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Abstract

The present study examines weakly dissipative, weakly nonlinear
waves in which the fundamental derivatiyé.F changes sign. The undis-
'tufbed state is taken.toibe at rest, uniform and in the vicinity of the

?!= G locus. The cubic Burgers equation governing these waves is

solved numerically; the resultant solutions are compared and contrasted
to those of the inviscid theory. Further results include the
presentation of a natural scaling law and inviscid solutions not

reported elsewhere.




1. Introduction
In recent years, the existence of negative nonlinearity has been
established for & number of single-phase fluids of practical interest.

Negative non]inearity-occurs when the thermodynamic parameter
T=T(,5) = L2ba) (1.1)
a .

is negative for a range of pressures and temperatures. Here 5, S and
@ are the dimensional density, entropy and sound speed, respectively.
The quantity T is frequently referred to as the fundamental derivative
of gasdynamics. When T is negative at every point in a body of fiuid,
wavefronts steepen backwards and expension or rarefaction shocks are the
only discontinuities capable of propagating in the fiuid. Two of the
earliest studies concerned with such fluids are due to Bethe (1942) and
Zel'dovich (1946), who showed that Van der Waals gases exhibit negative
nonlinearity provided the specific heats take on sufficiently large
values.

Lembrakis and Thompson (1972) and Thompson and Lambrakis (1973)
have carried out detailed computations with more accurate equations of .
state to provide specific examples of gases in which negati?e non-
Tinearity will be cbserved. These were seen to be hydrocarbons and
f luorocarbons of moderate complexity. The region of interest for
single-phase fiuids was seen to be consistant with the predictions of |
the previous studies. These theoretical predictions were finally
verified by the shock tube experiments of Borisov, Borisov, Kutateladze
and Nakorykov (1983), who observed stab]é expansion shocks in the

relatively simple compound Freon-13 (C CL_F3). Thus, the existence of



regions of negative nonlinearity in single-phase fluids has been con-
ciusively established by both physicel arguments and observation in con-
trolled experiments. |

Because the fundamental derivative (1.1) is a thermodynamic func-
tién, it generally varies from point te point in a disturbance. When
the wave amplitudes are sufficiently large, the Tocal value of T caﬁ
change sign within a single wave or puise. MWhen this is the case, pre-
vious investigations show that the wave dynamics can be surprisingly
different than that characteristic of ideal gases. In particular,
Thompson and Lambrakis (1973) have predicted the existence of shocks of
moderate strength having both upstreem and downstream Mach numbers equal
to unity. In the following wé refer to the condition where the
convected sound speed at a shock is identical to the spead of the shock
as sonic. Thus, the shocks of Thompscon and Lambrakis can be referréd to
as double sonic shocks. Cramer and Kluwick (1984}, henceforth denoted
as I, have developed a compiete weak shock theory for these fluids.
This study illustrated the formation and propagation of expansion and
compression shocks in the same pulse. Ultimately, the compression and
éxpansion shocks were seen to collide resulting in a single merged
shock. The nature of the merged shock depended on the undisturbed state
of the fluid. Although the double sonic shocks of Thompson and
Lambrakis (1973) are not ordinarily possible for weak waves, shocks
having sonic conditions on only one side are in fact possible. The
- Structure of these sonic shocks was determined and it was shown that, on
the sonic side, these appreach the inviscid conditions algebraically
rather than exponentially. Thus, not only are the sonic shocks a new

and interesting phenomena in the inviscid theory, the viscous structure




of these waves contrasts sharply with that of non-sonic shocks.
Associated with these sonic shocks are the partial disintigration of
both compression and expansion shocks and a complicated dependeﬁce on
‘injt1a1 condit{ons which are taken into account by the precursor waves
described in 1. |

When viscosity and heat conduction were considered, it was shown in
I that the nonlinear evolution could be described by the éubic Burger
equation discussed in the next section. As pointed out by Nimmo and
Crighton (1982), no simple transformafions exist which yield analytical
solutions to this equation. The present paper, therefore, reports the
development of a numerical scheme capab?e.of.soTving this equation under
a wide variety of conditions. As an example we apply this to the square
wave 1nitia}_cond1t?ons discussed in I and compare the resuits to the
inviscid theory. In do%ng SC we provide an independent verification of
the comp]ﬁcated_wave evolution predicted by I. Furthermore, we
i1luminate the viscous structure of the collision between compression
and expansion shocks; in the inviscid theory this collision occurs at a
single point in space-time.

