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Abstract

In this paper we describe our initial work on a long-term project to develop and validate a
reliability model and a new class of software complexity metrics which are related to this model. In
contrast to previous "black box" approaches, the reliability model is novel because it incorporates
knowledge about the system in the form of quantitative software complexity metrics. While the
initial model uses existing software metrics a parallel effort in this project is investigating new
classes of metrics, interface and dynamic metrics, which are useful in their own right but are
also of particular relevance to the reliability model. The initial definitions of both the model and the
metrics are given along with a description of the next research milestones.
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I. Introduction

Models for estimating software system reliability are commonly based only on the
execution behavior observed during system testing. This common "black box" approach suffers
from two principle limitations. First, this approach ignores such system "quality" factors as
structure and complexity even though the basic tenets of software engineering hold that these
factors are prime determinants of software system reliability. Second, the execution behavior of a
system is only known when the system is (at least very nearly) complete. Thus, "black box"
reliability models can only deliver their assessments very late in the software life cycle - too late for
major reliability problems to be corrected in a cost-effective manner.

In contrast to the "black box" approach Shooman developed a model which included
structural information (execution paths)[SHOMS83]. Similar to this idea we are investigating a
reliability model which incorporates information about the quality factors of the system. To keep
the model both objective and quantitative, and also because of our previous research work, the
quality factors will be those aspects of the systems which can be measured by software metrics.
Such a model might improve on current "black box™ models in one or more of three ways: the
reliability assessment might be more accurate, the reliability assessment might be more confident,
or a partial reliability assessment might be arrived at earlier. This last possible benefit arises
because, unlike the execution behavior, the quality factors begin to emerge early in the software
life-cycle. Measurement of the evolving quality factors might then provide the basis for early, and
increasingly more accurate, reliability estimates arrived at well in advance of the testing phase of
the software life-cycle. Estimating system reliability then becomes a process which begins early,
rather than late, in the life cycle and has a natural progression from the design and implementation
phases to the testing phase. '

In this paper we will describe our initial work on the development and validation of the
reliability model which incorporates system quality factors. The organization of this paper mirrors
the fact that the work itself is proceeding towards two distinct but related objectives. The first
objective is the development of the new model. The preliminary model definition is presented in
Section II. Section II also contains a description of a three stage validation process which we will
use to explore the model's characteristics. The second objective is the development of new
software quality metrics which could be used to provide additional model parameters. Beyond their
use in the model, these additional software metrics are interesting and useful in their own right.
The preliminary definition of the new software metrics is presented in Section II. Finally, in






Section IV, we briefly reflect on our early work and identify the next steps in our investigation of
the model and the metrics.

II. Model Definition

One view of the model being developed is shown in Figure 1 below. The notation of this
figure will be explain shortly. Notice that the model derives information from two sources -- the
system being tested and the testing process. The information which the model incorporates from
the system being tested is the complexity of the jth component , C; , and the total number of
components in the system, T. The testing process is described by the total number of test cases
performed so far, N, the total number of failures (or errors) observed in component j during the N
tests cases, ¢, and the total number of times that component j was executed in test case i, fj;.
Thus, the testing process is described by the volume of testing (N), the distribution of this testing
volume over the components of the system (fji), and the distribution of component failures (ej).The
model produces two basic reliability indicators: Pj(N,C;) - the probability of failure of the jth
component in the system after N test cases have been performed; and Pg(N) - the probability of
system failure after N test cases have been performed. By "failure” we explicitly mean the
observed occurrence of an error in either the component or the system regardless of whether the
component or the system ceased to operate as a result of the error's occurrence. In this sense,
failure is simply the deviation from desired behavior rather than from a catastrophic event.
Hereafter, the terms failure and error will be used interchangeably.

Thé development of the model is based on a number of assumptions, the first of which we
introduce here and the remainder of which will be stated as needed. The first assumption is:

Assumption 1: the probability of discovering an error in a component
is inversely proportional to the amount of testing to
which the component has been subjected without
failure.

This assumption expresses the belief that the reliability of a component increases as the component
executes without failure on an increasing number of test cases.

