes," software replicas of hardware environments for display
and control (e.g., airplane cockpits) with automatically generated software
and touch senmsitive graphics. For interfaces where software design is the
issue, evolutionary maturation is most useful when the prototype is built as
early as possible and as rapidly as possible, without a large commitment of
resources. Otherwise, deadline pressures make it difficult for managers and
developers to work on a large prototype they know will be discarded. An
early switch from a revolutionary prototype to only implementation,
however, means that development at the end, when changes can be
surprisingly large and frequent, is done without benefit of a prototype. On
the other hand, a revolutionary prototype can seduce developers into the
trap of overdesign [Mantei 1986]. It is possible to become too attached to a
prototype and invest too much in its development, only to have it scrapped.
The engineering maxim of "making it good enough” applies particularly to
throw-away prototypes. The best way to avoid most of these problems is to
adopt the evolutionary approach, and not have to face the question of when

to discard the prototype.

3.3 Scope: Interface-Only versus Whole-System Prototyping

When the scope of the prototype is limited to just the interface, the
prototype is sometimes called a facade, interface simulation, or mock-up
[Gregory 1984], and the drawbacks are obvious. Interface situations
dependent on computational actions can be difficult to anticipate in the
interface. For example, the complicated dynamics of formatting displays for
paging and scrolling of retrieved database records within a window are
difficult to design and evaluate without some real output for testing. Also,
the interface developer cannot provide realistic messages in response to
computational conditions not fully known or understood. If the

12

computational component cannot be tested with the interface prototype, it is
more difficult to integrate the interface design with the rest of the software.
As computational functions come into existence, it.is greatly beneficial to be
able to see them in action in the prototype. Finally, of course, a prototype
cannot be fully evolutionary unless the whole-system is included in the

scope.

3.4 Executability: Intermittently versus Continuously Executable Prototypes

One of the most common kinds of prototype is "implementation as
prototype.” The idea is to implement a "bread-board" mockup of the system
to observe its behavior. Because the prototype is coded in a programming
language, it is an effective Wway to construct a whole-system prototype. The
disadvantage is that there are only intermittent times when the system
representation (i.e., the code) is in a state that can be executed and
evaluated. There are long intervals when, due to incomplete
implementation of routines, syntax and semantic coding errors, data typing
problems, unresolved symbolic references, and so on, it cannot run.
Anything syntactically incomplete or erroneous in the partially developed
code will prevent the prototype from executing. Configuration management,
which reverts to the most recent complete version, does not help, becauss
the partially developed modifications occurring since the most recent
running version are what need immediate testing. The result is slow
prototyping, not a process that is useful for evaluating many different
alternatives in an interface design. When each iteration is a lengthy process
of programming and debugging, fewer iterations are possible and users and
evaluators have correspondingly less opportunity to participate in the
design process. Also, of course, as the System grows, more and more delay
is incurred from compiling, linking, and loading.

A secondary negative effect of an intermittent ability to execute a prototype
is batching of modifications to be made. Since there are only particular
times when all routines can run together, Iargé and small changes tend to
get lumped together for the next version of the prototype. Every
modification to a version must then take as long as the longest item and
results of any changes are not seen until the next complete version is ready.

13

As a result, the large number of small iterations required for such design
decisions as syntax, message wording, and sequencing take a long time to
stabilize. For example, the small modifications that can be involved in
consistent assignment of programmed function keys to commands over an
entire interface require testing of several configurations because each one is
4 compromise involving many screens throughout the interface. A slow
batch-oriented development process does not serve this need. Rapid
prototyping allows the interface developer to concentrate directly on
coherent treatment of such a problem and get it under control early on,
rather than having to mix it in with all other interface problems. It is useful
to cycle through the life cycle phases of design and evaluation for one or two
interface features independently of the rest of the design. The software
development principle of continuous evaluation [Boehm 1983} is to be taken
quite literally in the realm of user interface development.

For most applications an evolutionary, whole-system, continuous prototype
is a desirable choice for the human factors developer, However
revoluationary, interface-only, intermittent prototypes are much easier for
the computer scientist to provide mainly because most programming
environments require programs to be complete and correct.

4. EXAMPLE SYSTEMS AND APPROACHES

4.1 Examples of Experimental Systems.

Construction and modification of software by ordinary programming
techniques are notoriously expensive and time consuming activities. Since
prototyping involves construction and modification of a software model of a
system, it should not be surprising that much rapid prototyping work to
date has been involved with the construction of special prototype definition
and execution environments. These environments attempt to allow
developers to construct useful prototypes while reducing the amount of
conventional programming required. Starting in the 1970's and on through
the 1980's several such environments and tools have been developed.

14

These have served as examples and starting points for much of the current
research in rapid prototyping.

FLAIR. The Functional Language Articulated Interactive Resources (FLAIR)
System was created at TRW to aid interface developers in involving users in
the development process [Wong and Reid 1982]. FLAIR facilitates
development of interfaces based on hierarchies of menus. It allows
simulation and experimentation with such hierarchies. FLAIR's prototyping
abilities are largely restricted to the interface portion of the system,
producing elaborate graphical fagades, making it interface-only in scope. A
prototype requires considerable additional programming to "hard-wire" the
behavior of the application system to give the appearance of whole-system
behavior. FLAIR was among the first to provide a Dialogue Design Language
as a dialogue specification technique. Rather than the (then) more common
formal grammars, this language, with its voice-driven menu interface, is
used to describe the user interface structure. A "show-by-example" menu

method can also be used to specify dialogue.

Because of the amount of coding involved in a typical prototype, the
prototypes tended to be only intermittently executable. Because prototypes
were largely fagades, they tended to be evolutionary (throw-away) and
interface-only. The resulting prototypes, however, were very realistic and
could exhibit complex graphical behavior.

IDS. The Interactive Dialogue Synthesizer (IDS) was developed in. the 1970's
at Martin Marietta as a tool to aid in the production of interfaces for
command and control systems [Hanau and Lenorovitz 1980a; Hanau and
Lenorovitz 1980b]. IDS is a good example of a systern that uses Backus-
Naur Form grammatical rules (with associated actions) as a technique to
define interaction sequencing of the target system interface. Displays are
attached to the grammar as semantic actions. These displays, which
- Tepresent “snapshots” of the final system, can then be used by a simulator to
give the user a feel for how the target system will eventually behave. IDS is
a good example of a tool designed specifically to support rapid prototyping.
Information gathered through the use of simulation may be quickly
integrated into a new version of the prototype, because of the very high

15

level of interface definition. No programming is necessary to alter the form,
appearance, or position in sequence of a part of the interface.

IDS prototypes are interface-only, with dynamic sequences represented by
timed sequences of static displays. As such they would be revolutionary
(throw-away), but continuously executable. Like FLAIR, IDS has sesn

numerous large real-system applications.

RAPID/USE. RApid Prototypes of Interactive Dialogues (RAPID) is a tool
designed for use with the User Software Engineering (USE) methodology
[Wasserman and Shewmake 1985; Wasserman, Pircher, Shewmake, and
Kersten 1986] in the context of interactive information systems. RAPID/USE
relies on state transition diagrams for defining the sequencing of interaction.
Displays are associated with state nodes and inputs with state transition
arcs. Dialogue, the contents of the nodes, is specified with a high level
textual dialogue definition language. Prototype interfaces can be defined
and simulated rapidly with continzous executability. As the interface
prototype becomes more stable, prototype application semantics may be
attached using the Troll/USE database management package providing
connections to whole-system prototypes and leading to anm evolutionary
maturation process. Eventually a fully operational prototype can be created.
The USE methodology was one of the first to provide explicitly for use of
prototypes in the design phase. Design/prototype iteration is specifically
included in the life cycle. A product based on RAPID/USE is now
commercially available from Interactive Development Environments, Inc.

Behavioral Demonstrator. The Behavioral Demonstrator [Hartson, Johnson,
and Ehrich 1984; Callan 1985] is intended to support rapid prototyping
within the Dialogue Management System. The Behavioral Demonstrator
interprets designs specified with supervised flow diagrams, each a kind of
state transition diagram that describes high level flow of control and data in
a target system. Dialogue content is created using specialized direct
manipulation tools. The interpreted nature throughout gives it the
flexibility of a strong evolutionary approach, but causes it to suffer with
slow performance. Computational functionality is either programmed or
stubbed in, providing connections to whole-system prototypes. A support

16

environment is provided for executing partially specified and incompletely
developed designs. As the design matures and becomes complete, the
prototype evolves into a real, compilable implementation of the entire target
system. Because of its continuous executability, systems and interfacs
developers using the Behavioral Demonstrator can alter the design during
the running of the prototype and restart from that same point in its
execution, providing very rapid turnaround.

The Rapid Intelligent Prototyping Laboratory. The Rapid Intelligent
Prototyping Laboratory (RIPL), “developed at Computer Technology
Associates in Englewood, Colorado, is a set of hardware and software tools to
support construction of fagade prototypes for complex interactive systems
[Flanagan, Lenorovitz, Stanke, and Stocker 1985)] Interface components
called “tiles" are created by the developer using a set of direct manipulation
tools. A "Simulation Subsystem" links these tiles and user-defined routines
together to simulate the system. RIPL employs two expert systems to aid in
interface construction. A "consultation expert” provides advice to interface
developers, and an “evaluation expert” is used to evaluate the prototype

itself,

As in the case of FLAIR, considerable programming is involved in producing
complex and realistic interface-only prototypes, making them revolutionary
in their maturation and intermittently executable.

