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(ABSTRACT)

When representing statements about knowledge in a extensional logic, it
occasionally happens that undesired conclusions arise. Such extraneous
conclusions are often the result of substitution of equals for equals or
existential instantiation within intensional operators such as Know. In the
past, efforts at solving this problem have centered on modifications to the
logic. In this thesis, I propose a solution that leaves the logic intact and
changes the representation of the statements instead.

The solution presented here has four main points: 1) Only propositions
can be known. 2) Relations rather than functions should be used to describe
objects.  3) Temporal reasoning is often necessary to represent many real-
world problems. 4) In cases where more than one label can apply to the same
object, an agent's knowledge about labels must be explicitly represented.

When these guidelines are followed, statements about knowledge can be
represented in standard first-order predicate logic in such a way that
¢xtraneous conclusions cannot be drawn. Standard first-order theorem
provers (like Prolog) can then be used to solve problems which involve

reasoning about knowledge
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1 Introduction

In order to perform most tasks you need knowledge. To call someone on
the phone you must know the number. In order to go 1o the post office you
need to know its location. If you don't know the requisite information, part of
performing these tasks is acquiring the necessary knowledge: you can look up
phone numbers in the phone book, and the location of the post office can be
learned by consulting a map or someone familiar with the town. If Al is to
achieve the goal of building an intelligent autonomous robot, then we must
give it the ability to reason about its own knowledge and that of other
intelligent agents, be they people or other robots.

For the most part, automated planning research has ignored the problems
inherent in reasoning about knowledge. Most classic planners such as STRIPS
[Fikes71] and NOAH [Sacerdoti77] and their descendents assume that the
planning agent is omniscient and has instant access to all information
necessary for solving the problem. More recently, Moore's integrated logic of
knowledge and action [Moore85] and the FORBIN planner [Dean87] have begun
to examine the role of knowledge and acquiring information in automated
planning.

| The reason that omniscent planners like STRIPS are inadequate is that
they plan with their eyes closed, so to speak. They assume that they have
perfect knowledge about the world and the results of the actions that they can
perform. In the real world these are unjustified assumptions (to say the least).
Real-world planning must include -actions designed to gather or verify
information during execution of the plan. For a planner to be truly robust it
must also be able to rcason about other intelligent agents who have
knowledge, and the actions that they are likely to perform given that
knowledge. For instance, a planner working on military strategy would have
to take into account what the enemy knew about its forces.

One of the classic problems in reasoning about knowledge is the failure of
Leibniz's law and existential instantiation under certain circumstances.  This
problem has its roots in philosophy in the early days of symbolic logic. It has
received a great deal of consideration from the philosophy research

community, and almost none from Al researchers. As a result, most of the



proposed solutions to the problem are not well suited to practical
implementation on a computer. It is the goal of this thesis to provide at least a
partial solution to the problem which is implementable in a classic theorem-
proving system.

Unfortunately, as often happens with problems of philosophy, there is
considerable disagreement as to the proper characterization of the problem
and its scope. For the purposes of this thesis I will refer to it as the "problem
of referential transparency”, adopting a term which, though not entirely
appropriate (as I shall later argue), is often found in the literature,

The nature of the problem of referential transparency is best illustrated
by means of some examples.

1.1 Examples of the Problem

The classic example of the failure of Leibniz's law is the following
problem: suppose that John knows Mary's phone number, and that Mary's
phone number is the same as Bill's phone number. If we represent these

- statements in standard first-order logic the straighforward way:

Knows (John , Phone-number(Mary))
Phone-number (Mary) = Phone-number (Bill)

we can conclude that John knows Bill's phone number, which might not be
true.

There is a host of related classic problems.  Consider the statements,
"George IV wondered whether Walter Scott was the author of the Waverly
novels,” and "Sir Walter Scott is the author of the Waverly novels.” If we

translate the latter statement as:
Author (Waverly) = WalterScott

we come up with the absurd conclusion that George IV wondered whether
Walter Scott was Walter Scott.



Yet another example is the morning star problem. Certainly the morning
star is equal to the evening star, since they are both the same object, namely
the planet Venus. And yet, if John saw the morning star at 6:00 AM, we would
not want to say that he also saw the evening star at the same time. Note that
this problem does not involve knowledge, and indeed I will argue that the
source of the difficulty, and hence the solution, are very different from the
other examples. A related problem arises if John knows that the Morning Star
is lit by the sun; it should not follow that he knows the same of the Evening

Star (unless, of course, he knows that they are the same object.)

1.2 Outline of the Thesis

Chapter 2 presents previous work on the problem of referential
transparency, and discusses why none of the proposed solutions are adequate
in terms of the needs of Al Technical and philosophical solutions are
discussed.

