
Device-Based Isolation for Securing Cryptographic Keys

Karim O. Elish, Yipan Deng, Danfeng (Daphne) Yao, Dennis Kafura
Department of Computer Science

Virginia Tech
Blacksburg 24060, USA

{kelish, yipanvt, danfeng, kafura}@cs.vt.edu

ABSTRACT
In this work, we describe an effective device-based isolation
approach for achieving data security. Device-based isolation
leverages the proliferation of personal computing devices to
provide strong run-time guarantees for the confidentiality of
secrets. To demonstrate our isolation approach, we show its
use in protecting the secrecy of highly sensitive data that
is crucial to security operations, such as cryptographic keys
used for decrypting ciphertext or signing digital signatures.
Private key is usually encrypted when not used, however,
when being used, the plaintext key is loaded into the mem-
ory of the host for access. In our threat model, the host may
be compromised by attackers, and thus the confidentiality of
the host memory cannot be preserved. We present a novel
and practical solution and its prototype called DataGuard to
protect the secrecy of the highly sensitive data through the
storage isolation and secure tunneling enabled by a mobile
handheld device. DataGuard can be deployed for the key
protection of individuals or organizations.

Keywords
data security, confidentiality, cryptography, device-based iso-
lation, mobile device

1. INTRODUCTION
In the seminal work on computer virus [11], Cohen de-

scribed isolationism as a potential prevention against the
propagation of viruses (on multi-user computers), which refers
to no dissemination and no sharing of information across in-
formation boundaries. However, absolute isolation clearly
would significantly hinder the usefulness of the computing
environment. Yet, partial isolation can be strategically im-
plemented to realize specific security goals. For example,
Borders et al. proposed a solution for achieving data con-
fidentiality that requires disconnection from the network
when the data is being accessed [7].

In this work, we describe a practical and powerful device-
based isolation approach for information security and demon-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

strate its application in preserving the confidentiality of cryp-
tographic keys. The confidentiality of cryptographic keys is
the security foundation of virtually all cryptographic/security
protocols, and is essential for individuals and organizations
including certificate authorities (e.g., Symantec). Device-
based isolation is defined by us as isolating the storage and
operations related to data with different security require-
ments (e.g., confidentiality requirement) through multiple
computing devices. In addition, the isolation should not
hinder the use and access of the data for practical applica-
tions.

In a strong adversary model, the host and its kernel may
be compromised by attackers or malicious software, and thus
the confidentiality of the host memory - including crypto-
graphic keys stored there - cannot be guaranteed. For exam-
ple, simply storing the plaintext private key on a removable
medium (eg., a regular USB drive) is not a complete solu-
tion because the key still needs to be loaded to the host for
use. For this reason, the cryptographic (private) key is usu-
ally encrypted on external storage when it is not being used.
When needed, the encrypted key is decrypted (which typi-
cally requires the user to enter a passphrase). The plaintext
key is then loaded into the memory of the host for access.

A number of techniques have been developed to preserve
the confidentiality of cryptographic keys. Using a tamper-
resistant smart card for the key storage requires a special
reader, which may not be available. In a more complex so-
lution, the host may be equipped with an on-chip trusted
platform module (TPM) that allows the host to attest its
system integrity to a trusted server when the plaintext key
is loaded; the encrypted private key can only be decrypted
when the host’s system integrity is verified. However, one
major limitation of this approach is that TPM cannot pre-
vent any run-time compromise taking place after the attes-
tation [15]. Thus, the keys may be exposed. In general, the
fundamental and practical security problem of protecting
the secrecy of the private key is not adequately addressed in
the security literature.