Before trying to cast this assumption into a mathematical framework we must decide
exactly how to measure the "amount of testing” which a component has undergone. Recall that one
of the measured quantities from the testing process is the number of times component j was
executed in test case i (fj;). One measure of the amount of testing is the total number of times that



the component was executed over all test cases. This measure is denoted Fj. Another measure,
denoted n;, is the number of test cases in which the component was executed at least once.

System being

Testing Process
Tested

Reliability Model
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Figure 1: Major Elements of the Model

Figure 2 shows three different testing scenarios for component j. In Figure 2(a) the
component is executed in only three different test cases while in 2(b) it is executed in 5 different
test cases. In both 2(a) and 2(b), Fj=2fji=10. In choosing between 2(a) and 2(b), and all other
things being equal, we would give preference to the testing scenario in 2(b) under the assumption
that the environment in which the component operates is more varied between different test cases
than it is within the same test case. This assumption will be explicitly stated later along with other
assumptions about the testing process. In the extreme, a component is more thoroughly tested if it
is executed once in each of ten 10 different test cases than if it is executed 10 times in the same test
case. In 2(b) and 2(c), n;=5. However, we would again prefer the scenario in 2(b) because the
total number of times the component is executed in 2(b) is twice (F;=10) that of the scenario in 2(c)
(F=5).

Based on the example in Figure 2 we have defined a measure of testing thoroughness
which balances between F; and n;. This measure is defined as:

n. xF, (1)
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Figure 2: Examples of Test Case Distribution

"Applied to the testing situations in Figure 2, this measure yields values of 3.75, 7.14, and 3.12 for
2(a),(b) and (c), respectively. Using this measure, and temporarily ignoring component failures,
we can now cast assumption 1 into a mathematical formula as:

NG P @
oN

This formula states that the rate of change of the component's probability of failure is inversely
proportional to the current of testing as measured by Fj. Substituting for the definition of the F
and introducing a constant of proportionality (K}) we obtain:

B;WG) _ p (MixF; ©
oN 1 N+1
Integrating (3) with respect to N yields:
P;(N,C;) = -Kyx n;x F; x log(N+1) +Y(C) @




The Y(C;) term in equation (4) is a function of the complexity of the component. To proceed
further, we make the next modeling assumption:

Assumption 2: the probability of discovering an error in a component
is directly proportional to the complexity of the

component.

Applying this assumption to equation (4) and introducing another constant of proportionality, Ko,
we obtain:

P;(N,C;) =-K; xn;x F;x logN+1) + K, x C; o8

This equation expresses in mathematical terms that a component's probability of failure decreases

with increasing testing. It also expresses that more complex components require more testing than

less complex ones in order to achieve the same reliability. B
Equation (5), however, did not mode! how the probability of failure changes when an error

occurs in a component. This is added to the model by introducing the change in the probability of
failure, APj, on encountering an error. Assuming an error is detected on the N+1 case the equation

modification is:

There are a number of assumptions which underly the formalization of AP; These

assumptions define the characteristics of the testing process and the error correcting process. The
assumptions are:

Assumption 3: All errors which occur are observed.
Assumption 4: Each test case results in at most one error.
Assumption 5: Test cases are independent of each other.

Assumption 6: Each test case is directed at testing a different aspect of
the system.

Assumption 7: Every error is corrected before the next test case is
executed.



Assumption 8: Correcting an error does not introduce new
components and does not change the complexities of
existing components.

The first four of these assumption describe the testing process. Assumption 3 states that the
testing process is thorough in the sense that errors cannot occur without being discovered.
According to Assumption 4 a test case is considered to end when an error is detected. By
Assumption 5, the ordering of the test cases is immaterial. Finally, Assumption 6 requires that test
cases do not repeatedly test only a restricted part of the system. Together Assumptions 5 and 6
imply that reliability can only be properly assessed by a test suite which is sufficiently large and
sufficiently varied in composition.