Chapter 3 presents a series of practical solutions to the problem which do
not suffer from the drawbacks of previous solutions. The situations in which
each solution is applicable are also discussed.

Chapter 4 describes Superchain, a simple theorem prover which was
written in order to verify that the proposed solution can actually work with a
real system.

Chapter 5 presents some conclusions and commentary.



2 Previous Work

The problem of referential lransparency did not originate with Al
research, but has its roots back in the carly days of formal logic starting in the
late ecighteenth century. At the time, philosophers were wrestling with the
problem of capturing the regularities of human reasoning in a formal system.
One of the most influential of these early researchers was Leibniz who
developed the definition of equality which is still in common use today.
Leibniz's law is a second order formula which states that if two things are

equal then they have every property in common:

Vx,y:((x=y) = (V¥ ¥x=¥y))

This definition has a great deal of intuitive appeal, and usually works just
as one might expect it to. And yet it would seem that Mary’s phone number can
be equal to Bill's and still have a property that Bill's does not necessarily have,
namely that John can know one without knowing the other.

Past work on the problem of referential transparency has fallen in two
major categories. Some researchers have considered the problem to be a
purely technical one, and have attempted to find modifications to standard
formal logic that will avoid the dificulties, while others consider the problem
to be a philosophical one, and maintain that radical changes in the

fundamental nature of formal logic must be made.

2.1 Technical Solutions

The most obvious solution to the problem of referential transparency is to
simply abandon Leibniz's law of identity and disallow substitution of equals for
equals. This is a rather drastic approach;- substition of equals for equals is a
powerful reasoning tool and should not be discarded lightly.  Furthermore,
there are cases where substitution of equals for equals is necessary in order to
reach certain valid conclusions. Suppose John dialed Mary's phone number.
We would want to be able to conclude that he also dialed Bill's phone number,
even though he may not know that he dialed it.



A better solution is to note that substitution of equals for equals fails only
inside certain operators (like Knows) and not others (like Dials). Thus we can
distinguish referentially opaque operators, where substitution fails, from
referentially transparent ones where it does not, and disallow substitution
only within opaque operators [Quine61].

This solution, aside from being inelegant and difficult to mechanize,
occasionally leads to erroneous conclusions. Suppose John knew Mary's
mother, and that Mary's mother was Bill's sister. We would want to be able to
conclude that John knew Bill's sister, though he may not be aware that he
knows her.

Another technical solution relies on distinguishing between “"knowing

what" and "knowing that". The difference is best ilustrated by an example:

John knows Mary's phone number.

John knows that Mary's phone number is 555-1212.

Not only are there obvious semantic differences between the two
statements, but there is also a syntactic difference: in the first statement, John
knows an object, while in the second he knows a proposition.  Such a
dichotomy can cause severe problems in a formal system of deduction. It is
argued thén that many of these problems (including referential
iransparency) can be solved by allowing Knows to operate only on -
propositions and not objects [Hintikka62, Moore85]. Thus, "John knows Mary's
phone number,” becomes, "John knows that Mary's phone number is x, for

some x," i.e.:

Ix: Knows (John, Phone-number(Mary)=x)

In this case, Knows can be considered either a modal operator whose
'argument is a proposition or a syntactic predicate whose argument is the name
(i.e. the Godel number) of a proposition. If one takes the former position as
Moore does then Knows must again be taken as an opaque operator with
substitution expressly forbidden within its scope. If the latter position is

taken, then some provision must be made for converting names of



propositions into the propositions themsclves and vice versa. This is to allow

deductions such as Moore's axiom M2:

Knows(A,P) D P

In practice, such conversion does not present a serious difficulty. Most
automated deduction systems work directly on internal representations of
propositions in ASCII or some other alphanumeric code which makes a
perfectly legitimate Godel numbering scheme.

However, this approach has other problems. For example, suppose that
John knows that Mary and Bill have the same phone number, but doesn't know
the actwal number:

Knows {John, Phone-number(Mary) = Phone-number(Bill))

From this we could conclude that John knows Mary's phone number according
to the formulation above by the rule of existential generalization. DiSalIowing
“quantifying-in" (the application of existential generalization within
operators) [Kaplan69] doesn't work because then if John knows that Mary's
phone number is 555-1212 we cannot conclude that John knows Mary's phone
number.

The usual fix for this is to allow quantifying-in for rigid designators like
Mary and 555-1212, but not for functional designators like Phone-
number(Mary) [Moore85]. This solution is awkward, and has its own problems.
‘Suppose John knows that Mary's phone number is prime. From this it is
reasonable to conclude that John knows that some number is prime, but we

cannot do so under the restriction on quantifying-in.