In this paper, we present a novel and practical technique
to enhance the confidentiality of private keys. Our design
separates private keys from an untrusted host to a special-
purpose, trusted handheld device, while still enabling the
host to use the key (e.g., for decryption and signing). Our
approach recognizes that ensuring system integrity - the as-
surance that applications and the host’s operating system
including the kernel have not been compromised by attack-
ers or malicious software - of a general-purpose computer
with Internet connectivity is difficult in general. However, a

dedicated special-purpose computing device is relatively eas-
ier to secure and less susceptible to attacks. Such a device
may be an inexpensive smartphone or tablet computer. We
use a trusted device for dedicated key storage and crypto-
graphic operations, which allows the key to be used without
being exposed to the untrusted host. Accordingly, our so-
lution can be easily deployed by any entities (individuals
or organizations) using the public key cryptosystems to en-
hance their protection of private keys.

Our device-based isolation framework - named DataGuard
- provides two security functions: i) it protects highly sensi-
tive cryptographic keys by isolating them from the untrusted
general computing environment, and ii) it supports the se-
cure use of the key through a protocol by which the host
may request a message to be signed with the protected pri-
vate key. Without our device-based isolation of secret keys,
the cleartext key value would exist in the memory of the
host when it is being used, and thus a compromised host
may lead to key compromise. In our prototypes, we show
several independent instantiations of DataGuard with var-
ious types of machines, including a smartphone, a tablet
computer, and a Linux box for embedded system. We also
implemented two types of communication methods (wired
and wireless) between the host and the device - Bluetooth
and universal serial bus.

Our contributions are summarized as follows.

1. We revisit the feasibility of isolationism for security
and propose device-based isolation as a general ap-
proach for securing data confidentiality, which lever-
ages the proliferation of personal handheld devices.
We describe the general requirements associated with
realizing a device-based isolation solution.

2. We present the design, implementation, and experi-
mental evaluation of DataGuard for securing crypto-
graphic private keys as a concrete embodiment of the
device-based isolation methodology. DataGuard al-
lows one to isolate the storage and operation associ-
ated with keys on a trusted device, yet enables the use
of the keys for decryption and signing by the host as
usual.

We implement a prototype of DataGuard that sup-
ports two types of communication methods and runs
on three different device platforms. We further demon-
strate how DataGuard can be integrated with Google
Chrome browser for real-time decrypting or signing
without exposing the private key to the host. We
have conducted series of experimental evaluation to
test the performance of DataGuard in terms of per-
forming cryptographic operations related to decryp-
tion and signing on the external trusted device.

The rest of the paper is organized as follows. Section 2
presents the design of DataGuard framework. Section 3 pro-
vides two security protocols to illustrate the applications of
DataGuard. Sections 4 and 5 discuss our implementation
and experimental evaluation results respectively. Section 6
briefly reviews related work. Finally, Section 7 concludes
the paper and outlines directions for future work.

2. DESIGN OVERVIEW
In this section, we present the architecture and the main

components of the DataGuard framework. Then, we detail

our security goals, threat model, and assumptions. Finally,
we describe the applications of DataGuard framework.

2.1 DataGuard Architecture
Our device-based isolation design consists of two main

components: i) a host running a DataGuard daemon, and
ii) an external trusted device running a DataGuard appli-
cation, which are described as follows.

1. Host is a personal computer which is vulnerable to
malware attacks. However, the host’s owner needs to
utilize the private cryptographic keys to decrypt ci-
phertext or sign messages. Hence, we need to provide
the security enhancement to this host by protecting the
secret cryptographic keys from being compromised.

DataGuard daemon is a software application used
to connect the host with the external trusted device.
It initiates a communication channel with the trusted
device and uses this channel to execute the commands
requested from the DataGuard application running on
the trusted device.

2. External trusted device is an external device used
to enhance the data security of the host by storing the
cryptographic secret keys of the host and performing
the cryptographic operations. DataGuard is deployed
on this device. The selection of the trusted device
should support the following criteria in order to be
used in our framework:

• It should have the capability to perform compu-
tation.

• It should have storage space.

• It should have the ability to communicate with
other devices.

• It should have I/O capability with a display screen.

Any device that possesses these characteristics can be
used as a trusted device in our framework.

DataGuard application is a software application
running on the external trusted device. It is used to
communicate with the host and performs the security-
related cryptographic operations (namely decryption
and signing) which are described in details in Section 4.