4.2 Commercial System Examples

New user interface tools are currently being anmnounced at a prodigious rate
and almost all such tools now have some kind of prototyping capability. It
is impossible to mention them all here. This section is not intended to be a
thorough survey or a "consumer's guide” to prototyping tools. It contains
only representative examples selected to illustrate specific points.

ACT/1. ACT/1 [Mason and Carey 1981; Mason and Carey 1983], developed
by Art Benjamin and Associates of Toronto, was one of the first
commercially available products for rapidly prototyping user interface
scenarios. ACT/1 employs a specification technique that allows developers

17

to create interface screens by filling in table entries -- tabular forms of STDs
-- on the screen. An advanced system for its time, ACT/1 is constrained to g
narrow range of interaction styles (e.g., menus, forms, question and answer
styles) compared to today's direct manipulation interfaces. Procedural links
are specified in tabular form with entries having the format:

<input screen, process, output screen>

When the computational routines are coded, these process links can afford a
whole-system prototype. Because it is not coded, the interface portion is
continuously executable. At first, with no application logic specified, users
may go through a fixed script simulation of the user interface. Application
logic can be added to create a first prototype of a new system. ACT/1 can
be used in an evolutionary approach to maturation: the prototype screens
are directly usable in early production versions of target systems. ACT/I
has had more than one hundred users and has been applied to the
development of several interactive information systems.

HyperCard. Because HyperCard comes essentially free of cost for use on
Macintosh computers and is billed as "programming for the rest of us," it is
widely known and used. Even though it is not intended just for prototyping,
perhaps more prototypes have been built with HyperCard than with any
other tool. Interfaces are specified in terms of "cards,” interactive object-
oriented screens. The contents and sequencing of the graphical and textual
objects are specified by menus and direct manipulation graphics and text
editors. Cards are grouped into stacks, which can share a common
background, while the foreground changes from card to card. Cards have
fields for text-entry and buttons, "hot spots” on either graphical or textual
objects making the objects selectable by the end-user. Menus and SCIipts
are used to specify what happens when a button is selected, giving the

approach an event-based flavor.

The computational "actions” of small and medium-size applications can be
programmed into "scripts” using the Hypertalk language. This ability to
integrate application functionality, including small-scale database functions,
plus X (external) function links to conventionally programmed routines

18

provides a very broad whole-system scope. Since cards are interpreted,
performance can be slow, but maturation is evolutionary and executability

is continuous.

Many simple interface features can be produced easily and rapidly, yet
more complex behavior is possible. The drawbacks are not serious. Form
filling is not a well supported interaction style and, at present, HyperCard
supports only a single window. A large and growing common library of user
interface objects is provided to give the developer a running start.

SuperCard, the eagerly awaited HyperCard successor from Silicon Beach
Software, supports multiple windows, has more features (e.g., animation),
and is, in the main, compatible with (convertible from) HyperCard stacks.
Interpreted execution still means slow performance.

Demo. The Demo program, designed by Dan Bricklin and grown by Software
Gardens Inc., is one of the earliest commercially available prototypers for
personal computers. Prototypes are based on a "slide show" concept, and as
such, are interface-only in scope. The developer specifies the prototypes
primarily by menu choices and text entry. Tabular mappings (a form of
STDs) are used to link slides for sequencing. Early versions had very limited
interaction styles (e.g., did not support use of a mouse). Also, no predefined
high level interface constructs are supported. Users must construct even
menus and forms from lower level elements, often with long sequences of

menu selections.

The maturation process in revolutionary; a Demo prototype could not be
used in a serious production version of a system. Executability is

continuous.

Prototyper. The SmethersBarnes Prototyper system is a "user interface
builder, simulator, and code generator” for Macintosh style interfaces. Its
adherence to the Apple Human Interface Guidelines can be a blessing or a
problem, depending on style needs. Interface element are specified by
direct manipulation editors and drawing tools. Predefined higher level
elements (e.g., icons, pictures, popup menus, lists) are provided along with a

19

special editor for each. The "Quicklook" feature allows rapid execution of
parts of the interface without leaving the tool or compiling code. The run-
time performance penalty is avoided, however, by production of (well-
commented) interface code in Pascal or C.

Prototyper is interface-only in scope. Unlike HyperCard, the tool itself
involves only the interface. A non-programming interface developer cannot
provide any functionality. (Whereas with SuperCard, for example, some
functionality can be had with only limited programming skills.) Connections
can be made from the generated code, however, to computation functions
programmed in Pascal or C. The resulting collection of software is whole-
system in scope. Because Prototyper generates interface code that can be
linked to computational routines in a production version of a target system,
the maturation is strongly evolutionary. Also, automatic generation of code
(hopefully without errors) and the many demonstration modes (e.g.,
Quicklook) produce prototypes that are continuously executable.

Generally considered a positive feature, the generation of interface code can
have pitfalls. Availability of the this code to the developer can pose a
dangerous temptation. Changes can easily be made in the interface code
without going back to the Prototyper tool. The code, however, immediately
becomes unmaintainable via the tool. Therefore, all changes should be made
with the tool, regenerating the code each time. The alternative is a return to
conventional programming and a loss of this tool and its advantages.

Together with HyperCard, Prototyper is evidence of the increasing
availability of powerful and flexible prototyping tools using direct
manipufation specification techniques and approaching an evolutionary,
whole-system, and continuously executable prototyping capability.

Transportable Applications Environment (TAE). TAE, developed by NASA
Goddard Space Center in Maryland, may more properly be classified as a
non-commercial user interface management system based on the X Window
System, but it appears here because it has a strong prototyping component
(as do most current UIMS), is currently available, and has large numbers of
users at many (well over a hundred) beta sites. Specification is

20

accomplished by a combination of techniques. Screen appearance is
specified by a workbench graphics and text editing tool. More direct
manipulation style could be employed in the workbench tool; often items
are constructed in one place and then moved to the target system screen,
rather than being constructed in final run-time form. This tool is
supplemented with the TAE Command Language, a high-level dialogue
programming language for expert interface developers. Some form filling is
used, for example, to specify the computational routines for whole-system
connections. The interpretable interface designs offer continuous
executability and are robust and complete enough to allow evolutionary

maturation.

Open Dialogue. Produced by Apollo as a successor to Domain Dialogue, Open
Dialogue is an object-oriented tool layered on UNIX and the X Window
System for building and prototyping user interfaces. Interfaces are
specified by declarative definitions of the objects and their relationships.
Interface elements can be specified at run-time, if desired, vielding
continuous executability. Numerous mechanisms allow close coupling with
the computational software giving a nearly whole-system scope. The
computational side can also be stubbed for interface-only prototyping. For
many applications the interface prototype is not a throw-away, thus
maturation can be evolutionary.

5. EXAMPLES FROM A DEVELOPMENT PROJECT

5.1 HyperCard as a Prototyping Tool

User interface prototyping played an important role in the development of a
recent version of the Dialogue Management System (DMS), a User Interface
Management System (UIMS) being developed at Virginia Tech. We did our
prototyping with HyperCard on a Macintosh II, also our machine for DMS
implementation. While HyperCard is not intended as just a prototyping tool,
we found it to be generally effective in that role during our development
process. HyperCard allows very rapid screen mock-ups with built-in icons
and some kinds of menus. Customized icons are simple to comstruct. The

21

HyperCard run-time environment contains a sophisticated input event
handler. Sensitive screen areas, called buttons, can be defined to invoke
arbitrary functions in response to picking by users. Because HyperCard is
interpreted, programs (called scripts) can be run immediately after changes
are made to them. The cost for this feature is slow performance and some
difficulty in tracing errors. HyperCard functionality is extensible in the
sense that any feature not already available (e.g., pop-up and pull-down
menus) can be programmed (e.g., in C or Pascal) and installed as an X-
function (external function).

Because we also used HyperCard to document our user interface designs, we
were able to integrate prototyping and design recording tools in an
interesting way. HyperCard buttons were associated with objects in screen
pictures and other illustrations of the design documentation. If the reader
of the on-line design documentation wishes to explore the use of a feature, a
mouse selection of the corresponding button will transport the reader to the
HyperCard prototype for that feature. We perceive great benefit for an
even closer merging of the design documentation and prototype.
Connections to a prototype can offer interactive documentation and training

for the user of an application.

We found a need for two kinds of prototyping: global and local. The global
prototype was used to allow early observation of general DMS behavior.
Local prototypes were used to evaluate design alternatives for specific

isolated interface details.

5.2 Global Prototyping

HyperCard was used for global prototyping of the DMS Graphical
Programming Language (GPL) tool, a graphical editor for constructing and
maintaining supervised flow diagrams. These diagrams are used to
represent control and data flow in an interactive system design. The
diagrams employ several different symbols for various kinds of nodes (e.g.,
entrances, exits, dialogue states, control states, computational states, and
decision points) connected with arcs labelled with state transition conditions.