2.2  Philosophical Solutions

The philosophical solutions to the problem are based on the idea that the
phone number that you know is a different sort of thing than the phone
number you dial, the latter being a true number while the former is the
concept of a number [Carnap47, Fregel892, Kripke80, McCarthy69,



McCarthy79]. This solution comes under many labels. Some distinguish
between concept (or idea) and object, others sense and denotation, still others
extension and intension. The distinction between these concepts is fuzzy and

difficult to describe clearly. As an example, consider the following statements:

Pegasus is a horse.

Pegasus is a fictional character.

The first sentence speaks of Pegasus as if he were a material object,
shai’ing many of the properties common to material objects, e.g., he has mass,
he occupies space, etc. The second sentence speaks of Pegasus as if he were a
concept, a collection of words on a page or neural impulses in somecone's mind.
The first sentence speaks of an object, an extension, while the second speaks of
a concept or an intension.

Regardless of the terminology, the upshot is the same. If John knows
Mary's phone number, what he really knows (it is maintained) is the concept

of Mary's phone number, and not the phone number itself:
Knows (John, Concept (Phone-number (Mary)))

The problem of referential opacity is then solved by excercising care not
to set extensions and intensions equal to one another. The intension of Mary's
phone number is not equal to the intension of Bill's phone number, even
though their extensions (the actual numbers) are equal.

This solution works, but it leads to an exceedingly messy system, with
propositions awash with predicates to switch back and forth between objects
and concepts and concepts of concepts. For example, McCarthy translates,
“John knmows that Mary's phone number is 555-1212," as:

true K(John, Equal (Telephone Mary, Conceptl "555-1212"))
"where K(P,Q) is the proposition that denot(P) [sic] knows the proposition Q

and Conceptl("555-1212") is some standard concept of that telephone number,"
[McCarthy79]. As if that weren't enough, he makes further distinctions



between john and "John" and John, being the concept of John, John's name,
and John himself. Even McCarthy scems unsure of exactly what it all means
when he writes, "The reader may be nervous about what is meant by concept.
He will have to remain nervous; no final commitment will be made "
[McCarthy79].

Nevertheless, there are some philosophical grounds for believing that
this is the best solution to the problem. The idea that some distinction must be

made between concepts and objects is supported by the following statements:

The President of the United States is 76 years old.
The President of the United States is elected by the people.

The first sentence is talking about a particular individual, while the second is
talking about the office of the president in the abstract. Thus, the phrase "The
President” in the first sentence is an extension, while in the second it is an
intension. kt is maintained by many researchers that no system which deals
only with objects or only with concepts can ever adequately represent the
meanings of both sentences.

There are cases where this distinciion becomes quite fuzzy. Consider the

following statement:

The tallest person in the room wins a prize.

Is the phrase "The tallest person in the room" an extension or an intemsion? It
depends on the state of affairs in the world. If the context of the statement is
such that it is talking about a particolar room with a particular group of
people in ii, then the phrase refers to a particular person, namely the tallest
one in the room. On the other hand, if the statement is uttered in a context
where there is not a particular group of people referred to, such as in
planning for an event which will not occur until later, then the phrase is an
intension.  Thus the same phrase in the same sentence can be both an
extension and an intension. This is clearly problematic for automated theorem

provers.



While it may be true that philosophically it is necessary to distinguish
between objects and concepts, as a practical matter there is to date no
mechanized formal system of logic that can deal with both at once, though
there are many mechanizable extensional logics [Morgan76]. Automatic
theorem provers for many extensional logics have been successfully
implemented.  Therefore, it would be highly desirable if we could translate
statements about knowledge into a standard extensional logic in such a way

that we could draw all the desired conclusions and none of the undesired ones.



3 A Practical Solution

If we lay aside the abstruse philosophical issues of exactly what
extensions and intensions are, and what it means to denote something, it is
possible to formulate most of the examples given in the first chapter in a
standard extensional logic in such a way that the undesired conclusions that

result from substitution or quantifying-in cannot be drawn.

3.1 Functions: The Root of all Evil

1 will argue that the source of the problem is not in misapplication of
Leibniz's law or quantifying-in, but rather in the indiscriminate use of the
equals sign to represent the word "is" and in the use of functions to represent
objects.

It seems perfectly natural to represent phrases such as "Mary's phone
number" as the "phone number of Mary" or "Phone-number(Mary)". And yet,
there are problems with this representation. For one thing, this
Tepresentation restricts Mary to having no more than one phone (unless we
start adding such encumberances as Extention-phonc-number(Mary) and
Office-phone-number(Mary), or we use set-valued functions). Furthermore,
this representation becomes quite awkward for sentences such as the
following:

John knows the value of pi.
John knows the sum of 2 and 4.