2.2 Security Goals, Threat Model, and Assump-
tions

• Security goals: The primary goal of our framework
is to enhance the data confidentiality of a host by pro-
tecting its sensitive data from being compromised by
malicious attacks. In particular, our security goals are
three-fold:

1. To ensure the confidentiality of cryptographic pri-
vate keys.

2. To ensure the confidentiality of ciphertext being
decrypted.

3. To ensure the integrity of digital signature pro-
duced.

• Threat model and security assumptions: In our
threat model, we assume that the host including the
user-space and kernel-space data and code are not se-
cure and vulnerable to malicious attacks. Specifically,
the attacker may attempt to: i) gain knowledge of
a private key, ii) gain knowledge of the message en-
crypted with the corresponding public key, and iii)
forge digital signatures on behalf of the legitimate key
owner.

We assume that the external device’s data and code
are trusted and not compromised. This assumption is
reasonable, as the device can be a special-purpose com-
puting device with no or limited network connectivity
and limited permitted operations.

2.3 Why the External Device is Trusted?
A general purpose computer may be vulnerable to ma-

licious attacks as it is typically connected to the Internet.
DataGuard provides a secure communication channel be-
tween the external device and the host as shown in Figure 1
(b). In this case, the external device is more isolated and
easier to secure compared to the conventional approach il-
lustrated in Figure 1 (a). The external device is not exposed
directly to the Internet. We refer to the external device as
a trusted device.

The external device is easier to secure compared to a gen-
eral purpose computer because of two reasons as follows.

• Singular communication: it only securely communi-
cates to the host.

• Singular service: it only provides one specific key usage
service. Its data and code are small as a result of
limited operations.

Therefore, our assumption on the integrity of the trusted
device is practical.

The storage and usage environments of the cryptographic
keys that we aim to protect are isolated from the general
computing environment. This property is achieved because
the keys are stored and operated on the trusted device, and
never appear on general purpose computers (i.e., the host).

2.4 Use Cases of DataGuard
The DataGuard framework can be used by i) individu-

als and ii) organizations to protect the cryptographic secret
keys used in many security related operations.

• Personal use: Individual users who perform cryp-
tographic operations, such as decryption and digital
signing, can use our device-based isolation method eas-
ily to protect their personal private keys used in these
operations. DataGuard provides no extra cost to the
users as they can use their handheld devices such as
smartphones to isolate the storage and operations as-
sociated with their private keys.

• Organizational use: DataGuard framework can be
also used by the enterprise, government, or military
organizations to protect their master private keys. For
example, certificate authorities such as Symantec need
to carefully protect the confidentiality of the master
private key that is used to generate digital certificates.

`

`

SSL

SSL

Host Server

Server Host Trusted
Device

(a)

(b)
request for

secret key use

response

Figure 1: (a) Conventional SSL setup between a host
and a server (b) Our DataGuard design with the
trusted device to enhance the protection of a cryp-
tographic private key.

3. PROTOCOLS FOR ACCESSING PRIVATE
KEYS

In a device-based isolation architecture, cryptographic pri-
vate keys are stored on a trusted dedicated device, as op-
posed to a general-purpose networked computer (i.e., host),
for the confidentiality of the key. In order to use the key for
decryption or signing, the host needs a protocol to utilize
the private key without learning the key value. In this sec-
tion, we describe two protocols for using private keys in our
DataGuard framework:

1. Decrypting the ciphertext received by the host.

2. Signing an outgoing message.

In what follows, we assume that the DataGuard user (e.g.,
Alice) generates her public and private keys of a secure
public-key cryptosystem (e.g., RSA) on the external trusted
device. Her public key is publicly available and certified by
a certificate authority, so that others (e.g., Bob) can make
sure the public key belongs to Alice.