22

The DMS development team had distinct roles for interface developers,
implementers, and evaluators. In the early design stages the primary user
of the prototype was the interface developer, who used the prototype
almost daily as feedback for trial-and-error iterative design during this
time. During the first month or two of design, the prototype underwent
major re-design about twice per week. The goal was to iteratively refine
the design via the prototype, which we would later discard in favor of a

Smalltalk implementation.

The GPL prototype was implemented by a newly hired programmer, who
was unfamiliar with the Dialogue Management Project, HyperCard, and
Smalltalk. He was shown a video tape of an earlier version of DMS and then
began communicating with the lead developers about GPL. In two and a
half weeks he had the basic functionality of GPL in the prototype, and
required an additional week to polish it. During the ensuing iterations, most
of the modifications were made by this programmer although the interface
designer also had experience with HyperCard.

The main GPL screen is prototyped as a single card in HyperCard (see Figure
3) with buttons for each GPL icon and each supervised flow diagram object
instance that is created. The modes (currently selected command or icon)
are recorded in global variables. All mouse activity within the screen is sent
to a "switch" qualified by the mode that is current. The appropriate script is
then invoked for the user's task (e.g., drawing lines, moving symbols). Each
supervised flow diagram developed by the user is kept on a separate

HyperCard card.

Out of a twelve month development process, the global GPL prototype had a
useful life of about two months, at which point a major design review was
held, followed soon by the delivery of a design document to our sponsor
client. Beyond this point, the GPL prototype continued to serve the
development process as a local prototyping tool for evaluating isolated

design decisions.

Space here does not permit an extensive case study of the use of a prototype
to probe cognitive issues, user models of a system, or formal user data

23

gathering for design guidance in the iterative development cycle. It can be
said, however, that having the prototype used by real end-users did help
the designers see the interface from the user's viewpoint, exposing how
users thought about the objects of the interface and their manipulation,
relating them to task performance issues in the design. We can informalily
describe a few examples here to indicate the possibilities.

An example of a task-oriented issue studied with the prototype involved
control flow arcs, which had several interdependent user-related problems.
We wanted arcs to be responsive to direct manipulation by the user. Our
initial designs had ambiguities and special cases, and did not address some
important questions. A particularly difficult issue involved the means for
sclecting an arc. Must the user select the visible line precisely with the
mouse (as in Figure 2a) or can we add "grab handles"? If so, should the
handle be in the middle of an arc (as in Figure 2b) or one placed at each
endpoint? Will grab handles add too much clutter in crowded diagrams?
How should we represent a vertex in a segmented arc? How can vertices be
made to articulate as joints? Does movement of a vertex imply movement
of adjacent segments only, or of the entire arc (as in Figure 2¢)? How can
rubber-banding be used effectively? With the help of the prototype, the
design here changed completely four times until a design that was
acceptable to developers and a number of users was produced.

24

=

a. Should arc line selection require
. precise picking with a mouse?

Q { I >

b. Should "grab handle” be used to
aid arc selection?

OR

c. How should vertex movement
be designed?

Figure 2. A prototype was used to answer design questions about
control flow arcs in the Graphical Programming Language Tool

25

The GPL prototype also helped provide insight into some questions about
interface modality. @ We wondered whether modes were necessary in the
design, and we needed information about how often modes would be used
and whether they would cause user confusion. The GPL tool is used to
create supervised flow diagrams by creating various kinds of node symbols
(for states) on the screen and then connecting them with control flow arcs.
Considerable detailed development must then be done for both nodes and
arcs. Users of the prototype showed us that there is enough cognitive
difference between development of nodes and development of arcs to
justify separate development modes for these two kinds of objects. Further
questions of modality arise when one considers whether the user should be
able to select a node type once and create several instances on the screen or
whether the user must select the icon for a diagram symbol each time a
symbol instance 1is added to the screem. Also, since further design
information must be given for each symbol, can it be given successively for
a number of existing symbols or must the information be given as a symbol

is created?

Exercise of the prototype by potential DMS users showed that both modal
and non-modal usage was desirable, depending on the user and the
situation. The prototype was subsequently used to make the design as
flexible as possible for further exploration of both approaches.

Because the GPL tool is fairly large and complex, only a small portion of the
functionality of the prototype is shown here. Figure 3 shows the GPL tool
prototype after construction of a supervised flow diagram consisting of a
start symbel (small circle), a dialogue transaction (large circle) called
GetCommand, a dialogue-computation function (box with inscribed circle)
called DoCommand, and a triangular return symbeol. The various symbols in
this diagram were created by selecting the corresponding icon at the bottom
of the screen and positioning a new instance of the desired symbol with the
mouse. The arcs were drawn by selecting the arrow icon (the horizontal
arrow just to the right of the triangle in the lower right part of the screen),
which places the prototype in a different mode (the arc development node),
and choosing the beginning and ending nodes for each arc.

26

=

27

= HyperCard 1U:HyperCard Stacks:GPL 1.2a
| DMS Proto]
/'
O- > et > A
Ge’cCoTnmand DoCammand
System: {Madule: ISupervisor:
O = Een] o S A = a=p N
L S . ﬁ
Figure 3. HyperCard GPL prototype screen

‘Figure 4 shows the user selecting a symbol to develop further. This is
possible when the prototype is in symbol deveopment mode, as opposed to
arc development mode. Because each symbol on the screen is associated
with a HyperCard button, mouse selection capability was already provided.

HyperCard 1U:HyperCard Stacks:GPL 1.2a ==

DMS &

| DMS Prato |

2

V
>

e
—

DeCommand

[Superviser:

Systems [Module:
RO EZ] O O A — <= %

QOO LT

Figure 4. Selecting a symbol to develop

28

By employing an X-function,
In Figure 5
which allows the user to assign names,

prototype.

a fast pop-up menu was added to the

, the user is selecting the command "Symbol Info..."

important information, to symbols.

as well as documentation and other

HyperCard IU:HyperCard Stacks:GPL 1.2a

_——
%'

[BMS Proto]

DMS 5

Undo

Cut

Copy

Paste

Show Clipboard

Wt rrirand

Show Page
Print

New. ..
Open.._.
Expand
Close

Supervisor Info._
- Symhol Info__

—— A

Sustem:

[Module:

[Supervisor

A8

OO

2| e

]
,' R i OC A — a=p X W

Figure 5.

After selection of the "Symbol Info..."
~another card, as shown in Figure 6,
The user may then e
selected symbol and return to the GPL

. information box.

Selecting "Symbol Info..."

29

from pop-up menu

command, the prototype moves on to
which is a prototype of the symbol
nter the data to be associated with the
prototype screen.

Although there is not space to show them here, most of the commands on
the pop-up menu and all of the iconic commands were available in the
prototype. Having such a complete prototype as a guide proved invaluable
during the construction of the actual product.

HyperCard IU:HyperCard Stacks:GPL 1.2a %}

Input Parameters Output Parameters

GetCommand Symbeol
Type:

cmd

=
]

Documentation

Return the user’s selection for the top level option.

Figure 6. Prototype of symbol information box

A more general use of the GPL prototype was to experiment with the screen
layout for the tool: the location of the command-icon bar, the visual design
of each icom, the relative location of textual labels for user-created GPL
objects, the location of information such as the names of the user interface
objects and screens being created and names of their related software
modules. The prototype allowed the interface developer to view these
screens and objects, to evaluate the general use of screen space, and to gain
some "user” experience. It is interesting to compare the final GPL prototype

30

screen (Figure 3) with the Same screen as implemented later in Smalltalk
(Figure 7). This comparison reveals a side benefit of our prototyping: the
porting of icons and other graphics in the prototype, via MacPaint files on
the clipboard, directly into Smalltalk "forms.” This gave us some feeling for
the advantage of evolutionary prototyping; the detailed icon design work
was saved and few changes were needed during the crossover.

\/\ \f Do N
Comm 7

Mkl =N 3N NE

1]

Module: Main Supervisor:

Figure 7. GPL tool Screen as implemented in Smalltalk
(compare with HyperCard prototype screen, Figure 3)

31

5.3 Local Prototyping

During the design process, it was often easier and faster for the developer
and evaluator to use a "quick and dirty" mockup of a small part of a tool to
answer isolated interface design questions than to wait for a full prototype.
While global prototypes are rather complete, our local prototypes focused on
a few specific questions and were not intended to be extendible.

The iconic menu tool, an example of a tool that benefitted from Ilocal
prototyping, uses graphics and text editors to allow the interface developer
to create objects that represent a one-from-many selection menu and its
choices. For each choice the interface developer must use the "Develop
Input” command to specify a token value to be sent to the rest of the system
when an user selects that icon with the mouse. Developers of the tool were
faced with the mode-related question of whether to develop input for choice
icons one at a time or to do this for groupings of icons.

In the iconic menu tool we wished to offer the interface developer an
immediate and direct ability to test a menu, through a "Test" command, as it
is being developed. TUse of the prototype revealed another similar mode
question. Should the "Test” command allow testing of several successive
user inputs or should each test input take the tool back to being ready to
develop the menu further? It was important to be able to answer these
questions on the basis of some user experience. For the sake of consistency
we would be committed to using the results whenever they applied

throughout all our tools.