These sentences might be represented as:

Knows (John, Value(m))
Knows (John, Sum (2,4))

or

Knows (John, 3.14159...)

10



Knows(John, 2+4)

Similar absurdities can arise in the case of Mary's phone number.
Suppose John knows Mary's phone number, and Mary's phone number is 555-
1212:

Knows (John, Phone-number (Mary))
Phone-number(Mary) = 555-1212

From this we could conclude
Knows (John, 555-1212)

which is quite meaningless.
The underlying reason for all these problem is that in an extensional
logic, the interpretation of a function and its value are exactly identical

according to the semantics of the logic. Thus,

Knows (John, Phone-number(Mary))
and

Knows (John, 555-1212)

are equivalent statements (assuming that Mary's phone number is in fact 555-
1212); their interpretations as defined by the semantics of the logic are the
same.  Therefore, as the latter formulation is clearly inadequate to represent

the meaning of the sentence, so must the former be as well.

- 3.2 Using Relations Instead of Functions

In order to motivate the solution that I will propose, let us consider John's
friend Bob who, unlike John, does not kmow Mary's phone number.  Yet,
despite the fact that he does not know it, he is nonetheless aware that Mary has

11



a phone, and that there is such a thing as Mary's phone number. He is
similarly aware that 555-1212 is a phone number, i.e. if John were to tell him
that Mary's phone sumber is 555-1212 we would not expect Bob to respond by
saying, "Golly, I never in my wildest dreams imagined that a phone number
could look like that!"

So Bob does mot know Mary's phone number despite the fact that he has
the concept of her phone number and the number itself firmly entrenched in
the cngrams of his mind. What Bob does not have is a mental connection
between his internal concept of Mary's phone number and his internal
concept of 555-1212. So in order to express John's knowledge of Mary's phone
number we need to say that John has a mental connection between Mary's
phone number and 555-1212. This sort of connection, despite its flowery name,

is quite easy to express in first-order logic in term of a relational predicate:
Knows (John, Phone-of-Mary(555-1212))
or, a bit more elegantly:
Knows (John, Phone-of (Mary, 555-1_212))
Now, this statement says that John knows that Mary's phone number is

555-1212. In order to represent simply, "John knows Mary's phone number,"

we just existentially quantify over the number to obtain:

dx: Knows (John, Phone-of (Mary, x))

This says that John knows that Mary's phone number is x, for some x, which is

not an unreasonable rendition of, "John knows Mary's phone number." Note

* For the purposes of this discussion I am ignoring the fact that 555-1212
is in fact the number for directory assistance and thus it would actually be

quite remarkable if it were Mary's phone number.

12



that we have now implicitly adopted the convention of allowing only
propositions to be known.

When we want to say that Mary's phone number is the same as Bill's we
have several options. Since we no longer restrict Mary to having a single
phone we can write any of:

dx: Phone-of (Mary,x) A Phone-of (Bill,x)
Vx: Phone-of (Mary,x) > Phone-of (Bill,x)
Vx: Phone-of (Mary,x) = Phone-of (Bill,x)

or scveral other variations with subtle differences in meaning, The first
formula states that Mary and Bill have at least one phone in common. The
second says that any phone that Mary has is also Bill's phone, without
commenting on whether either of them has any phones at all. The third states
that any phone that ecither Mary or Bill has also belongs to the other one. For
the purposes of this discussion I will use the third formulation,

We can now quantify-in and substitute equals for equals to our hearts'
content, but we cannot conclude that John knows Bill's phone number unless
we add the premise that John knows that Bill's and Mary's phone number are
the same. That, together with an appropriate axiomatization of the operator
Know such as in [Moore85], will allow us conclude that John knows Bill's
phone number, as we should be able to.

Now suppose that John dials Mary's phone number, but does not know
that it is Bill's phone number. We should still be able to conclude that he dialed

Bill's phone number, which we can if we formulate John's dialing as:

Jx; Dialed (John, x) A Phone-of(Mary, x)

We can then easily conclude:

dx: Dialed (John, x) A Phone-of(Bill, x)

13



These statements translate as, "John dialed a number, and that number has the
property of being Mary's (or Bill's) phone number,” which is a reasonable
rendition of, "John dialed Mary's (Bill's) phone number.”

In general, to represent a statement of the form, "A knows B's C," (where
"B's C" represents phrases such as, "Mary's phone number”, "Bill's weight" or

"Waverly's author") we write:

dx: Knows (A, B-of (C, x))

To represent statements of the form, "A VERB B's C" where "verb" is an

extensional verb such as "dialed" or "wrote", we write:

dx: VERB (A, x) A B-of (C, x)

Notice that these forms do not cover cases such as the morning-star
problem where there are no functions to convert into relations. 1 will discuss
how to deal with such cases in the following sections. We have, however, now

solved the Walter Scott example. The formulation becomes:

Wondered (George, Author-of (Waverly, Scoit))
Author-of (Waverly, Scott)

We could also add a statement that Scott was the only author of Waverly:

Vx: Author-of (Waverly, x) D (x = Scott)

This example illustrates one appropriate use of the equals sign, namely as

a device for asserting the uniqueness of an object with certain properties.