3.1 Secure Decryption in DataGuard
The secure decryption protocol allows the DataGuard user

(Alice) to decrypt the ciphertext received from the Inter-
net. The sender of the message (e.g., Bob) encrypts a secret
message using Alice’s public key and then sends it to Al-
ice. Alice’s host receives the encrypted message and sends
it to the trusted device for decryption using the private key
stored in the trusted device. Then, the decrypted/original
message is displayed on the screen of the trusted device to
ensure the confidentiality of the original message. Figure 2
depicts the secure decryption protocol in DataGuard. The
detailed operations are as follows:

1. Alice’s host receives the ciphertext C from Bob who
encrypts the message M with the public key of Alice
to ensure the confidentiality of M.

2. The DataGuard daemon on Alice’s host initiates a re-
quest for connecting to the trusted device.

`

Host Trusted	 Device
	

	

	

	

	

	

	

	

User Space
Kernel Space

Application

BlueZ

DataGuard App
(Secure Decryption)

Network

User Space

Kernel Space

Application

BlueZ Protocol Stack

 Web
Browser

Drivers Drivers

DataGuard
Daemon

Extension

1. Request to connect

2. Accept and connect

4. Forward ciphertext

5. Decrypt with
private key

3. Receive
ciphertext

6. Display message

Figure 2: Secure decryption procedure in DataGuard. Red key is the private key of the DataGuard user.

3. The trusted device provides a PIN/passkey to verify its
identity before connecting to Alice’s host. Upon the
verification, the trusted device is paired with Alice’s
host where the connection is established.

4. Alice’s host forwards C to the secure decryption ap-
plication running on the trusted device.

5. The secure decryption application receives C, and de-
crypts C with Alice’s private key K stored in the
trusted device to obtain the message M. Alice may
need to enter her passphrase on the trusted device in
order to decrypt the private key (see also Section 2).

6. Message M is displayed on the screen of the trusted
device.

An application of this secure decryption protocol mecha-
nism is secure email, i.e., decrypting encrypted email mes-
sages. The DataGuard user receives an encrypted email.
The host relays the encrypted email to the trusted device.
The trusted device performs the decryption and displays the
plaintext message on its screen. As a demonstration, we
implemented the DataGuard daemon as a part of Chrome
browser extension. This browser extension gets the encrypted
information from a webpage (e.g., Gmail) and sends it to the
trusted device for decryption and display, as shown in Fig-
ure 2. Details of our prototype including screenshots are in
Section 4.

3.2 Secure Signing in DataGuard
In this protocol, Alice uses her external trusted device

to digitally sign a message. Whenever Alice needs to send
a signed message to Bob, the message is forwarded to the
trusted device for signing before Alice sends the message to
Bob. The steps of generating a message signature within
our framework architecture are as follows.

1. Alice has composed a message M on her untrusted host
that she wants to securely sign and send to Bob.

2. The DataGuard daemon on Alice’s host initiates a re-
quest for connecting to the trusted device.

3. The trusted device provides a PIN/passkey to verify its
identity before connecting to Alice’s host. Upon the
verification, the trusted device is paired with Alice’s
host where the connection is established.

4. The host sends the message M to be signed to the se-
cure signing application running on the trusted device.

5. The secure signing application receives M, and upon
Alice’s approval signs M with Alice’s private key K
stored in the trusted device to generate a digital sig-
nature S. S is sent back to the host. (Alice may need
to enter her passphrase on the trusted device in order
to decrypt the private key, as in the secure decryption
protocol in Section 3.1.)

6. Upon receiving S, the host sends M together with S
to Bob.

7. Bob receives M and verifies the authenticity of S with
respect to M and the public key of Alice.

An application of the secure signing protocol is electronic
purchasing where a customer sends a signed purchase order
to a vendor. The customer (e.g., Alice) fills in the purchase
order form on the host. Then, the daemon on Alice’s host
sends the form to the trusted device for signing with the
private key of the customer. The generated signature is sent
back to the host where the customer can submit the form
to the vendor to complete the purchase order. As a demon-
stration of its application, we implemented the DataGuard
daemon as a Chrome browser extension in our prototype.
This web browser extension can get the sensitive informa-
tion from a webpage and send it to the trusted device for
signing. Details of our prototype implementation are in Sec-
tion 4.