32

A brief description of use of the iconic menu tool prototype is given in the
following paragraphs. All prototyping tools have at least two modes of
operation -- a "develop" mode in which interface designs are developed and
a "test” mode in which people assuming the end-user role test these designs.
When the example prototype is started, the screen in Figure 8 appears,
showing the tool in Develop Mode with a prompt containing a single menu
choice icon (in the lower left part of the screen). [Note to editor: Most
figures in this sequence and some earlier figures can be

somewhat reduced in size.]

HyperCard 1U:HyperCard Stacks:imtPROTO

DEVELOP MODE DEUVELOP MODE DEVELQP

DEVELOP MODE DEVELOP

MNOE NENELI NP MONE
[ODE Undo ®Z GEUELQP
MODE DEUELQP
MODE Cut ®2 DEVELOP
HODE Lapy s DEUELQP
HODE Paste &Y DEVELOP
MODE Show C]ipboard DEUELQP
MODE . y DEUELQP
MODE Print i DEUELOP
MODE Test DEUELCP
nobe peny ianfa... DEUELOP
MCDE ‘Prempt. DEUELOP
1ODE Define In DEUELQP
Eggg TN Undefine Input ggggtgi

(- Confirmalion..
MODE DEUELOR
MODE _ Hew Y DEVELQP
DEVELOP MODE DEUELOP MODE DEVELOP | fipen 4§31 JDEUVELOP HODE DEUELQP
[Donej[C]ear] Llase
(TesTMode

System: Module: | Menu:

Figure 8. Iconic menu tool local protetyper screen

33

The HyperCard button tool is used to add several new choice icons to the
menu, as shown in Figure 9. At this point these icons are only objects within
a display and are not sensitized as menu choices selectable by the end-user.

| == HyperCard IU:HyperCard Stacks:imtPROTO
DEVELGOP MODE DEVELOP NMODE DEVELOP MODE DEVELOP MODE DEUELOP MODE DEUELGP

HODE DEUELOP
HODE DEUVELOP
MODE DEVELQP
HODE DEVELQP
MODE DEVELOP
HODE DEVELQP
HODE DEUELQP
MODE DEVELOP
HODE DEVELQP
MODE DEUELQP
MODE DEVELOP
MODE DEVELOP
MODE DEVELQP
HODE %l, DEVELOP
MODE DEVELOP
MODE DEVELQP
DEVELOP MODE DEVELOP NODE DEVELOP MODE DEVELOP NODE DEVELOP HODE DEUVELOP

[Done J[Clear) (Test Mode) Bevelop Made

System: {HModule: { Menu:

Figure 9. Several choice icons in menu prompt

34

To define these icons as possible end-user inputs the interface developer
selects the three new icons by using a shift-select operation similar to that

used by the Macintosh Finder.

group.

Figure 10 shows the icomns selected as a

HyperCard iU:HyperCard Stacks:imtPROTO

25

A

&,
B

< &,

E &

DEVELOP MODE DEUVELQP HODE DEUELOP NODE DEVELOP NMODE DEUELOP MODE DEUELGP

f10DE
MOBE
MODE
MODE
10DE
f10BE
MODE
MODE
MODE
10Dk
MODE
MODE
MODE
MODE
MODE

S
DEVELCP MODE DEYELOP MODE DEUELOP MODE DEUELOP MODE DEVELOP NMODE DEUVELQP

DEVELQP
DEVELOP
DEUELQP
DEVELCP
DEUVELQP
DEVELOP
DEVELOP
DEVELQP
DEVELCP
CEVELQP
DEUELGP
DEVELOP
DEVELQOP
DEVELCP
DEUVELCP
DEUELQP

(vone)(ciear)

System:

[Module:

Figure 10.

Group selection of choice icons by developer

335

A pop-up menu command, "Develop Input,” is then issued by the interface
developer causing the screen shown in Figure 11 to appear. In this screen, a
box has been brought up containing a label visually showing the
correspondence between each of the three icons selected by the developer
and an internally used HyperCard button identifier. The labels, used only
during the development of the menu, have defaulted to "1", "2", and "3".

HyperCard 10:HyperCard Stacks:imiPROTO

DEVELOP MODE DEUELOP MODE DEUVELOP MODE DEUVELQOP HMODE DEUELOP MODE DEVELGP
MODE DEVELQP
MODE DEVELQOP
MODE DEUVELOP
HODE DEVELOP
ODE DEVELCP
MODE DEVELQP
MODE 2,1493,

MODE 1,1492,

rMooE 3,1494,

t0DE

MODE

MODE q[).,,

MOCE % =R £, 2,

10DE - = = =

Sggg i Z F [Cancel)(0K)
DEUELGP MODE DEVELOP MODE DEUELQP NODE DeUELUFP (UUe UEUELUF NUUE UEVELUFP

[Done][Clear) (Test Mode) DeuelopMoqe

Systam

: Module: | Menu:

Figure 11, Dialogue box showing choice icon labels and internal
HyperCard button identifiers

The developer may assign more appropriate names. The four-digit button
identifiers are presented only to the developer. They do not appear in the
final tool implementation. As these icons are new, the field after the second
comma in each line is blank. This is where the developer enters (and edits)

36

the token value to be returned upon selection of the icon at run-time for
each of the three selected icons, as shown in Figure 12. A click on the "QK"

button saves the changes and gets rid of the box.

HyperCard 1U:HyperCard Stacks:imtPROTO ==

DEUELOP MODE DEUELQOP MODE DEVELOP MODE DEUELOP MODE DEUELOP MODE DEUELQP
MODE DEUVELQP
MODE DEUELQP
MORE DEVELOP
MODE DEUELOQP
MODE DEUELCP
110DE DEVELQP
MODE 2,1493,slings
MODE 1,1492,and
MODE 3,1494,arrowy
MCDE
1M0DE
MODE
MODE £, & £,

55
MODE - = e =
HODE a |
MODE F (cancel) 0K)
DEUELOP MODE DEUELOP MODE DEUELOP HOUE DEUELUF TIUDE BDEVUELUF 1UUE DEUELUr

System: [Module: I Menu:

Figure 12. Token values specified for end-user selectable

By putting the tool in Test Mode, the developer can immediately

icons

test the

menu. The bordering of screen has changed to make the developer aware of
the mode change. By clicking on an icon or screen area as an end-user
would, the developer can see what token value would be returned to the

37

rest of the software. Figure 13 shows the successful pick of icon "2" and the
normalized token value (NTV) for that icon, the character string "slings."

HuperCard IU:HyperCard Stacks:imtPROTO

In TEST MODE: NTU = slings

=TT -

(oone) ciear)

_ TestMode JOERRTRRGRID

System:

iModule: j Meny:

Figure 13.

Test mode result showing normalized token value
(NTV) for successful pick of icon "2"

38

Figure 14 shows the results of selecting the first icon, for which a
normalized token value has not been defined.

HyperCard [U:HyperCard Stacks:imtPROTO

In TEST MODDE: No valid icon selected

l 0K l

[L2ore) (eteer) restode

System: [Module: { Menu:

(Develop Mode)

Figure 14. Test mode result for pick of first icon, for which a
normalized token value is not defined

The token value definition for a given icon or group of icons may be deleted
by selecting the icon or icons and choosing the pop-up command "Undefine
Input." Figure 15 shows the resulis of applying this command to icon "2°.
Figure 16 shows that in Test Mode, that icon is no longer considered a valid

choice.

39

= HyperCard IV:HyperCard Stacks:imtPROTO

MOOE

MoDE

MODE

MODE

MODE

MODE

MODE

f10DE

MODE

MODE

[1O0E

MODE

L O N
MODE Q 1 E 3
1OCE

DEVELOP MODE DEVELOP MMODE DEVELOP MODE DEVELOP MODE DEUELOP MODE DEUVELOQP

DEVELOP MODE DEVELGOP MODE DEUVELOP NMODE DEVELOP MODE DEUELOP MODE DEVELOP

DEVELOP
DEVELOP
DEVELCP
DEVELOP
DEVELOP
DEVELOP
DEVELOP
DEVELOP
DEVELOP
DEVELOP
CEVELGP
OEVELOP
DEVELQP
DEUVELGP
DEVELOP
DEVELOP

Lﬂone][Clear] | (Test Mode) negeiﬂn d&

System: Moduyle: | Menu:

Figure 15. The result of selecting and applying "Undefine Input"

to icon "2"

40

HyperCard IU:HyperCard Stacks:imtPROTO

In TEST MODE: No palid icon selected

B %
(bone) ((ctear)

System: ' Module:

@evelop Mode)

Figure 16. Test mode result for subsequent pick of icon "2"

5.4 Lessons Learned

We encountered two significant questions in using prototyping as a part of
the development process:

» How much of the design should be included in the prototype?
» How far should development of the prototype be carried?

The answers are different depending on whether the prototype is global or

local.