Assumptions 7 and 8 describe the error correcting process. Assumption 7 dismisses the
case when the same error is repeatedly discovered. Assumption § may or may not be true in
practice. One can certainly envision a situation where an error correction substantially changes the
complexity of one or more components. However, we are willing to tolerate this assumption, at
least for the moment, in order to stimplify the model definition and validation. This assurnption can
be removed at a later time. _

Returning now to equation (6), there are three possible ways to model the change in
probability. These three ways are:

* modify the probability of failure
*  modify the rate of change of the probability of failure

* modify both the probability of failure and the rate of chan ge

Each of these three methods is based on a different intuitive notion of how the error discovery
process behaves. The first alternative is consistent with the observation that more errors will be
discovered in those components which have already been found to contain errors. Thus, when an
error is discovered in a component its probability of failure should be increased because more
errors are likely to be found in this component by additional testing. The absence of subsequent
errors allows the component to quickly recover its previous probability because the rate of change
of the probability is not changed. The second alternative is consistent with the philosophy that the
testing and error correcting activities acting together continue to improve the reliability of
components. Thus, the discovery, and subsequent correction, of an error only slows the rate at
which the component's reliability is increasing. The third alternative is the most pessimistic. In this
case the occurrence of an error is taken as an indication of the likely discovery of additional errors
and, even in the absence of such errors, the component can recover its previous reliability status




only by successfully executing a larger number of test cases. Each of these three methods will be
formalized and explored.

Method 1: Modify the probability of failure

Three factors are considered in adjusting the current probability value in the case of an error
occurrence: the complexity of the component which has failed (Cy), the total number of errors
(including the current error) detected in this component (ej), and the number of test cases in which
this component has been executed at least once (n;). The complexity is included because of
Assumption 2, and the number of test cases is included because of Assumption 1. The number of
errors is included to penalize those components in which a large number of errors have already
been detected. The change in probability is defined as: '

jX ej (7)

nj

C
APJ'=K3

where K3 is a constant of proportionality. On one extreme, this equation leads to a large increase
in probability for a high complexity component in which a large fraction of the test cases have
revealed errors in the component. On the other extreme, a small increase in complexity will be
produced for a low complexity component which has successfully executed all but a small number
of the test cases. This method is illustrated graphically in Figure 3. Figure 3 shoes the failure
probability curve for componenet j when errors are detected in test cases n1 and np. Accordingly,
the probability curve is adjusted upward at these points. Using method 1, the complete model is
then:

ij e; (8)

n;

P_] (N,CJ ) = -Kl X nj X FJ X 10g(N+1) + sz C]+ K3

which results from combining equations (5), (6) and (7).
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Figure 3: Change in Probability for Method 1

Method 2: Modify the rate of change of the probability

In this method the rate of change of the probability is set to zero as shown in the following
equation:

oP; (N,C, X F;
J;ch)z_Kl (§113)+K4=0 ©)

where K4 is a constant. The effect of this method is shown graphically in Figure 4. The following
model results:

P;(N,C;) =-K; xn;x F;x log(N+1) + K, x C; + K, x N (10)

by integrating with respect to N, as was done earlier.
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Figure 4: Change in Probability for Method 2

Method 3: Modify both the probability of failure and the rate of change

In this method both of the adjustments of the other two methods are applied
simultaneously. This approach is shown graphically in Figure 5. It should be relatively obvious
that this method is described by:

P.(N.C:)=-K D4+ Kyx Cit Ko % 4K, x N (1)
}( ’ j)—- IXHjXFjXIOg(N+)+ 2 X j+ 3 nj +K4X

which is simply a combination of equations (8) and (10).

10
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Equations (8), (10) and (11) are three alternative models for determining the probability of
failure of each component based on that component's complexity and testing history. Another
reliability measure, the probability of system, failure will also be developed. System failure is
determined by the composition of the component failures. This composition is based on the
following assumption of component independence:

Assumption 9: the failures in each component are independent of the
failures in all other components.

One may imagine situations in which this assumption would not hold between particular
components. For example, let us assume that two components shared the same false assumption.
Then an error, related to this incorrect assumption, that is discovered in one component would
imply a higher likelihood of discovering errors in the other component as well, However, we adopt
this assumption for three reasons. First, it is not clear that the dependencies between components
need to be modeled in order to obtain reasonable reliability estimates. Second, it is not clear how
such dependencies can be modeled or measured. Third, as shown below, adopting this assumption
leads to a simple model of system failures.