A complete qualitative and partial gquantitative description of the
inviscid.evo1ution of a square wave was given in I. In order to give a
quantitative comparison of the viscous and inviscid theories, a complete
analytical description of the'inviscid theory has been cbtained and is
summarized in Section 3. Although some of thetquantitative results pre-
sented may be cobtained from I, most are new results not reported else-
where. We have also found that a more natural scaling may be found;

this is described $n Section 2.




We expect the results presented in I and here are of interest in
other areas of mechanics and engineering. References to related
pnenomena in solid mechanics, plasma physics and superfluid hydro-
_dyﬁamics have been given in I. In addition to these studies, Kluwick
(1984) has derived the analog of (2.2) for the case of long waves in
suspensions of solid particles in fiuids. Turner (1979, 1981, 1983) has
derived an equivalent set of equations for second-sound waves near the
b-nodal Tine in Tiquid helium. The existence of both compression and
expansion shocks for square wave initial conditions was both predicted
and observed; see also the review by Liepmann and Lagyné (1984). An

analysis of the shock structure was aiso given (Turner, 1979),



2. Problem Statement
We consider small disturbances in a weakly dissipative Navier-
Stokes fluid. The undisturbed state is taken to be uniform and at rest

and sufficiently near the T = 0 locus. In particular, we take

o p-p
0 - Q
I'=-—1{p.,s ) =0 [ ]
30 0770 e
(2.1)
Pglgh °0 172
R = == =0 (=13,
0] p=0

e
where 5 P> ps Hg are the entropy, density, sound .speed and shear
viscosity evaluated at the undisturbed state. The nondimensional quan-
tity R is recognized as a wave Reynolds number based on the dTSturbance
length L. In I, it was shown that, under these cond1t1ons, the evo]u—

tion of one-dimensional waves is governed by

P A‘ A = E
g+ (r + 5 u)uuX > Uyy (2.2)
where '
— — —_ 2_
. o~2( ] x—aOt E ] aos t (2 3)
- epq i L ! - L :

The guantities x and T are the dimensiong] position and time and e is a
small parameter measuring the disturbance amplitude. The nonlinearity

and dissipation constants 'y A and § are defined-

1. QO ar!
. _

1
(o 2Sp) and § = =5 [— 4+ 2 + J, (2.4)
3, 503 0 2 Pr

r = .

where Ygs AO,'Pr are the values of the ratio of specific heats, second

viscosity and Prandtl number evaluated at the undisturbed state. A com-




parison of (2.4) with (2.1) shows that f, A and & are all of order one
in the 1imit of small ¢. Here we recognize r and § as scaled versions
of the fundamental derivative and acoustic diffusivity, respectively.

f A typical initial condition for this problem is given by

Q"po

P0

x|

= eAF{ ),
where F is a nondimensional function of its argument and A is a second
nondimensional amplitude parameter taken to be of order one. It should
be recognized that such a separation of the wave amplitude into separate
amplitude parameters is somewhat artificial. However, it will be
convenient to use ¢ to fix the overall amplitude levels; the second
parameter will then be chosen to fix the specific wave amplitude. The
function F may be taken to have a maximum absolute value of 1. When the
nondimensionaiizations (2.3) are applied, the initial condition becomes
u(X,0) = A F(x). (2.5)
Equations (2.2) and (2.5) form the initia] value problem governing
the evolution of weak waves in which T takes on both positive and nega-
tive values. In order to simplify the discussion, a set of rescalings
were proposed by I; the resulting dependent and independent variables
were termed universal variables. When these rescalings are applied to
(2.2) and (2.5) it is found that the sofution depends on three nondimen-
sional groups. Since then a more convenient and informative set of
rescaiings has been discovered. [f we define new variables

1 2
5 X, 1 = TKT t, (2.6)