41

Before using the global prototype of GPL there was an attitude toward the
first question that the prototype, being only a "first draft," needs only a
loose resemblance to the real design. However, we found that to have an
effective global prototype--one that can be used by evaluators and users to
get a reasonable "feel" for the evolving system--it is necessary to include
most of the functions that appear in the design of the system. In addition,
the prototype should be as similar in appearance as possible to the real
system design. Differences between the two led to misunderstandings by
the evaluator and potential users. They interpreted the prototype as a
literal instantiation of the design, and differences produced surprises and
some disappointment. Some functions, however, were so difficult to produce
using HyperCard that we chose not to expend the effort to include them in
the prototype. Instead, we opted for a careful pencil-and-paper prototype
of those functions. We encountered several examples of this: one was the
"undo" function in GPL. Programming "undo” in HyperCard proved to be
very difficult, and did not seem to be critical to the overall "feel” of the
prototype. Other examples were the "pan” function (to move through
diagrams too large to fit on one screen), the movement of vertex points in
segmented arcs, and use of multiple windows. In these cases the limitations
of HyperCard prevented the prototype from being as complete and accurate
as we desired. Pop-up menus might also have been omitted but they were
central to the design. They turned out to be difficult to prototype and the

HyperCard code was not aesthetic.

We found it relatively easy to answer the second question, by following this
criterion: cease development of the prototype when the effort of prototyping
exceeds that of implementation of the actual system. Early in the
development process, we found the prototype to be invaluable in helping us
make design decisions, but as the design progressed, we began to find that
conditions shifted so that using Smalltalk for the implementation started to
be faster and easier. The shift in conditions was due to the trade-off
between learnability and expressive power of the two languages. A
developer was very proficient with HyperCard in two weeks. Smalltalk has
a much steeper learning curve; the difference put the GPL prototype about
two months ahead of implementation by the end of the third month.
Beyond that there was a "crossover" and the greater expressive power and

42

flexibility of Smalltalk made it easier to update the interface design directly
in the implementation, rather than the prototype. '

In our project the learnability factor was important because we learned
both HyperCard and Smalltalk as we proceeded. Even if both had been
known at the outset, global prototyping would have had a role but the
crossover described above would have occurred somewhat earlier. It would
always be easier and faster to do some screen mockup with HyperCard, and
local prototyping continues to be useful beyond the crossover point.

Our conclusion is that global prototyping served a planned role in our
development process very well. It indeed allowed observation of early
behavior and subsequent adjustment of the design. The prototype allowed
interface developers to dream a little and encouraged them to play with
design alternatives. Numerous instances of design incompleteness,
ambiguity, and inconsistency were revealed, allowing us to resolve them
with the developers while there was still enough flexibility to make changes.

In our example, the choice of languages aided the transition to
implementation. HyperCard has a strong object-oriented flavor; an input
event, such as a mouse pick of an object, activates a programmed action. We
deliberately exploited this in trying to make the prototype code as object-
oriented as possible in order to match the object orientation of Smalltalk.
For example, each card button corresponds to an object that contains the

knowledge of how to display its own instances.

Our conclusions about local prototyping were also positive. The iconic menu
tool prototype was constructed in about six hours and it gave us some very
good information for decision making. In sticking to the predefined purpose
of this prototype, we had to resist making it more complete. It would have
been wasteful to develop the local prototypes beyond what was needed to

answer specific design questions.

In sum, our prototyping experience was strongly supportive of our
development process. We were affected, however, by the limitations of
HyperCard. We wished for a more powerful prototyping tool and one more

43

integrated into the development environment, to make the transition from
prototype to implementation more evolutionary.

6. SYSTEM DEVELOPMENT ISSUES
6.1 Methodology and Life Cycle

Rapidness of prototyping. Gould and Lewis [1985] present these principles
for interface development:

+ early and constant focus on users and tasks,

« empirical evaluation of interface usability, and

» iterative refinement throughout the life cycle.
However, as pointed out in section 1.1 on the concept of prototyping, there is
a difference between a development approach based on iteration, even with
prototyping, and one based on rapid prototyping. Iterative development
can be based on an intermittently executable prototype or it can be used
without prototypes, simply by producing successive versions of the product.
The important aspect of these approaches is that, although they are
iterative, they are linear in the sense that they tend to go through the entire
life cycle in a large loop. (This causes the batching problem mentioned in
section 3.4 on prototype executability.) Effective development, especially if
interface quality is an important factor, requires a process that allows a
much finer resolution for iteration. Occasionally this can necessitate several
cycles of redesign and evaluation just for a single interface feature. Rapid
prototyping provides the means by which such local iteration can be
accomplished. Not every approach that uses the term prototyping, then, is
an example of the topic of this paper (e.g., Bally, Brittan, and Wagner

[1877]).

A Star Life Cycle. In seeking a suitable development methodology, no place
is found for integrating rapid prototyping concepts into traditional top-
down, stepwise decomposition methodological models [Mantei 1986; Mantei
and Teorey 1988]. In response to this need, Hartson and Hix [1989b] have
proposed a new life cycle to accommodate rapid prototyping as an explicit
development activity. Named the "star" life cycle because development

44

activities are clustered in a star configuration about evaluation as a central
activity, it is a departure from the traditional approach in several ways. It
is a process of real cycling and less a linear process. Developers can enter
the cycle almost anywhere. This combination implies a high degree of
localized cycling for individual interface features. It also implies that the
maxim of "specifications always before design” no longer applies. The
developmental approach mentioned earlier in section 1.2 on prototyping as
a natural technique begins with a concrete example design (as a rapid
prototype), which then feeds back to the more abstract requirements
statemnent and specifications. A prototype is specific about Aow interface
features are designed. From this initial design many of the specifications of
what is to be done can be deduced. Then once more the process moves
forward in the cycle to refine the design, or perhaps to change the design
significantly, and so on back to tuning the specifications. The star life cycle,
as a development cycle for user interfaces, often exists within a larger, and
possibly different, life cycle for overall target system development.

Alternating modes of development activity. In case studies donme in the
Dialogue Management Project [Hartson and Hix 1989b], we observed that,
overlaid upon local cycling and phases of the life cycle, there is an
interesting progression by developers through various modes of
development activity.. Throughout the overall interface development
process there appears to be a series of alternating waves of upward
(bottom-up) and downward (top-down) progressions through the levels of
abstraction in the design. We observed that less experienced as well as
more experienced developer subjects, when not coustrained by a particular
methodology, often start with interface scenarios--sketches of screen
sequences as seen by the user. This is a concrete, bottom-up approach and a
natural way to begin, according to the developmental view of psychology.
Some successful user testing is often accomplished even with these very
early tentative scenarios. Many developer subjects then produce a state
diagram or similar flow-chart-like representation to show a more general
view of sequencing among interface screens. This is a top-down structuring
activity. Perhaps some attention is given next to details in the design of the
screen objects at a very low level of abstraction. At some point, we
observed developers returning to a top-down mode, working back

45

downward through the now emerging levels of abstraction to analyze,
organize, and modify the design. During this downward pass, for example,
developer subjects faced issues such as consistency, grouping functions by
similarity, and sharing and re-using functions. Then, typically, more user
testing of details at a low level of abstraction entered in, using a prototype
interface. Similar observations about natural interactive system
development were made independently by Carey [1988].

There appear to be essential differences in the nature of upward and
downward movements during the interface development process. Upward
development activities are typically empirical, synthetic, concrete, and
behavioral; they tend to reflect the user's view. Downward activities are
more theoretical, analytical, abstract, and structural; they tend to reflect the
system developer's view. As a very simple illustration, early requirements
specification might be bottom-up, starting with details. Top-down
hierarchical task analysis follows, leading to a bottom-up prototype screen
design., A control structure to support prototype sequencing is developed
top-down, returning to bottom-up user testing of details, followed by top-
down modeling and abstraction to restructure the design, and so on.

Management Concerns. Management of software development has
traditionally been based on a linear progression through phases of the
process, each phase punctoated with a milestone. Upon reaching a
milestone, management can "sign off” its approval and all parties concerned

have tangible evidence of progress.

A truly iterative cycle such as the star life cycle, having no apparent end,
can rightfully cause serious management concerns about how to control the
process. There is no fixed order for development activities. Isn't this a
formula for chaos? No milestones mark the end of development phases.
How does one know when the process is completed? How can one be sure
that iteration will result in convergence on a good design?

Answers to such questions are now emerging from a subdiscipline called

usability engineering [Whiteside, Bennett, and Holtzblat 1988]. Management
can sign off on a different kind of goal. Usability requirements, specific

46

measurable criteria for user performance and satisfaction, are stated at the
outset. Management can approve parts of the design as testing in the
evaluation activity shows corresponding usability requirements to be met.

Convergence on improved designs is served by techniques such as impact
analysis [Good, Spine, Whiteside, and George 1986], which involves
measuring time spent by user subjects with interface problems (e.g., time to
recover from an error). Such data direct attention to those parts of the
interface that detracted from task performance. Solutions to those interface
problems have the highest potential for helping to mest usability

performance requirements.

Integration. Because the influence of the behavioral scientist is finally, and
rightfully, becoming a factor in development of interactive systems, a final
cautionary note about development methodology is warranted. Some
methods for developing interfaces are beginning to emerge from the
behavioral and human factors side of the discipline without concern for
connections to the software development process. An interactive system is
not just an interface. There is a great amount of non-interface software
with which the interface must be integrated in an interactive system;
methodologies without connections to this software and methods for its
development cannot be considered as serious possibilities to meet real world

development mneeds.