The model of system failure adopted from Shooman [SHOMS3] is shown in equation (12)
and is derived as follows. The term ( 1-Pj(N,CJ-)) is the probability of success for component j
(i.e., the probability that component j will nor fail on the next test case). Given assumption 9, the
probability of system success is simply the product of the component probabilities. The probability
of system failure is then obtained by subtraction.

11




T (12)
1- 1‘[ (1 -Pj (N,Cj))

i=1

This completes the development and presentation of the model.

Validation Process

The utility of the model presented above will be determined by the accuracy with which the
reliability of actual production systerns is estimated by the model. The validation cannot usefully be
accomplished in one encompassing step. Therefore, the following three step process has been
outlined. Each step is more realistic than the previous step. The three steps are: '

» the use of simulation techniques to generate a hypothetical system and
test scenario

« the use of a small-scale system to which error seeding and test case

generation strategies will be applied

« the use of a production scale system using actual error histories and test
cases developed during the testing process.

The first step allows highly controlled experiments with the model. These experiments will -
lead to a better understanding of the basic characteristics and sensitivities of the model. For
example, it can determine how sensitive the reliability measures are to the variation in component
complexities. At the heart of this first step is a bivariate normal model which will be used to
generate the characteristics of the hypothesized system. This statistical model will be calibrated
from actual project data.

The second step, more realistic than the first, will employ a small-scale system. In this step
actual complexities will be used. The intent is to maintain some degree of control over the
validation by using a small-scale system into which different error patterns can be injected and for
which a variety of realistic test scenarios can be generated.

The final, and most realistic, step will be based on a production scale software system.
Historical data collected during the system's development and testing will be used. Thus, all of the
complexities, errors and test cases will be realistic. While this is the most realistic step in the
validation it is also the least controllable.

12



III. Definition of New Software Metrics

This section concentrates on the new and existin g software quality metrics which will be
used as parameters to the reliability model previously discussed. Recent studies have shown that
existing software metrics can predict the maintainability of software systems [LEWJI88,WAKS88],
but more importantly, that software metrics can predict the software system quality at design time
[SELC87,GOFR87].

Henry and Selig demonstrated that using software quality metrics with software designs the
quality of a software system at design time. The system designs were produced using a program
design language (PDL). This study lend credence to the fact that software quality metrics can and
should be used early in the software life cycle [HENS88a].

Another study by Henry and Goff showed similar results using a graphical design
language, GPL [HARHSS]. Additionally, this work compared the quality of designs written in a
textual design language with those written in a graphical design language. The GPL produced
designs and resultant source code with much better quality than a textual design-language
[HENS88b]. | | o

These studies support our belief that using software quality factors collected early in the
software life cycle will improve not only the reliability model but will allow the reliability model to
be used early in the software development life cycle.

 The remainder of this section briefly discusses and references the existing metrics used in
previous studies and presents preliminary definitions of new metrics which will be incorporated
into the reliability model. The first of the new metrics focuses on the interfaces among system
components. A second new type of metric is based on the dynamic aspects of system execution.
Previously, all software quality metrics have measured static attributes of the system design or
code, this new collection of metrics will atternpt to measure more dynamic aspects of the system.

Existing Metrics

Code Metrics

Metrics that are directly “countable” from the source code are refered to as code metrics.
Many code metrics have been proposed in the recent past. An effort has been made to limit this
discussion to a few of the more popular ones that are typical of this type of measure. They include
lines of code, selections from Halstead's Software Science, and McCabe's Cyclomatic
Complexity. Each of these metrics are widely used and have been extensively validated.

13




Lines of Code
The most familiar software measure is the count of the lines of code with a unit of LOC or

for large programs KLOC (thousands of lines of code). Unfortunately, there is no consensus on
exactly what constitutes a line of code. Most researchers agree that a blank line should not be
counted, but cannot agree on comments, declarations, null statements such as the Pascal BEGIN,
etc. Another problem arises in free format langnages which allow multiple statements on one
textual line or one executable statement spread over more that one line of text.