The secure signing protocol supported by our framework
is essential for data security. The digital signature ensures
the authenticity of the message by preventing the others
from pretending to be the creator of the message. Moreover,
the digital signature ensures the integrity of the message
by ensuring that the content of the message has not been
tampered with since it was digitally signed.

4. IMPLEMENTATION
In this section, we describe the implementation details of

our DataGuard prototype. DataGuard applications (Secure
Decryption App and Secure Signing App) are developed on
Google Android 2.1. Android is a software stack for mo-
bile devices that includes an operating system, middleware
and key applications [6]. Android provides a Java-based
development platform and supports Java SDK 1.6 as we
use Java Cryptographic libraries to provide security features
such as java.security.* and java.crypto.*. We implement the
DataGuard daemon as a stand-alone program, and as a web
browser extension for Google Chrome to demonstrate how
it easily integrates with the browser.

4.1 Communication Interface
DataGuard architecture requires the establishment of a

secure channel between the host and the trusted device.
Therefore, we implemented and supported two types of com-
munication methods: i) wired using universal serial bus
(USB) and ii) wireless using Bluetooth.

We focus on Bluetooth because it is more convenient to
use. It supports a Service Discoverable Protocol (SDP)
which allows each service to bind to a UUID, and supports
encryption for the communication based on the passkey agreed
by the communicating devices which ensures the confiden-
tiality of the communication. Bluetooth is publicly available
in almost all the devices including mobile devices and lap-
tops.

BlueZ [3] is the Linux Bluetooth Protocol Stack. BlueZ is
used in our prototype. We support the following functions
during the implementations of Bluetooth communication:

• Bi-directional Bluetooth communication: it is
set up by directly accessing the RFCOMM communi-
cation channel which is a serial port emulation proto-
col. RFCOMM provides a simple reliable data stream
to the application.

• Bluetooth message parsing: we wrap the inter-
nal DataGuard message data structure in the payload
of the Bluetooth message. Handling the message is
the key to maintain a reliable interaction between the
DataGuard daemon on the host and the DataGuard
applications on the trusted device.

• Bluetooth message construction and response:
the message data structure consists of a header with
both the message type and message size inside, fol-
lowed by the actual message payload.

4.2 Implementation of DataGuard Daemon and
Applications

The DataGuard daemon runs as a background daemon in
the host. It listens to the communication channel for an al-
lowed connection from the trusted device. The DataGuard
daemon is written in C and it has 661 lines of code. The
daemon is designed to only contain limited logic which sim-
ply serves as a relay for the DataGuard applications running
on the trusted device. In particular, the daemon performs
the following functions:

• Service registration: this involves assigning a Uni-
versally Unique Identifier (UUID) to the service inter-
face, so that only one device which knows about this
UUID is able to connect to it.

• Forwarding a ciphertext for decryption: this in-
terface is implemented as a Google Chrome extension
to support the secure decryption protocol. We devel-
oped this Chrome extension with JavaScript to be able
to manipulate the webpage and select the ciphertext
to be decrypted. The DataGuard daemon, which is
implemented as part of this extension, forwards the
selected ciphertext to the trusted device for decrypt-
ing and displaying on the trusted device’s screen.

• Obtaining digital signature of a message: this
interface is implemented as a Google Chrome exten-
sion to support the digital signing protocol. We devel-
oped this Chrome extension with JavaScript to be able
to manipulate the webpage and select the message to
be signed. The DataGuard daemon, which is imple-
mented as part of this extension, forwards the selected
message on the host to the trusted device for obtaining
a digital signature.

We developed two Android-based applications to support
the security protocols presented in this paper, namely i) a
secure decryption application which performs the secure de-
cryption service and ii) a secure signing application which
performs the digital signing service. Both applications pro-
vide a graphical user interface to assist the user in using
these services. The secure decryption application has 1149
lines of Java code, while the secure signing application has
1249 lines of Java code. Both applications are deployed on
the trusted device.