14



This formulation is similar to one proposed by Bertrand Russell
[Russell56], though his presentation is not as concise.* Russeli's solution seems
to have been largely overlooked by the Al community, possibly because it was
presented as part of a philosophical paper concerning the nature of
denotation. In any case, the solution presented here and in subsequent
chapters is more comprehensive, and more suitable for application to practical

systems.

3.2.1 Analysis

At this point the question naturally arises of why this solution works, and
what the extent of its effectiveness is. This is a very tricky question to answer.
In effect what we are asking is: to what extent does this solution produce
logical conclusions that are consistent with intutition? Since we cannot
~define intuition precisely, it is impossible to answer the question precisely.
Nonetheless, we can provide some intuitive arguments that this solution will
not lead us into unanticipated trouble.

Consider the following two formulations of, "John knows Mary's phone
number.”

dx: Knows (John, Phone (Mary) = x)
Jx: Knows (John, Phone-of (Mary, x))

The similarity between these two statements is more that just superficial.
The formal interpretations of thesc statements are almost exactly the same.
Both the Phone function and the diadic Phone-of predicate are defined in
terms of a set of ordered pairs. Both of the propositions inside the Knows
operators simply state the fact that the ordered pair (Mary, x) belongs to this
set. Why then does the first formulation lead to trouble while the second does

For example, Russel's formulation of, "The father of Charles II was
exccuted,” is, "It is not always false of x that x begat Charles 11 and that x was

executed and that 'if y begat Charles II, y is identical with x' is always true of

[14

y.
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not?

The salient difference between the two formulations is that in the first
one, the function expression, "Phone (Mary)", is a syntactic object in its own
right. The problems arise when this syntactic object is manipulated by
substitution or by existential generalization. In the second formulation there
is no syntactic object which denotes Mary's phone number, and thus we
cannot get into trouble by manipulating it. There is only an existentially
quantified variable which has the property of being Mary's phone number.

Now the formal similarity of the two formulations comes to our aid.
Because the formal interpretations are nearly identical (the only difference
being that functions are usually restricted to being single-valued) we can still
draw all the conclusions we could before, except those that involve
manipulating the syntactic object, "Phone (Mary)." Furthermore, any
assertion that we made previously about, "Phone (Mary)," we can now make
about the variable x. Thus, anything that could be expressed using the old
system can also be expressed using the new.

Finally, the sorts of conclusions that we used to draw from substituting
functional expressions, -we now draw using modus ponens as in the examples
given above. Because-the formulation for statements like, "A knows B's C" is
now syntactically different from the formulation for, "A 7knows that B's C is the
same as D's E", we are assured that we can never conclude the former from the

latter by quantifying-in.

3.3 Knowing People

If we restrict ourselves as we have to kmowing only propositions, how do
we represent, "John knows Mary."? It is an unfortunate artifact of English
that the word "know" is used for both knowing facts and knowing people, even
though these are two very different things. Many languages have different
words for the two mecanings: saber and conocer in Spanish, or wissen and
kennen in German. But there is no rcason to carry the overuse of the word
"know" into our formal representations. To represent "John knows Mary" we

simply use a different operator and write:

16



Conoce (John, Mary)

I have appealed to Spanish for a word to label my personal-know
operator.  If John knows Mary's mother, and Mary's mother is Bill's sister, we

write:

dx: Conoce (John, x) A Mother (x, Mary)
V x: Mother (x, mary) D Sister (x, Bill)

and we can conclude that John knows Bill's sister (in the conocer sense) even
though he may not know (in the saber sense) that he knows her.

The conocer operator is applicable in all cases where the word "know"
means "to be familiar with," as in, for example, "John knows Romeo and Juliet."
In cases such as knowing Mary's phone number, where the sentence intends
to convey that a particular fact or aspect of an object is known, the statement

can always be converted into one which states that a proposition is known.

3.4 Referential Transparency and Temporal
Reasoning

The morning star example is a bit trickier. We cannot apply the
techniques used above because there is no function that we can convert into a
relation. (There is also no "Know" operator.) We could say that John saw x

such that x has the property of being the morning star

dx: Saw(John, x) A moming-star(x)

but this seems a bit specious. If we carry this to an extreme we get the

following:

3x,y: Saw(x,y) A John(x) A morning-star(y)

which, aside from being unnecessarily awkward, doesn't solve the problem of

the unwanted conclusion that John saw the Evening-star.