A
V=Tu,E:
r

equations (2.2) and (2.5) become
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v+ {1+ %JVV, = 59 v

T g £L
(2.7)
V(E,G) = AE F(OE)s
where o denotes the sign of &, i.e., a/lal|, and
Il 1s] o Yo!
§. =& )2= “2(—+2+ DrJ
€ r Rrc Mo
(2.8)
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In terms of the physical variables, the density disturbance will be
given by

=Py x-aGt T aO T.a )
oL *Lfa] ©* Tes %2 9

(2.9)

~ where the function F is given by the soluticn to {2.7). Thus, sclutions
corresponding to the same function F will be_se]fnsjmilar provided both
the amplitude and dissipation similarity parameters (2.8) are the same.
it is also a formal requirement that the sign of A; i.e., o, must he 'g
same for the two flows although this is not 1ikely to be a major con-
straint. Typic;] initial conditions of interest are symmetric about x =
0. In this case, F(oz) in (2.7) may be replaced by F{g) and the func-

tional form of the final solution will not depend on 0. The advantage

of this rescaling over the universal variables used in I is that the
number of similarity parameters is reduced, provided we disregard o,
from three to two. Furthermore, because the scaling on X is essentially
independent of the noniingarity parameters, the dissipatién parameter

69 is a tfue measure of the actual dissipation; this again contrasts

with the variables presented in I. A final advantage is that aeL and
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Ae/As are determined completely by the thermodynamic state of the
undisturbed fluid. Thus, the similarity parameters (2.8) may be varied
independently by varying only the length and amplitude of the initial
Qafeform.

| In this paper, we examine the special case of a square wave having

~

a total Tength equal to L. The function F will therefore be taken to be

I - % <p s
F{p} = (2.10)

0 otherwise.

PO s

In order to focus on the main nonlinear effects we will take the undis-
turbed state and the length of the wave to be fixed. In terms of the

similarity parameters, this means that 5e and o wﬁ]] be fixed. In the
examp1es discussed, the ya]ue of the small parameter will also be fixed
and the wave ampiitude and thersfore Ae will be varied by choosing var-

ious values of A.




3. Inviscid Solutions
In I it was shown that inviscid motions of these fluids are

governed by the characteristic relation

! _ de _ . .1 .2
‘ v = constant on oV 5 v, (3.1)
the expression for the shock speed
de 1
s _ 1 1,2 2
i - -2——(va + vb) + g (va Vvt Vb) (3.2)
and the speed ordering relation
d
def s, de (3.3)
dr a dr = dr b ’

Equations (3.1)-(3.3) have been cast in terms of the similarity vari-
ables given in (2.6), The subscripts a and b denofe.conditions after
and before the shock, respectively. As in [, the designations a and b
must be interchanged when o < C: this is due tec the reflection of the x
axes in (2.6). The function B = gs(r) represents the shock trajectory
in g-t space. Results (3.1) and (3.2) were derived in I through an
analysis of the exact inviscid equations. The speed ordering relation
(3.3) is used to rule out inadmissabie discontinuities. In terms of tne
inviscid theory, this was taken to be a highty plausible postulate.
However, it was also shown in I that (3.3) emefges naturally from the
analysis of the viscous structure of these shocké, i.e., it is a
necessary condition for the existence of a viscous structure of the
discontinuities.

The equality in (3.3) is the condition for sonic sho;ks. By com-

bining (3.1)-(3.3), the strength and speed of sonic shocks can be shown



tc be

vl =3 (v + 1) (3.4)
de :
d_T,.S,zg_fEb-%( +3)(v, - 1), (3.5)

where the brackets will denote jumps in the indicated guantity, i.e.,
Q] = Qa'Qb° These are an explicit expression of the fact that the
strength and speed of sonic shocks are determined uniquely by the'condi-
tions on only one side of the shock.