For this study, the definition used is: A line of code is counted as the line or lines between
semicolons, where intrinsic semicolons are assumed at both the beginning and the end of the
source file. This specifically includes all lines containing program headers, declarations,
executable and non-executable statements. :

Halstead's Software Science
A natural weighting scheme used by Halstead in his family of metrics (commonly called
Software Science [HALM77]) is a count of the number of “tokens,” which are units
distinguishable by a compiler. All of Halstead's metrics are based on the following definitions:
n; = the number of unique operands.

ny = the number of unique operators.
N; = the total number of operands.
Ny = the total number of operators.

Three software science metrics will be discussed, specifically N, V,and E.

The metric N is simply a count of the total number of tokens expressed as the total number
of operands plus the total number of operators, i.e.,, N = N; + Nj. An operand is defined as a
symbol used to represent data and an operator is any keyword or symbol used to express an action
[CONSS86].

The second Halstead metric considered is volume. The volume, V, represents the number
of bits required to store the program in memory. Givenn as the number of unique operators plus
the number of unique operands, i.e., n = n; + ny, then logy (n) is the number of bits needed to

encode every token in the program. Therefore, the number of bits necessary to store the entire
program is: o
V=Nxlogy (n)
The final Halstead metric examined is effort (E). The effort metric, which is used to

indicate the effort of understanding, is a function of the volume (V) and the difficulty (D). The
difficulty is estimated as:

14
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Given V and D, the effort is calculated as:

E=VxD

The unit of measurement of E is the elernentary mental discriminations which represent the
difficulty of making the mental comparisons required to implement the algorithm.

McCabe's Cyclomatic Complexity
McCabe's metric [MCCT?76] is designed to indicate the testability and maintainability of a

procedure by measuring the number of “linearly independent” paths through the code. To
determine the paths, the code is represented as a strongly connected graph with one unique entry
and exit point. The nodes are sequential blocks of code, and the edges are decisions causing a
branch. The complexity is given by:

V{G)= E-N+2

where

E
N

the number of edges in the graph

the number of nodes in the graph.

According to McCabe, V(G ) = 10 is a reasonable upper limit for the complexity of a single
component of a program.

Structure Metrics

It seems reasonable that a more complete measure needs to do more than simple counts of
lines or tokens in order to fully capture the complexity of a module. This is due to the fact that
within a program there is a great deal of interaction between modules. Code metrics ignore these
dependencies implicitly assuming that each individual component of a program is a separate entity.
Conversely, structure metrics attempt to quantify the module interactions using the assumption that
the inter-dependencies involved contribute to the overall complexity of the program's units, and
ultimately that of the entire program. In this study, the structure metric examined is Henry and
Kafura's Information Flow Metric.

Henry and Kafura's Information Flow Metric

Henry and Kafura [HENS79] [HENS81a] developed a metric based on the information
flow connections between a procedure and its environment called fan-in and fan-out which are
defined as:

15




fan-in - the number of local flows into a procedure plus the number of
global data structures from which a procedure

retrieves information.

fan-out - the number of local flows from a procedure plus the number of
global data structures which the procedure updates.

To calculate the fan-in and fan-out for a procedure, a set of relations is generated that reflects the
flow of information through input parameters, global data structures and output parameters. From-
these relations, a flow structure is built that shows all possible program paths through which
updates to each global data structure may propagate. The complexity for a procedure is defined as:

Cp = (fan-in;, x fan-outy )2

where
Cp=the complexity of procedure p
fan-in,, = the number of fan-ins to procedure p
fan-outy, = the number of fan-outs from procedure p.

The term (fan-in x fan-out ) is squared to represent the idea that the complexity due to the
inter-relationship between components is non-linear.

Procedural complexity is used to find those procedures with heavy data traffic and those
that are not adequately refined. Module complexity reveals overloaded data structures as well as
improper modularization. The level complexity may be used to detect missing levels of abstraction
or to compare alternate system designs. Module and level complexities are fully defined in Henry
and Kafura's work [HENS79].

Hybrid Metrics

Many researchers feel that in order to fully measure the complexity of a system both code
and structure metrics must be included. This combination yields hybrid metrics.