6.2 Tools and User Interface Management Systems

Although prototyping can be accomplished without the aid of automated
support, management of the developing design can quickly become
intractable. Use of computer aids in constructing and documenting designs
and prototypes can help a great deal if these tools are well designed. These
tools can be used to maintain, for example, information about configurations,
various versions, and reasons for design changes. This information,
gathered as tools are used (both by developers and by users), enables the
manager to track the fast pace of change during the design and prototyping
phase of development. Automated tools can also provide metering
necessary to obtain objective measures for prototype performance.

47

From the interface developer's viewpoint, the important role of automated
tools in rapid prototyping is to support the highly iterative cycles of design
and evaluation. User Interface Management Systems (UIMS) are becoming a
key tool in this capacity. Rapid prototyping is now an integral part of most
UIMS [Lewis, Handloser, Bose, and Yang 1989]. Modern UIMS, some of
which were described briefly in section 4 on example systems and
approaches, allow many alternative designs to be tried in a short period of
time (hours as opposed to days or weeks). Although many UIMS
concentrate on particular interaction styles or are limited to certain classes
of application systems, they are still useful tools for trying out initial ideas
with users. Finer points not addressed by UIMS can be added in later
prototypes or in the fipal implementation. Many include simulators, or
interface definition interpreters, which allow the interface to be designed

and prototyped entirely within the UIMS.

Since many UIMS employ dialogue design languages which are menu-
driven, form-based, or supported by semantically tailored editors, it is much
easier to specify an interface that is syntactically valid. Also, errors in
semantics are reduced by allowing the developer to view or execute the
interface as it is being designed. Because of the ease with which they
permit user interfaces to be defined and changed, UIMS may prove to be the
single most important class of tools in decreasing the design/prototype

lteration time,
6.3 Design Evaluation

Given that the computer science role can provide its partner, the behavioral
science role, with rapid prototyping, the question is: What will the
behavioral scientists do with this ability? The essence of the answer is that
they will evaluate designs early in the development process. There are
many ways that this can be done; some are described in what follows. A
thorough coverage of user-based testing for the evaluation of system and
interface designs is well beyond the present scope. However, evaluation is
an important part of the iterative refinement process, and that process is
tied closely to rapid prototyping as a development approach. It, therefore,

438

is reasonable to focus briefly upon the subject of evaluation, both in general,
and specifically in relationship to rapid prototyping, which emphasizes case
studies, verbal protocol thinking, and critical incident analysis (described

briefly below).

Traditional Controlled FExperimentation. A conventional controlled
experiment for point testing begins by stating a hypothesis of what is being
tested and the expected outcome. For example, the hypothesis might be that
"on-line help information is more effective than hard-copy manuals." An
experiment is designed to test the hypothesis, beginning with a task for
human subjects to perform. Independent variables are identified, often
involving a single feature (such as the form of help information) to be
tested. Dependent variables are objective measures of user performance
(e.g., task completion time, error rates). Data are collected, analyzed, and the
hypothesis is confirmed or refuted. Occasionally, results of one or more
experiments can be extrapolated into an interface design guideline or
principle. Further experimentation can then be used to validate the
principle. This is a gross simplification of the controlled testing process, but

sufficient for this context.

This kind of testing is an important research tool that contributes to our
store of knowledge. In time such basic empirical knowledge of human
performance is translated into guiding precepts that are interpreted within
specific design situations. The process of testing individual interface points
and features, however, is not the effective evaluation process needed within
the interface development cycle. A large system simply cannot be
decomposed into testable variables. It is not possible to isolate all the
factors that affect usability, and there is not time or other resources to test
them, anyway. Furthermore, testing all the parts is not the same as testing
the whole integrated system. Short, and perhaps less formal, experiments
can still be used to decide among alternatives for a given interface feature.
However, a different approach to testing is needed to drive the iterative
refinement process of fitting the system to the user; this approach must
treat the target system, or at least its interface, as a whole.

49

Holistic Testing. Whiteside and Wixon [1985] view system testing from the
perspective of psychological theory. Behavioral theory is presently
dominant in system design and evaluation. The behavioral view is a
mechanistic view focusing on cause and effect of isolated phenomena.
Human behavior is shaped by the environment, as a passive reaction to the
stimulation of reward and punishment. Within the context of human-
computer interaction, this leads to adaptation of the user to fit the system!
The user's behavior is shaped by error messages, feedback, and help

information,

In contrast developmental theory takes an organicist view, that the human
is a living and changing organism, too complex for one to impute cause and
effect, especially to isolated phenomena. Human behavior is rational and
rule-guided; knowledge is acquired through action. Emphasis is on studying
behavior over performance, yielding more insight into reasons why user
performance is bad or good in order to change the system to fit the user.
The developmental approach, in the iterative development cycle, is
amenable to observation, intervention, manipulation of conditions, and
hunch testing. Controlled experimentation has a very narrow focus;
developmental research gladly trades precision for breadth of scope.
Developmental testing is holistic, including whole systems and their
contexts, seeking "ecological validity” [Whiteside and Wixon 1985].

Evaluation with Rapid Prototypes. Use of rapid prototypes is an excellent
way to approach holistic testing. It is essentially the only way to achieve
early testing of whole-system, or at least whole-interface, designs. Because
prototypes are often developed bottom-up, from interface scenarios, the
method is very compatible with the developmental psychological view. In
contrast to point testing discussed in the subsection on traditional controlled
experimentation under section 6.3 on design evaluation, a kind of evaluation
that treats the whole system is a case study of subjects using the target
system prototype to perform a task. Techniques described here are
applicable to very early paper and pencil prototypes as well as computer-
based prototypes used throughout most of the development cycle.
Experimental sessions should be videotaped so they can be replayed as
needed for analysis. One important technique for extracting information

50

from the user is verbal protocol taking. In this method the subject is asked
to discuss, by thinking aloud, the approach taken, problems experienced,
and needs arising during performance of the task. Verbal protocol methods
add to a case study by revealing thought processes behind observable

events,

Perhaps the most useful technique for use with rapid prototypes in a case
study evaluation is the critical incident. This technique is based on
distinguishing situations and events, occurring during experimental
observation, that significantly influence (either positively or negatively)
performance of the task by the subject. The critical incident technique adds
to the case study approach by identifying significant data from the noise,
and there is documented evidence of its wvalidity and reliability [Andersson
and Nilsson 1964]. Suitability of the technique when used with rapid
prototypes is underscored by the fact that it is one of the few evaluation
techniques that is effective for translating results into feedback of redesign
requirements [Dzida, Herda, and Itzfeldt 1978].

Post-session interviews and questionnaires can be used in case studies as
effective ways of extracting more information from subjects, especially if
questions are well designed to lead to new interface requirements or design
modifications. Open-ended questions can also be useful for getting at
subjects’ thoughts on what parts of the interface need improvement and
why. Examples of rather successful user-feedback-driven development can
be seen in a small number of commercial products today [Smith, Irby,

Kimball, and Verplank 1982; Tesler 1983].

The prototype itself can capture user feedback, too. Each screen of the
interface can be augmented with an additional user option, referred to
generically as a “"complaint button" (a slightly less euphemistic and more
alliterative phrase is often used). When exercising a rapid prototype, the
user will have one extra menu selection, PF-key, icon, or command on each
screen for posting complaints or praise about features of a new
interface/system. The complaint button is an especially good way to get
feedback about details that may be forgotten before the post-session
interview. It allows the user to express feelings at the moment they are

51

experienced. Even a short delay can diffuse or defocus those feelings. Some
problems are a problem to a user for only a short time. After that, the
marvelously flexible human may adapt and smooth over the rough spots
that interface developers are trying to detect through the refinement
process. The naive user, as an evaluator, is a precious and perishable

commodity.

A UIMS is an ideal tool for automatic insertion of features such as the
complaint button into the prototype interface. Interface development tools
can also be made to build antomatic instrumentation into the prototype for
monitoring user performance. Metering can add information about the
internal state of the interface or target system, information essential for
correlating redesign of system structure with new requirements revealed by
testing. Detailed metering can provide an ability to associate performance
times and error rates with specific features and parts of the interface.
These kinds of data can allow developers to pinpoint parts of the interface
that cause delays or errors in performance of the user's task.

7. TECHNICAL PROBLEMS AND SOLUTIONS
7.1 Building Tools to Prototype Incomplete Designs

Because a prototyping approach to interface development allows for earlier
error detection, errors are often easier and less costly to correct [Boehm
1976]. Thus, the ability to observe behavior of partially specified, partially
developed interfaces (and systems) is of great value in their development.
Weighed against this payoff, however, is the fact that the early part of the
life cycle is where technical problems with prototyping are greatest.
Because the design is less well developed, it is more difficult to "execute” 2
prototype. The difficulty stems from a simple fact: Computer programs are
fragile. The slightest change to a program, the slightest error of commission
Or omission, can prevent it from running. Systems of software are even
more fragile. All of a system's routines must each be "perfect” and so must
all the interconnections and interrelationships represented by parameters
and arguments, symbolic names, and data types. In contrast, prototypes--

52

especially early ones--are characterized by incompleteness, ambiguity,
tentativeness, and errors. These characteristics are all the opposite of what

programs need to run.