17



The trouble in this case is that the problem requires reasoning about
time. The example refers to an object which has different labels attached to it
depending on the time of day. It is true that the morning star and the evening
star are the same object, namely Venus, but each of the two labels only applies
at certain points in time. Venus is the morning star, but only in the morning.
Similarly, Venus is only the evening star in the evening. If we ignore time, as
standard first-order logic does, then we cannot represent, "John saw the
morning star at 6:00 AM," because we cannot represent the time at which the
observation took place.

Sometimes the reliance on temporal rcasoning can be hidden, as in the
following problem:

Holmes knows that Mr., Hyde is a murderer.
Dr. Jekyll is Mr. Hyde,

from which we do not want to conclude that Holmes knows that Dr. Jekyll is a
murderer.  Superficially, this example involves no temporal reasoning; all the
verbs are present tense. And yet, the manner in which Dr. Jekyll "is" Mr.
Hyde réquires lemporal reasoning:  Dr. Jekyll becomes Mr. Hyde in a process
which extends over time. As in the case of Venus, Jekyll and Hyde are two
labels which apply to the (presumably) same object, but each is only
appropriate at certain times depending on the situation.

The traditional philosphical dichotomy between intensions and
extensions is intimately related to temporal reasoning. McDermott
[McDermott81] suggests that intensional objects can be represented as objects
changing in time within the context of a robust temporal logic. These
dynamic objects, which McDermott calls thingi (or singular thingum), can
undergo transitions in their properties as time passes.

This formalism allows us to formulate the Morning Star example in such a
way that the problem of John seeing the Evening Star at 6:00 AM does not
arise. We model the Morning Star as a thingum which we will call Venus. Now
we set Venus equal to the Morning Star in the morning, and the Evening Star

in the evening and the problem is solved. McDermott's logic provides the
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machinery for reasoning about such formulations, the details of which are
rather involved and quite beside the point.

Unfortunately, temporal reasoning, though it is a very powerful (even
necessary) tool for solving certain sorts of problems, is of limited use when
reasoning about knowledge. For example, we might model Dr. Jekyll and Mr.
Hyde as a thingum (lets call him Person37 for no particular reason) which
periodically switches back and forth between two states, Sjexyl] and Shyde.
During the transition, Person37 undergoes various changes, notably in his
physical form and the label by which he is referred. (Such a change is called
a vitrans.) However, Holmes' knowledge about Person37 does not change
during these transitions, and so we are back to square one. A solution to this
problem (which also works for the Morning Star example) is presented in
section 3.5.

34.1 Ignoring Time

If time is not taken into account, the distinction between intensions and
extensions disappears.  Consider the example given in Chapter 2 about the

_president, repeated below:

The President of the United States is 76 years old.
The President of the United States is elected by the people.

The second sentence refers to the president as an intension because it talks
about all presidents at all times. The first sentenmce talks about the current
president.  If we restrict ourselves to one instant in time the two notions
become equivalent.

Of course, it may well be that a philosophical distinction still remains, but
from the standpoint of Al, all that matters is that the computer draw all and
only the correct conclusions from the facts that it has been given. So let us
consider some possible conclusions that one might draw from the above
statements in the case where time is taken into account and the case where it
is not.

Suppose we are told that Abraham Lincoln was once the President of the

United States. From this, and the above statements, we should conclude that

19



Abraham Lincoln was elected by the people, but not that he is 76 years old. On
the other hand, if we do not consider time, then we cannot be told that anyone
was once the president; we can only be told who is the president in the static
world we are considering, and them it is quite correct to conclude that that
individual is both elected by the pecople and 76 years old (at least, to the extent
that it is meangful to say that someone is 76 years old in a static world.)

If we ignore time then, many (but not all) of our problems go away.
Unfortunately, so does our ability to express many important facts about the
world, and so ignoring time is not the way to go about solving the problem of

referential  transparency.

3.5 Referential Transparency and Labels

Alas, there are problems, as we have seen, where temporal reasoning (or
even the lack of it if we ignore time) won't help us. For a fresh example,
suppose that Bill occasionally refers to Mary by her middle name, Jane, but
John does not know this. As usual, John knows Mary's phone number. Does he
also know Jane's? Does he know (in the conocer sense) Jane if he knows
Mary? Surely John knows the person referred to by the label, "Jane.” And
yet, if you were to ask John, "Do you know Jane?" he would answer that he did
not. However, if you then told him that Jane is Jjust another name for Mary, he
would then maintain, "Oh ves, I know her!" Perhaps we should abandon
- Moore's axiom M3 which states that if an agent knows a fact, he always knows
that he knows it (and he knows that he knows that he knows it, and so onm).