Interface Metrics

The interface metric is a new set of metrics being developed through this research to be
incorporated into the reliability model. This new measure is a hybrid metric concerned with the
complexity of communicating modules/procedures. This metric finds its basis in the information
flow concept as put forth by Henry and Kafura [HENS81a]. It also takes into account the
structure of the code similar to that of McClure's complexity [MCCC76].

16



The motivation behind the interface metric is that previous metrics fell short of maintaining
all the information needed to model a non-trivial indicator of the complexity of code and interfaces.
While Henry and Kafura [HENS81a] modeled metrics along data flow lines, they ignored the
inherent complexities that different data structures enter into the picture. McClure weights the
different structures by either selection or repetition; however, this approach neglects the complexity
associated with each selection/repetition construct control clause. Also, various styles of repetition
constructs were put into a single class; there could possibly be a difference among various
structures inherent complexity.

Within the calculation of the Interface Complexity Metric there are several underlying code
metrics that must be generated. Instead of using the predefined ‘classical' metrics, several metrics
have been defined with properties similar to Halstead's Software Science measurements
[HALM77]. These new measurements define expression complexities of all mathematical and
relational formulas. With these measurements, the structure complexity measures associated with
selection and repetition clauses can be better addressed.

To facilitate the needs of the interface complexity measure, several different complexities
must be defined. These complexities try to capture the 'weight' of data being passed through the
'complexity’ of the given code at the communication invocation. This implies that the complexity
must take into account the types, expression, and flow.

These metrics consider the differences inherent in types, operators, and flow structures.
The complexities to be defined are: Type, Operator, Expression, Flow-Control, Environment,
Vartable and Interface Complexities. These complexities are broken into two different classes:

(1) Type, Operator, Flow Control, and

(2) Expression, Environment, Variable (Ref_Read and Ref Write), and
Interface Complexity.

The first class is calculated directly from the source code. The second class is calculated from
combinations of the first class.

Type Complexity

The type complexity attempts to capture the inherent differences among the variable types.
This allows the metric to differentiate between the inherently easier INTEGER type and the more
complex FLOATING-POINT type variables.

Most procedural programming languages contain two classes of types: Basic Types and
Group Types. The basic types define single value variables such as: BOOLEAN, INTEGER,
REAL (FLOATING-POINT, FIXED-POINT), CHARACTER, etc., while the group types define
collections of data, i.e., RECORDS, ARRAYS, FILES, etc. These collections, as good

17



programming practice dictates, are specified with regards to a logical unit. The TYPE complexity
is therefore a weight associated with each variable with regards to its type.

Operator Complexity

It should be obvious that there are complexity differences between operators. This is most
easily seen when '+ (plus) and "**' (exponentiation) are considered. While both are binary
operators, their associated complexity is far different, with exponentiation being the more complex.
Therefore, a weighting scheme, the operator complexity, is needed to characterize the relationship
among the operators and their complexities. i

In considering these operators, the ordering must by its very nature relate the relational and
numerical operators. Therefore, considerations must be taken to retain the relationship between the..

complexities.
Expression Complexity

Given that there are type and operator complexities, then the next logical step is to define a
complexity for a given expression. This complexity is defined as a function of the operator
complexities and the operand type complexities. With this backdrop, it is possible to rank
expressions in a way to define highly complex expressions. The motivation is that highly complex
expressions yield more probable locations of errors.

Flow-Control Complexity

The possible complexity associated with different paths through the source code must also
be considered. There is a complexity difference among the flow control statements. In general
there are two classes: selection and repetition. Selection statements, in most languages, include
IF-THEN-ELSE (and all the derivatives) and CASE. Repetition statements include the two
looping constructs: Test-Before and Test-After cases.

There is certainly a difference between the selection and repetition statements, and each
adds a different complexity to the communication (interface complexity). However, is there a
difference among the the selection statements? The question must also be answered for the
repetition statements. The weighting scheme derived here will rank flow-control statements, and
allow the metric to differentiate the complexities associated with each and how it affects the

communication.
Environment Complexity

The environment of the communication invocation is very important to the interface
complexity measure, It is at the point of the invocation that all aspects of the source code come

18



together to produce correct communication, and thus an error at invocation results in the
propagation of the error .