While stubs can be used for routines not yet implemented, even a stubbed
system must still be syntactically complete and correct to compile and run,
or even to be interpreted. [Even though getting syntax correct is not a
difficult problem, it involves attention to detail that has nothing to do with
usability and much of the detail will be changed later, anyway. This is a
major drawback with interface prototypes that are programmed, either in a
programming language or a high level dialogue language.

Fortunately, many new prototyping tools have high level, non-programming,
direct manipulation interfaces for developers. However, these tools must
produce code or data that directs the course of execution in "test mode". If
the high level specification of the interface is incomplete, the code produced
may be correspondingly so. The problem now properly belongs to those
who design and construct the prototyping tool.

In sum, prototyping calls for a support environment radically different from
the traditional programming environment. A partial prototype must not
just quit running when it does not have everything it needs for execution.
In particular, life support mechanisms are needed to keep the software,
especially that of the interface, alive until its ill-formed limbs and organs
can be molded into a single correct and complete design. Allowing
incomplete designs to be executed effectively as prototypes is one of the
difficult technical problems in providing a usable rapid prototyping facility.
It is a serious challenge to the computer science role and may not be
appreciated as such by the behavioral scientist.

7.2 The Information Management Problem

During design and prototyping phases of system development, an enormous
amount of information is produced. Because the rapid prototyping approach
introduces many design variations in an environment in which more than
one development phase can be active concurrently, the problem of keeping

53

track of information is multiplied. The problem of information loss also
becomes an important consideration when using rapid prototyping. A long
standing problem with software production has been the amount of
information lost between phases of the software life cycle [Balzer, Cheatham,
and Green 1983]. The reasoning behind a given design or design change and
the history of revisions are often not available to implementers and almost
never available to maintainers [Gutz, Wasserman, and Spier 1981]. Often
this kind of information goes completely unrecorded. With rapid
prototyping, the problem becomes more pronounced, as this kind of
information may be lost at each iteration. The result can be a lack of control
of the process, and in some cases even a wasteful repetition of thought

processes and previously rejected designs.

Solutions to the problem of managing the information produced, in
particular during design and prototyping phases, involve two major
components. One component is use of automated tools (e.g., UIMS)
interactively to create and record designs and prototype descriptions.
Products of these tools are usually in the form of data and procedures that
define target system objects and operations. More sophisticated tools may
actively support tracking and documentation of designs, changes, and

developer products and responsibilities.

The second component of a solution to the information management
problem inveolves use of a common database among all tools used on a
particular project, to manage all information 'produced by design and
programming teams in a uniform and integrated manner. Requirements,
specifications, scenarios, state diagrams, design notes, structure diagrams,
memos, management information, and even source code for the entire
project would reside in this database. This would provide a single, on-line
repository for all information relevant to the project [Smith 1986]. Tool-to-
tool communication of design representations can be enhanced by means of
views [Date 1986] tailored to provide information in a form suitable for each
tool. These views would map information produced by each tool to a single
canonical schema. Thus, tools can share information through a common
database and yet each maintain the representation which best suits its

needs.

54

7.3 An Enviromment for Rapid Prototyping

A difficulty with some automated design tools is their lack of communication
with each other, ie., the lack of composability of their products. For
example, output of tool A may be unacceptable as input for tool B. Tools
may make use of different information representations because they were
produced by different manufacturers. Another problem with these tools is
that they must run under conventional operating systems. Tool developers
often find themselves restricted in the power they can provide because they
can only assume a minimal amount of host system support. Most currently
popular operating systems are designed to be general purpose environments
for development, maintenance, documentation, and execution of systems of
all types. Thus, developers of an operating system must try to make it a
compromise between efficiency and power in all of these areas, with
efficiency and high performance at execution time emphasized almost
universally. A class of operating systems, referred to as development
environments, is needed to deal specifically with problems of interactive
system design and development. Only development tools themselves, and
not target systems under development, are required to run fast and
efficiently in this development environment, giving significantly different
weight to considerations involved in operating system design. Since many
problems of execution-time efficiency are less pressing, additional design-
time power (e.g., dynamic linking, interpreters, debuggers) can be given to
the operating system so that it may better support design and development
tools, and thus the software development process.

As an example, in the context of rapid prototyping, consider the problems
facing the developer of a tool to interpret executable design representations.
The interpreter should be able to pass control, as needed, to already
compiled parts of the prototype. This feature would be particularly useful
for incrementally constructing whole-system, continuously executable
prototypes. However, to accomplish this on most current systems, either the
developer's code must be statically linked to the interpreter each time the
prototype is changed, or the tool developer must create a new dynamic
linking facility for each system to which the tool is ported. The first option

55

is time consuming and increases the time between prototype versions. The
second involves a complex programming task that would substantially
increase the cost of the tool. |

Use of a common static linker, to resolve all external references before
execution, is justified only when all such references are known at link time
and when the program will be run many times between changes. The
former is not true in the case of rapid prototyping and the latter is almost
never the case in a development environment. It is desirable for a
development environment to incorporate a dynamic linking facility to be
used by tool and software developers to make prototyping easier and faster.

There are other useful facilities in a development environment based on
rapid prototyping, which are so computationally expensive that most
conventional operating systems do not provide them. One of these is a
facility for the maintenance of interface and system objects. Object-oriented
programming [Cox 1986] is being increasingly used for developing the user
interface. Most popular operating systems provide no support for
implementing and using objects. Readers who are not familiar with object-
oriented programming are referred to other sources [Cox 1986; Goldberg and

“Robson 1983; Goldberg 1984].

8. CONCLUSIONS AND FUTURE

Rapid prototyping is a relatively new concept in the software industry. Yet,
as it increases in popularity and maturity, it is already changing the way
interactive systems are developed, speeding up the process and making a
better and more usable product. Increasingly powerful automated tools are
becoming available. These tools allow more rapid production of executable
designs or specifications. Improved development environments and other
tool packages will allow better coordination of multiple designers.
Development, management, and communication tools will become better
integrated. The overall result will be faster iteration through the
design/prototype loop leading to systems that can be produced faster and
less expensively and that are more satisfactory to users.

56

As more experience in application of rapid prototyping techniques is gained,
new methodologies will remedy the shortcomings of currently popular
software development methodologies by emphasizing the human-computer
interface and by specifically supporting use of prototypes. These
methodologies will define developer and user roles for human-computer
interface design and evaluation, roles lacking in current methodologies.
They will explicitly include iterative refinement in the life cycle.

In sum, improved tools set in better software development environments,
together with rapid prototyping methodologies and a body of practical
experience will combine to revolutionize interactive system development,
and especially development of the human-computer interface.

ACKNOWLEDGEMENTS

The authors wish to thank Pat Cooper and Jo-Anne Lee Bogner for their
cheerful and enthusiastic care and feeding of this manuscript over the long
period of its growth and maturation. Special thanks for help of many kinds
also go to Deborah Hix and Antonio Siochi. We appreciate the additional
help of James Callan, Beverly Williges, Roger Ehrich, Roger Chen, and Jeff
Brandenburg. We also gratefully acknowledge research support, under the
supervision of Dr. H. E. Bamford, from the National Science Foundation:
under the supervision of Mr. T. M. Kraly, from IBM Federal Systems Division;
from the Virginia Center for Innovative Technology; and the Software
Productivity Consortium, our sponsor client for the DMS 3.0 as described in

section 5 on examples from a development project.

57

CBS, Inc. (1986) Interview with Anthony Perkins. CBS Morning News,
Monday, 7 July.

Cox, B. 1. (1986) Object Oriented Programming: An Evolutionary Approach.
Reading, Mass.: Addison Wesley.

-Date, C. J. (1986) An Introduction to Database Systems, 4th Ed. Reading,
Mass.: Addison Wesley.

Dzida, W., Herda, S., and Itzfeldt, W. D. (1978) User-Perceived Quality of
Interactive Systems. I[IEEE Transactions on Software Engineering, SE-4,

4, 270-276.

Ehn, Pelle. (1989) Human Centered Design and Computer Artifacts,
forthcoming.

Flanagan, D., Lenorovitz, D., Stanke, E., and Stocker, F. (1985) RIPL Concept
of Operations and System Architecture. CTA Internal paper.Englewood,
Col.: Computer Technology Associates.

Goldberg, A., and Robson, D. (1983) Smalltalk-80: The Language and Its
Implementation. Reading, Mass.: Addison Wesley.

Goldberg, A. (1984) Smalltalk-80: The Interactive Programming
Environment. Reading, Mass.: Addison Wesley.

Good, M., Spine, T., Whiteside, J., and George, P, (1986) User-Derived Impact
Analysis as a Tool for Usability Engineering. Proceedings of CHI ‘86 ,
Boston (April), New York: ACM, 241-246.

Gould, John D., and Lewis, Clayton (1985) Designing for Usability: Key
Principles and What Designers Think. Comm. of the ACM, 28, 3

(March), 300-311.

Gray, Philip D.; Kilgour, Alistair C., & Wood, Catherine (1988) Dynamic
Reconfigurability for Fast Prototyping of User Interfaces. Software
Engineering Journal, (November), 257-262.

Green, Mark (1985) The University of Alberta User Interface Management
System. Proceedings of SIGGRAPH '85, 12th Annual Conference San
Francisco, CA: ACM, 205-213.