When applied to the sguare wave initial conditon (2.10), the invis-
cid equations (3.1)-(3.3) yield four qualitatively different cases.
When Ag > -1, the 1oc§1 value of T has the same sign evefywhere in the
pulse. As one would expect, the final waveform is either a compression
Or expansion shock which interacts with and is eroded by a centered
expansion or compression fan. In order to focus on the new phenomena
predicted in I, we will confine our attention to the remaining amplitude
ranges listed below

3
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(iji) Ag = -3
typical cases corresponding to f >0, a4 < 0 are plotted in Figures 1-3.
For these values of ;, Ay the density distribution of case (1)
consists of a compression shock, a constant density region and an
expansion shock foliowed by a centered expansion fan; see, for exampie,
Figure 1. The strength of the expansion shock is given by (3.4) with Va

= Ae' In terms of the similarity varlabies, the time at which these

n



shocks collide is 24(Ae + 3)‘2. The subsequent decay law is found to be

TGZ[G + '3-)

5) = -3A,, (3.7)

'whére vy, = G(<), vy = 0. These results are recogﬁized as rescaled ver-

sions of those reported in I.
In case (ii), the waveform consists of a sonic compression shock,

followed by a centered‘compression fan, followed by a constant density

region. The return to the undisturbed state is accomplished through a

sonic expansion shock and centered expansion fan; see Figure 2 of the
present study or Figure 12 of I. The expansion shock first penetrates

the compression fan at time

S S
2
(1+Ae)

-5 (3.8)

He

which yields a decay rate which may be computed from equation (4.8) of

[. In similarity variables this feads

fv] =

[RSTEF)

(1+a) (%8 (3.9)

the expressions for Vas Vp may be obtained by combining (3.9) with
(3.4). For « > g the sonic expansion shock is FoT1owed'by a non-
centered expansion referred to as a precursor which, in turn, 15 foi-
lowed by the centered expansion fan. The term précursor is due-to the
fact this wave always occurs before the expansion shock in either the
universal variables of I or the similarity variables introduced here.
The sonic expansion shock collides with the sonic compression shock at
time |

te = rpl-2(1 + 8 )83, (3.10)

c
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where 14 is given by (3.8). for Ten > 1 > e the merged shock interacts
with the precursor which had previously separated the expansion shock
from the expansion fan. Here Tep is the time at which the last wave of
'thé precursor intersects the merged shock and is given by

24

T 0= e e (3.11)
ep (Ae . 3)2

this turns out to be identical to the collision time for case (i). The

1nteractioh between the precursor and merged shock is governed by

626 + 1)2/3 2 g.478/3, (3.12)

c’ ~

where v_ = 0, vy = G(z) and T is given by {3.10). For t > ap? the

a
merged shock interacts with the centered expansion fan. The resultant
decay law turns out to be identical to.(3.7), It should be noted that
results (3.11) and (3.12) were not explicitly given in I.

In order to give a compiete description of cases (ii) and (111), it
was necessary to derive the details of the flow in the precursor. A
parametric description was found; the parameter ‘is ﬁnterpreted as the
time at which a sound wave is emitted from the expansion shock. It was
found that the stope of the density distribution in the precursor is

always infinite at the expansion shock. In fact, we have shown that,

for case (ii),

3,1/2 1

(%) ..
/2 ’

()"

as £ » Cag? where ges(r) is the position of the sonic expansion shock at

scaled time r. This vertical stope may be observed in Figure 2 at the

times E = 3.0, 4.0. It s also present at time E = 2.0 but the width of

the precursor region is only aX = 2><10'3 and is not noticeable on the

1%




~

scale of the figure. At t = 1.0, the expansion shock is still non-sonic
and the precursor has not yet appeared.

A second set of results not reported in I ére the details of the
soﬁution for case (iii). Because of the nontinear dependence of the
shéck speed on its strength, the expansion shock is initially non-sonic
and propagates at a speed smaller than the sound speed of the undis-
turbed media. As a result, it moves to the teft relative to therwave
coordinates empioyed in Figure 3. The compression shock is sonic and is
followed by a centered compression fan. At a sca]ed time
. (3.13)
the expansibn shock intersects the compression fan. This shock weakens

according to a decay law similar to (3.7) and, at time
2
—_QA 13 (3414)

the expansion shock stops, becomes senic, and begins moving to the right
in Figure 3. For “bp TS T, the density distribution is given by a
sonic compression shock followed by a centered compression fan, followed
by the sonic expansion shock and precursor. The decay law for the
expansion shock is éimi?ar to (3.9) and the strength of the compressicn
shock remains constant. Here Tep is the scaled time at which the expan-

sion and compression shock collide and is given by

219/3
T2 T T Ae. (3.15)

For - > Teo the flow is governed by the interaction of the merged shock
with the precursor emitted by the expansion shock at previous times.