The environment complexity is a function of the expression complexities and the flow-
control complexities.

Variable Complexities

Each variable that affects the communication between two modules (used loosely) must be
analyzed as to the extent that its complexity will add to the interface. These variables become more
complex as they are modified, and as they modify others their complexity must be represented in
the modified variable. There are two complexities associated with each variable, Ref Read and
Ref_Write, these complexities try to capture the variable's usage.

Ref Read
Each time a variable is referenced, or read, the Ref Read complexity will contain the
environment information. This is useful in finding orders of most used variables and the

complexity in which they are used.

Ref_Write

Each modification to a variable causes the variable to become more complex. Therefore, at
each modification the Ref Write complexity retains information about the expression complexity of
the right hand side of the assignment. In this way a variable may be identified as to its
modifications and their complexities.

Interface Complexity

The interface complexity is now defined to be a 2-tuple containing information about the
environment of the call and the nature of the parameter complexity. The environment element is a
function of the environment complexity at each invocation of the communication or interface; the
parameter complexity is a function of the expression complexities and the Ref Write complexities
of the parameters at each invocation.

In summary, to generate the interface complexity there are several underlying complexities
that are defined. Type complexities measure the differences between variable types, in that an
ordering is preserved such that more difficult types have a higher order. Operator complexities,
much like type complexities, assign a weight to the various operators. Flow Control complexities
assign weights to the various selection/repetition statements found in the source language due to the
difference of their semantics. Expression complexities are a function of the underlying type and
operator complexities, while Environment complexities are a function of expression and flow
control complexities. Finally, Interface complexities are a function of the environment and
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parameters at each invocation to the calls. The following figure should help to clear up any
ambignities.

Clnterface Comp]exityj
(Ref_Write Complexity) Gnvironment Complexita
\ (Expression Complexity ] Glow Control Complcxity)r | .
( Type Complexity J ( Operator Complexity ]

Figure 6. Chart of Complexity Build Up

Dynamic Metrics

Software metrics research has focused exclusively on measures which are determined by a
static analysis of the system under study. Such metrics hypothesize that the static, pre-execution
relationships among statements or the relationships among components are important influences on
the accuracy or economy with which basic software engineering tasks can be performed. A large
and growing body of empirical evidence supports, at least to some degree, this hypothesis.

Without diminishing the importance of the static system structure, it should also be realized
that a software program or system is not a static entity. Software systems have "moving parts"™:
loops which iterate, data which flows from one component to another, tasks which execute in
nondeterministic sequences that may not even be repeatable. Thus, we hypothcsize that the
dynamic (execution time) behavior of the system must be considered in assessing the system's
quality factors. The dynamic behavior is particularly important if, as is the case in this study,
reliability is a quality factor of prime concern.
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A dynamic metric is a2 measure of complexity computed during execution of the software
system. Because dynamic metrics are computed at execution time they are more accurate at
establishing actual relationships between system components. However, dynamic metrics only
measure what occurred during execution, not what might occur during a future execution. Static
metrics can be improved by information from dynamic analysis in some cases. Used other ways,
static measures may be more descriptive because they measure the potential complexity of the
components.

There are two primary advantages of dynamic over static metrics. First, dynamic metrics
are more accurate because static program analysis may not be able in some cases to establish a
precise relationship between system components. The greater accuracy of dynamic metrics is
particularly true of languages like ADA which contain constructs whose exact meaning may not be
determined until run-time. Consider, for example, an ADA procedure which raises an exception.
It is not possible for a static analysis to determine which system component will handle this
exception because the handler is determined at run-time. The best that a static analysis could hope
to accomplish would be to identify all of the possible handlers. Thus, only a dynamic metric — one
which is based on run-time information — would be able to correctly identify the true relationship
between the component raising the exception and the component handling the exception. Similar
examples can be given for other ADA constructs such as generic packages and tasks.