59

Gregory, S. T. (1984) On Prototype vs. Mockups. ACM SIGSOFT Software
Engineering Notes, 9, 5, 13.

Gutierrez, Oscar (1989) Prototyping Techniqﬁes for Different Problem
Contexts. Proceedings of the CHI ‘89 , Austin, TX (April), New York:

ACM, 259-264.

Gutz, S., Wasserman, A. 1., and Spier, M. J. (1981) Personal Development
Systems for the Professional Programmer. [EEE Computer, 14, 4, 45-

53.

Hanau, P. R, and Lenorovitz, D. R. (1980a) A Prototyping and Simulation
Approach to Interactive Computer System Design. Proceedings of the
Design Automation Conference Minneapolis, MN.: ACM, 572-578.

Hanau, P., and Lenorovitz, D. (1980b) Prototyping and Simulation Tools for
User/Computer Dialogue Design. SIGGRAPH Proceedings Seattle, Wash.:

ACM SIGGRAPH, 271-278.

Hartson, H. Rex. (1985) Preface to Advances in Human-Computer
Interaction, Vol. I, Norwood, NJ: Ablex.

Hartson, H. Rex, and Hix, Deborah. (1989a) Human-Computer Interface
Development: Concepts and Systems for its Management. ACM
Computing Surveys, 21, 1 (March), 5-92.

Hartson, H. Rex, and Hix, Deborah. (1989b) Toward Empirically Derived
Methodologies and Tools for Human-Computer Interface Development.
To appear in International Journal of Man-Machine Studies. [Note to
ed: Might have more specific reference by the time present paper

goes into production.]

Hartson, H. Rex, Johnson (Hix), Deborah, and Ehrich, Roger W. (1984) A
Human_Computer Dialogue Management System. Proceedings Human-
Computer Interaction--Interact '84, B. Shackel (ed,), London
(September) Elsevier Science Publishers B. V. (North Holland), 379-

383.
Hill, Ralph D. (1987) Event-Response Systems: A Technique for Specifying

Multi-Threaded Dialogues. Proceedings of the ACM CHI + GI 87
Conference Toronto, Ontario, Canada (April), New York: ACM, 241-248.

60

Jacob, Robert J. K. (1982) Using Formal Specifications in the Design of a
Human-Computer Interface. In Proceedings Human Factors in
Computer Systems Gaithersburg, MD.: ACM, 315-321.

Jacob, Robert J. K. (1985) An Executable Specification Technique for
Describing Human-Computer Interaction Chapter 8 of H. Rex Hartson
(Ed.), Advances in Human-Computer Interaction, Vol. 1 Norwood, NJ:

Ablex, 211-242

Jacob, Robert J. K. (1986) A Specification Language for Direct-Manipulation
Interfaces. ACM Transactions on Graphics (October), 283-317.

Lewis, T. G., Handloser, Fred, III, Bose, Sharada, and Yang, Sherry. (1989)
Prototypes from Standard User Interface Management Systems. [EEE

Computer, 22, 5 (May), 51-60.

Mantei, M. (1986) Techniques for Incorporating Human Factors in the
Software Lifecycle. In Proceedings Structured Techniques Association
Third Annual Conference Chicago, IL, 177-203.

Mantei, Marilyn M.., and Teorey, Toby J. (1988) Cost/Benefit for
Incorporating Human Factors in the Software Lifecycle. Comm. of the

ACM, 31, 4 (April), 428-439,

Mason, R. E. A, and Carey, T. T. (1981) Productivity Experiences with a
Scenario Tool. In Proceedings of COMPCON 8] .Washington, D.C.: IEEE,

106-111.

Mason, R. E. A., and Carey, T. T. (1983) Prototyping Interactive Information
Systems. Communications of the ACM, 26, 5, 347-354.

McFarland, G. (1986) The Benefits of Bottom-Up Design. ACM SIGSOFT
Software Engineering Notes, 11, 5, 43-51.

Myers, Brad A. (1988) Creating User Interfaces by Demonstration
(Perspectives in Computing, Vol. 22), Boston:.Academic Press, Inc.

Myers, Brad A. (1989) User Interface Tools: Introduction and Survey. I[EEE
Software, 6, 1 (January), 15-23.

Nielsen, Jakob (1987) Using Scenarios to Develop User Friendly Videotex
Systems. Proceedings NordDATA87 Joint Scandanavian Computer

Conference (June).

61

Olsen, D. R, Jr. (1986) Mike: The Menu Interaction Kontrol Environment.
ACM Transactions on Graphics (April), 318-344.

Piaget, J. (1952). The Origins of Intelligence in Children. New York:
International Universities Press.

Richards, John T., Boies, Stephen J., and Gould, John D. (1986) Rapid
Prototyping and System Development: Examination of an Interface
Toolkit for Voice and Telephony Applications. Proceedings of the CHI
‘86, Boston (April), New York: ACM, 216-220.

Smith, D. C,, Irby, C. I, Kimball, R., and Verplank, W. (1982) Designing the
Star User Interface. Byte (April), 242-282,

Smith, Eric C. (1986) System Support for Design and Development
Environments. Masters thesis, Department of Computer Science,

Virginia Tech, Blacksburg, Va.

Tanik, Murat M., and Yeh, Raymond T. (1989) Rapid Prototyping in Software
Development, guest editors for special issue of IEEE Computer, 22,5

(May), 9-10.

Tesler, L. (1983) Enlisting User Help in Software Design. ACM SIGCHI
Bulletin 14, 3, 5-9.

Wasserman, A. I, Pircher, P. A., Shewmake, D. T., and Kersten, M. L. (1986)
Developing Interactive Information Systems with the User Software
Engineering Methodology. IEEE Transactions on Software Engineering,

12, 2, 326-345,

Wasserman, A. 1, and Shewmake, D. T. (1982) Rapid Prototyping of
Interactive Information Systems. ACM SIGSOFT Software Engineering

Notes, 7, 6, 171-180.

Wasserman, A. I, and Shewmake, D. T. (1985) The Role of Prototypes in the
User Software Engineering (USE) Methodology. Chapter 7 of H. Rex
Hartson (Ed.), Advances in Human-Computer Interaction, Vol. 1

Norwood, NJ: Ablex, 191-209

Weiser, Mark (1982) Scale Models and Rapid Prototyping. ACM SIGSOFT
Software Engineering Notes, 7, 5 (December), 181-185.

62

REFERENCES

Alavi, M. (1984) An Assessment of the'Prototyping Approach to
Information Systems Development. Communications of the ACM, 27,

6, 556-563.

Andersson, B. and Nilsson, S. (1964) Studies in the reliability and validity of
the critical incident technique. Journal of Applied Psychology, 48, 6,

398-403.

Bally, L., Brittan, J., and Wagner, K. H. (1977) A Prototype Approach to
Information System Design and Development. Information and

Management, 1, 1, 21-26.

Balzer, R. M., Cheatham, T. E., and Green, C. (1983) Software Technology in
the 1990's Using a New Paradigm. JEEE Computer, 16, 11, 39-45.

Boehm, B. W. (1976) Software Engineering. [EEE Transactions on
Computers, 25, 12, 1226-1241.

Boehm, B. W. (1983) Seven Basic Principles of Software Engineering. The
Journal of Systems and Software, 3, 3-24.

Boehm, B. W., Gray, T. E., and Seewaldt, T.(1984) Prototyping Versus
Specifying: A Multiproject Experiment. [EEE Transactions on Software

Engineering, 10, 3, 290-303.

Callan, J. E. (1985) Behavioral Demonstrations: An Approach to Rapid
Prototyping and Requirements Execution. Unpublished masters thesis,
Virginia Tech Department of Computer Science, Blacksburg, VA.

Carey, T. T, and Mason, R. E. A. (1983) Information System Prototyping
Techniques, Tools, and Methodologies. Infor, 21, 3 (August), 177-191.

Carey, Tom (1988) The Gift of Good Design Tools. Chapter 5 of H. Rex
Hartson and Deborah Hix (Eds.), Advances in Human-Computer
Interaction, Vol. 2. Norwood, NJ: Ablex, 159-174,

Carroll, J. M., and Rosson, M. B. (1985) Usability Specifications as a Tool in

Iterative Development. Chapter 1 of H. Rex Hartson (Ed.), Advances in
Human Computer Interaction, Vol. 1, (pp. 1-28). Norwood, NJ: Ablex.

58

Whiteside, J., Bennett, J., and Holtzblatt, K. (1988) Usability Engineering: Our
Expenence and Evolution. Handbook of Human- Computer Im‘eracrzon
M. Helander (ed.), Elsevier North-Holland, ‘791 817.

Whiteside, J., and Wixon, D. (1985) Developmental Theory as a Framework
for Studying Human-Computer Interaction. Chapter 2 of H. Rex
Hartson (Ed.), Advances in Human-Computer Interaction, Vol 1

Norwood, NJ: Ablex, 29-48.

Wong, P. C. S., and Reid, E. R. (1982) FLAIR - User Interface Dialogue Design
Tool. S]GGRAPH Computer Graphics, 16, 3, 87-98.

63

	TR-89-42.pdf
	20050926124005312.pdf