The decay law for this shock is essentially the same as (3.12) with a

1%




different integration constant; this reads

162 (146)2/3 - -2h, (3.16)

=0, vy = G(1). We note that results {3.13)-(3.16) are new in

whgre Va

‘the sense they were not given explicitly in I.
In ctosing, we note that in each of cases (1}-(i11) the final decay

is given by

2A
-t

T

)1/2

‘-

as 1 » =. This is easily verified by an inspection of the.decay laws
(3.7} and (3.16). Thus, in spite of the qualitatively different trans-

ient behavior, the final evolution ig always the same.

14



4. Numerical Scheme

The governing equation, {2.2) or (2.7), 1is parabolic; thus, both
stabi1ity and accuracy must be considered when selecting a numericé]‘
a1§orithm. Reascnable alternatives include finite difference, Galerkin, -
coilocation and spectral methods. A mixed-type algorithm using spline
cojiocation in space and finite differences in time was chesen.  Splines
were chosen as the approximating basis functions because they provide
high order approximation power, are efficiently evaluated and are adapt-
able in the sense their approximation power can be Tocalized in small
intervals; see, e.qg., deBoor {1978). The presence of_ moving shocks
makes this latter characteristic particularly attractive.

~

For fixed time, t, U(X,E) was approximated as follows

-~

u(X,t) =

-3

a B (X)),

i=1

where Bi’ i=1, ..., n, are cubic B-spline basis functions defined on a
knot sequence, X12 Xps cees Xpigo that extends well beyond the shbck on
both sides and "adapts" to follow the shock. Both the number n+4 and
the position of the knots varies with time and the severity of the
shocks; the knot spacing is very small in the vicinity of the shock. For
a specified accuracy of 10'4, & typical value of n was 500. Adaptive
cubic spiine coliocation is a very sophisticated algorithm; complete
details may be found in Ascher (1980) and Ascher, Christiansen and
Russell (1981 a,b).

For stability, u£ was approximated by the backward difference

U(X,t) = u(X,E-at)
At

§

15




which results in the implicit eguation

-~

e (Xst) = ¢ (BRSOt L g WG by (3 ey
. . st

f
1

with boundary conditions u(X,%) 0 as X+~ £ =, The quantity u(X,%—AE)
will be known from the previous time step. The overall scheme is to
repliace uE by a backward difference, replace u(X,E) by a spline, enforce
the boundary conditions and enforce the implicit nonlinear equation
(4.1} at an appropriate number of discrete points. The resulting non-
linear algebraic system of equations is then solved by a guasi-Newton
algorithm, see, e.qg., Moré, Garbow and Hillstrom (1980), Dennis and
Schnabel (1983) or Watson, Kamat and Reaser (1985). The error in this
computed approximation to u(X,g) s then estimated. If the estimated
error exceeds a specified tolerance, the number of knots is increased
and the knot distribution is modified to improve the approximation;
details of this are found in Ascher, et al (1981b). Finally, the entire
process is repeated until the error satisfies the imposed tolerance
Teveis.

The mathematical software employed was the adaptive spline colloca-
tion package COLSYS, see, .., Ascher et al (1981b). This was accurate
and robust for the present problem although was occasicnally found to be
inefficient. The number of coilocatiqn points was seen to vary between

100 and 1000.

16



5. Results

SampTle calculations of sguare wave initial conditions (2.10) are
depicted in Figures 1-3; the variables appearing there are those defined
in;(2.3). For purposes of illustration, we have set the parameters
(2.4) to be

P = 5.0, 4= -8.6, = 5x10-3.