The second major difference between static and dynamic metrics is the weighting accorded
to different features of the system. Consider the following passage of code:

procedure A is
fx<y
then B(x,y)
else C(x,y)
end A;
A static analysis would treat the information flow relationship between A and B as equal to that of
the information flow relationship between A and C. Suppose, however, that in execution over a

substantial set of input data it was determined that the conditional test "x<y" was true in 90% of the
cases. This additional knowledge about the dynamic relationships involving A, B and C would
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lead us to assign a greater weight to the information flow between A and B since this flow occurs
with much higher probability.

Frequency and Duration metrics are the easiest dynamic metrics to capture. Frequency
simply refers to the number of times a procedure is called and duration is the amount of time each
procedure executes. Using existing tools in a UNIX environment, frequency and duration
metrics are easily generated. This information can then be incorporated in the reliability model.

Execution time monitoring has traditionally been used in testing, configuring of systems,
hardware monitoring and debugging [PLAB81]. These all involve an interactive approach with the
user examining the results from the monitor and determining what should be done next. From a
dynamic metric standpoint, it is not necessary that an execution monitor interact with the user.
This is because we do not wish to alter the target program, but measure it as it executes.

An execution monitor or profiler monitors program execution, gathers statistics and returns -
the results. The most common statistics collected are timings in the form of clock ticks spent in -
each unit of the program, and counts which are a count of the number of times each unit is
executed. These units range from lines of code to subprograms.

Plattner [PLAB81] suggests four possibilities for the execution monitor:

1. the execution monitor interprets the target program,

2. generate a trap after each instruction so a trap handler can arbitrate
between the execution monitor and the target program,

3. patch instructions into the target program, and

4. augment the system with a hardware device to trap when certain
memory is accessed.
Bishop [Bism87] lists four ways to implement a profiler. First, the compiler can be modified to
generate monitoring code. This is the method traditionally used by UNIX. Second, use a
preprocessor to insert special code into the source program. Third, use a postprocessor to insert
special code into the assembly language program. Finally, use an execution monitor as discusses
before.

The dynamic metrics, collected by the execution monitor, play a key role in the
development of the proposed reliability model. As illustrated above, the dynamic metrics provide
the basis for a probabilistic weighting of complexity factors. This consideration of the probability -
of events within a system is necessary in assessing that system's reliability. Consider, for
example, two systems which have one extremely complex component which has been subjected to
the same degree of testing. In one system the component is frequently executed while in the other
systemn the component is rarely executed. It would appear that the system where the the complex
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component is rarely executed should be assigned a higher reliability measure because its execution
avoids the potential faults latent in the complex component. By contrast, the other system would be
assigned a lower reliability measure because it is frequently exposed to the reliability hazards of
the complex component.

In summary, dynamic software metrics provide a weighting of software complexity factors
based on run-time information. This run-time information could be acquired either through an
execution monitor or an instrumentation of the system's code.

IV. Summary and Future Work

This paper describes our initial work on defining both a new reliability model and new
class of software complexity metrics based on interface properties and dynamic execution
characteristics. Our three year research plan is aimed at producing a new model/metric pair each

year in the following order:

* A reliability model using existing static metrics and the parallel
development of new interface metrics

* A reliability model incorporating the interface metrics and the parallel
development of new dynamic metrics.

* A reliability model incorporating the dynamic metrics.
Each of the reliability model must, of course, be subjected to as rigorous a validation as possible.

Our near term goals for the reliability model development are:

*  Conduct the first stage of the validation process described in Section II
of this paper. This first stage uses a synthetic system whose complexity
and error characteristics are determined by a statistical model calibrated
from actnal project data.

* Identify a small-scale system which can be used for the second step of
the validation process and select the error seeding and test case
generation strategies to be used.

* Identify a large-scale system with complete source code, test cases, and
error history. While such a system may be difficult to procure for this
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research project, this step represents the most realistic step of the
validation process.

Our near term goals for the metrics development are:

» Completely specify the definition of the interface metrics and develop an
interface metric generator to incorporate into the current metric analyzer.

» Verify the results of the interface metrics to see if they adequately
measure the important properties.

» Automate the straightforward dynamic metrics for frequency and

duration.
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