To solve this problem we must go back to some of the fundamental
assumptions about first-order logic.  First-order logic models the universe as
being made up of objects and sets of objects with certain properties.  The
objects are referred to by labels. It is possible to know a fact about an object
without knowing the label by which it is referred; the princess in the fairy
tale knew things about Rumplestiliskin for a long time before she learned his
label.  So John knows Mary and her phone number, but he does not know that

Mary's name is Jane:

~Knows (John, name-of (Mary, "Jane"))

20



When you ask John whether he knows Jane, what you are really
inquiring about is the truth or falsehood of the following:

3x: Knows (John, name-of (x,"Jane")} A Conoce (John, X)

in other words, "Does John know (in the conocer sense) a person whosc name
he knows is Jane?" Thus John can know Jane, and still correctly answer, "No,"
when asked if he knows her. Natural language is slippery stuff.

Such logical acrobatics are necessary when there is no a priori standard
for labelling objects which all agents are aware of. It seems obvious to the
person typing the data base that Mary's name is "Mary", but from the point of
view of a theorem prover, the designator Mary may as well be Person653 or
Foobar. This is not a problem as long as we assume that all agents agree on
what labels to attach to various objects. But as soon as we allow agents to call
the same object by two different names, we must explicitly express knowledge
about 1abels. '

This solution can be applied in a straightforward fashion to the
Jekyll/Hyde and Morning Star problems (with a little help from temporal
logic). In the former case, Holmes knows that the person whose label is Mr.
Hyde is a murderer, but he is not aware that this person occasionally vtranses
into Dr. Jekyll (and vice versa):

Knows (Holmes, Murderer (Person37))
Knows (Holmes, Label-of (Person37, "Hyde"))
~Knows (Holmes, Label-of {Person37, "Jekyll™))

The referential transparency problem does not arise because Dr. Jekyll is not
equal to Mr. Hyde any more.

In the Moming Star example, we can use the situation calculus (which is
much simpler than McDermott's system, and also more limited) to model the
temporal aspects of the problem and say that John saw Venus in situation §,

and that he is aware that Venus' label (at the time) was the Morning Star.
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True (Saw (John, Venus) , S)
Knows (John, True (Label-of (Venus, “"Morning-star”), S))

Here again, the Moming Star is not equal to the Evening Star; they are not
even objects in the representation, but merely labels for the object Venus.
Explicitly representing an agent's knowledge of labels solves many (if
not all) problems of referential lransparency which arise as the result of
there being more than one label for a single object. In cases where certain
labels are applicable only in certain situations, this scheme must be

augmented with a suitable system of temporal reasoning.
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4 Implementation

In order to wverify the contention that the representation described in
Chapter 3 can in fact be easily applied in a standard theorem prover, a small
forward chainer was augmented with the ability to reason with a subset of
Moore's knowledge axioms. The resulting system, called Superchain, was able
to solve a large variety of problems which involve reasoning about
knowledge.

To get a practical theorem prover 10 reason about knowledge, several
problems had to be overcome. The most serious of these is the fact that some of
Moore's axioms (notably M3 and MS5) interact with each other to produce an
infinite nrumber of more or less useless theorems [Moore80]. I chose the
obvious solution and eliminated M3, which is of questionable practical value
anyway.  Whereas Moore's system is equivalent to the modal logic S4, the
system which results when M3 is removed is equivalent to the modal logic T
[Hughes68].

I also did not implement M1, which is simply the axioms of standard
propositional logic. All this paring away may seem like throwing out the baby
with the bath water, but in fact the situation is not quite so serious. M2 and M4
are really the heart of Moore's deduction system, and these were both fully
implemented. MS5, which simply states that all axioms are known by all agents,
was applied only to M2 and M4. M5 was implemeted jmplicitly within the
deduction procedure, and explicit knowledge of axioms was not actually
entered into the data base.

The Knows operator was implemented as a relational predicate which
operated on Godel numbers of propositions.  All of the conversion between
Godel numbers and actual propositions was done implictly; since propositions
were  actwally stored as lists of symbols which makes a legitimate Godel
numbering scheme, conversion was trivial.

M2 was implemented by simply modifying the forward chainer to add P 1o
the data base whenever it adds an assertion of the form Know (A, P). .This
process occurs recursively to extract all relevant facts from an assertion with
nested levels of knowing. A brief reflection will reveal that this process is

guaranteed to terminate.
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M4 was implemented by collecting all of the assertions known by a given
agent, assembling them into a separate data base, and feeding that to the
forward chainer. For each assertion P in the resulting set of conclusions,
Know (A, P) was added to the master data base.