In terms of the similarity variables appearing in (2.8), we find ¢ = -1,
Ge = 1.72x1073. The effective dissipation wil] therefor% be the same
fdr each case discussed. The differences observed in each casé:w1?1 be
primarily due to nonlinear effects. ‘ N

The inviscid and viscous solutions for the case A = 0.77 are
pictted in Figure 1. Because A, = -1.32, this corresponds to case (1)
in.Section 3. The values of % have been specifically chosen to illus~ |
tate the viscous structure of the coliision between the scnic expansion
shock and the leading compression shock. At t = 1.0, the merging pro-
cess is already in its initig] stages. For this case, the fnviscid
theory, discussed in Section 3, predicts a collision time of 2.94. It
was found that the merging process wos essentially complete by this
time. After the collision time the inviscid and viscous sciutions are

in reasonable agreement. More detailed computations show that this is

alsoc the case for times sufficiently Tess than that at which the viscous

~ collision begins. Here we note that the expansion shock is somewhat

thicker than the compression shock. This is due, in part, to the fact
that the strength of the former is less than half of the Jatter. The
second factor is the fact that the expansion shock is sonic. t was
shown in I that sonic and near-sonic conditions lead to inherently

thicker shocks,




In the second example, we have taken A = 1 which implies Ao =
-1.72. The evolution of this case is depicted in Figure 2. Equations

(3.8) énd (3.10) may be combined with the scaiings (2.6) to verify that

'thé collision time is t = 4.68. Again, the numerical calculations show

thét the viscous collision is essentially complete by this time. At
subsequent times, the viscous and 1nviscid soTutions were again seen to
agree weil.

The last example has amplitudes A = 1.86, Ae = ~3.2 and is plotted
in Figure 3. Here we have chosen the times to iliustrate the retfograde
motion of the expansion shock. If we combine the scalings (2.6) with
equations (3.13) and (3.14), we find that the expansion shock penetrates
the compression fan at a time t = 0.19 at which time it begins to weaken
and slow., At % = 0.24 it stops and begins to propagate to the right.
Thus, the profile at t = 0.24 is that slightly before the expansion
shock becomes stationary. At times t = G.36-0.60, the smcoth part of
the expansion is carried out through the precursor daithough this is
readily seen only at the latter two time intervals. Here the infinite
sTope at the expansion shock may also be observed. At v = -2,

u/A = 0.625, the inviscid soiution is known to be stationary in the wave
coordinates empioyed here. It is interesting to note that the computed
viscous sclutions are alsc stationary there. fhis appears to be
analogous to the result that Lhe inviscid ﬁodes of a periodic wave are

frequently these of the viscous solution as well.
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6. Conclusions

The results of this paper fall into'three categories. The first is
the presentation of a more convenient set of scalings for the viscous
théery; see equations (2.6)-(2.8). The effects of nonfinearity and dis-
sipation are characterized by the similarity parameters Ae and Ge' Once
the thermodynamic state of the undisturbed Fluid is specified, the first
is determined by specifying the wave amplitude and the second by the
length of the wave. We expect these simitarity relations will be usefyl
in relating results obtained in experiments and numerical studies.

The second set of new results are the analytic splutions of the
inviscid equations (3.1)-(3.3). These may be viewed as a continuation
and compietion of the analytic work carried out in I.

the analytic solutions of the inviscid equations pTZy an es;ent1a1
role in the realization of the final and main goal of this paper, viz.,
the computation of dissipative solutions to (2.2) and the comparison of
these solutions to the inviscid theory. The numerical scheme described
in Section 4 has been found to be 3 powerful tool in the study of dissi-
pative waves in fluids having both positive and negative nonlinearity.
This conclusion is based on the success reported here as well as its
application to the simpler case of step functien initial conditions and
the more compiicated case of shock formation and propagation, Because
the mesh adapts to the solution as it is generated, the scheme is seen
torbe capable of "describing multipie, nén—stationary shocks without the

difficuities encountered in simpler, e.g., finite difference, schemes.

‘The results presented provide a description of the viscous collision

between expansion and compression shocks; it was found that this is

typically complete by the collision time predicted by the inviscid

1Q



theory. Except for the time during which this collision takes place the
solutions are seen to be in close agreement. Thus, a second important
contribution is that this provides an independent verification of the

‘predictions of the inviscid theory given in I.
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