Another problem that had to be overcome was the scoping of existential
operators.  Because the forward chainer worked with skolemized expressions,

an assertion such as "John knows Mary's phone number," looked like:
(Knows John (Phone-of Mary a))

The problem is that this can be the skolemized version of two different
formulas:

3x: Knows (John, Phone-of (Mary, x))
Knows (John, 3x: Phone-of (Mary, X))

The difficulty is particularly apparent in cases where there are nested
knows operators. For example, suppose that Jim does not know Mary's phone

number, but he knows that John knows it. The skolemized version of this is:
(Knows Jim (Knows John (Phone-of Mary a)))

which is of the form Know (A, Know (B, P)), which implies Know (A, P) (by
M2, M5 and M3), ie. Jim knows Mary's phone number. The problem, of course,
is that by skolemizing, we have iost the existential quantifier in front of the
nested Know operator which would keep such unwanted conclusions from
bubbling back into Jim's knowledge.

The solution to this problem was rather ad hoc. A Knows operator with an
existential quantifier in front was renamed "Noes", and a mechanism was
added to intercept any Noes operator added to the master data base and change
it 10 to a Knows operator. Now, to say that Jim knows that John knows Mary's

phone number, we write:
(Knows Jim (Noes John (Phone-of Mary a)))
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Now, when M2 is applied, the assertion (Noes John (Phone-of Mary a)) is
inserted into the master data base, which triggers the deduction of (Knows
John (Phone-of Mary a)) and all which that assertion entails. However, Jim's
knowledge base contains only the first assertion, to which Jim cannot apply
M2.  Thus, the invalid conclusion that Jim knows Mary's phone number is
blocked.

The resulting system was remarkably simple. It consisted of about thirty
lines of MacScheme code in addition to a textbook forward chainer which was
about 100 lines long. It ran on a Macintosh Plus and took about three to five

seconds to solve problems of moderate size, for example:
Jim knows that John knows Mary's phone number.
Sam knows that John knows that Mary's phone number is

the same as Bill's.

From these statements, Superchain was able to deduce that John knows Bill's
phone number.
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5  Conclusions

3.1 Summary of the Thesis

Many of the difficulties involved in reasoning about knowledge can be
avoided by representing statements about knowledge in certain ways.  When
statements about knowledge are properly represented, reasoning about
knowledge can be done by a standard theorem prover working with standard
first-order logic. It is not necessary to distinguish between transparent and
Opaque opcrators, nor is it necessary to make explicit checks for rigid
designators, If the "know" operator is treated as a syntactic predicate, it is not
€ven mnecessary to use a modal logic; almost all of the examples presented here
could be implemented directly in standard Prolog.

In most cases not involving time and where objects have standard labels,
many of the classic problems of referential opacity and quantifying-in can be
avoided simply by using relations rather than functions t0o represent objects.
However, many problems require temporal reasoning, even in some cases
where time is not explicitly mentioned in the problem. In such cases (which
include the vast majority of real-world problems) the logic must be augmented
with some apparatus to do temporal reasoming. In some cases, a simple system
like the sijtuation calculus is sufficient, while in others a more sophisticated
system like McDermott's temporal logic must be used.

In cases where there are no standard labels for objects, facts about an
agent’s knowledge of labels must be represented explicitly.  In these cases,
queries about an agent's knowledge must often be couched in different terms
than a straightforward transiation of the natural language query. An agent
may know P, but may answer "no" to the query, "Do you know P?" because P
may contain labels other than those he is familiar with. In these cases the
query, "Do you know P?" must be stated (roughly) as, "Do you know P, and do
you know all the labels referred to in P?"
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5.2 Future Work

The implementation presented in chapter 4 is incomplete. I beleive that
it is complete enough to solve a large and interesting class of practical
problems, but exactly what this class consists of remains to be seen. It would
be of interest to attempt to categorize a larger number of examples to find out
exactly what the practical limitations of the system are. For example, is it
really useful to add Moore's M3 to the system and be able conclude that John
knows that he knows that he knows that he knows Mary's phone number?
What is the best way to keep axioms such as M3 from trailing off into infinite
recursion while still keeping the system complete (assuming the arguable
premise that completeness a desirable thing given the inevitable
computational cost [Joslin86] [Chapman871)?

There is also a considerable amount of work to be done in the
representation of and reasoning about such things as time, processes, and
action, and integrating whatever solutions ome finds to those problems back
into a logic of knowledge. This Thesis has left that problem virtually
untouched.  First-order logic has severe problems in representing ume and
processes because it assumes that the world is made up of objects that ‘remain
intact though their properties may change. Socrates may be alive or dead, but
he is always Socrates, even after the atoms that once made up his body are
scattered to the winds. See [Hayes85] for some current work on the

representation of processes (and the rest of the ‘real world).
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