The secure decryption application receives the encrypted
message from the host to be decrypted with the private
key stored in the trusted device. Once the application de-
crypts the ciphertext, the original message is displayed on
the screen of the trusted device to ensure the confidentiality
of the message. In our prototype, we support two differ-
ent algorithms (RSA and AES) with different key lengths to
decrypt the ciphertext.

Similarly, the secure signing application receives the mes-
sage from the host to be signed and generates the signature
based on the stored private key in the trusted device. In
other words, the application takes the message as the in-
put and generates the signature as the output which is sent
back to the daemon on the host. We support two differ-
ent algorithms (DSA and RSA) with different key lengths
to digitally sign messages.

The use of an external trusted device in our framework to
achieve the isolation is practical and inexpensive. The exter-
nal trusted device in our solution can be any computing de-
vice that satisfies our requirements mentioned in Section 2.1.
To further demonstrate this property, we realized our pro-
totype on a Linux device designed for embedded systems
in addition to our smartphone and tablet prototypes. We
chose to implement our prototype on these devices because
they have the capability to run software and services, not
just a special hardware which may be expensive to build.
In addition, these handheld computing devices are still a
commodity computer which is inexpensive.

We programmed an ADVANTECH Box-PC ARK-1360,
shown in Figure 3, as an external trusted device which is
a small fan-less box that can be carried easily by a user.
We installed a BTA-3210 USB 2.0 Micro Bluetooth Dongle,
which supports Bluetooth 2.1 with 10 meters effective range.
BlueCove [1], a JSR-82 implementation of Java Library for

Figure 3: External trusted device: ADVANTECH
Box-PC ARK-1360.

Bluetooth, was used for providing similar Java API for ac-
cessing the underlying Bluetooth protocol stack BlueZ. Also,
we attached a monitor to ADVANTECH Box-PC to provide
screen output capability.

The linux-box device is truly secure isolated device. In
order to make a smartphone or a tablet more secure and
trusted in practice, some existing solutions can be integrated
with our framework, such as [16, 25] to build a secure mode
into Android-based devices or provide access control capabil-
ities to grant secure environment in which specific operations
can be performed and have limited access to unnecessary re-
sources. Therefore, any smartphone or tablet can be suitable
trusted device to be used in practice.

In summary, we have successfully demonstrated our Data-
Guard design in three independent instantiations of the trusted
device with a smartphone, a tablet computer, and a Linux
embedded device.

4.3 Integration with Chrome Browser on the
Host

We implement the DataGuard daemon as a web browser
extension for Google Chrome to show the practicality of our
framework. Specifically, we implemented the DataGuard
daemon as a plugin based on the Netscape Plugin Applica-
tion Programming Interface (NPAPI) to be able to use it as
a browser extension. In addition, we used Nixysa [4] to au-
tomatically generate glue code for NPAPI plugins to expose
the code written in C to JavaScript.

We developed two Chrome extensions, namely a secure
decryption extension and a secure digital signing extension.
The secure decryption extension performs two main func-
tions: i) it accesses and parses the webpage to select the
ciphertext which needs to be decrypted, and ii) it forwards
the selected ciphertext to the trusted device for decryption
and display. Figure 4 shows the screenshots of the secure de-
cryption extension and the trusted device. In this example
the user receives an encrypted email message in Gmail and
the extension forwards the encrypted email to the trusted
device for decryption and display. The host uses HTTPS
for its connection with the remote Gmail server. Similarly,
the secure digital signing extension accesses and parses the
webpage to select the message to be signed, and forwards
the selected message to the trusted device for obtaining a
digital signature which is sent back to the extension.

4.4 Security Analysis of DataGuard
In this section, we analyze the security guarantees of Data-

Guard in terms of the three security goals set in Section 1
– key confidentiality, message confidentiality in decryption,
and message integrity in signing.

Key Confidentiality. One of the primary strengths of
DataGuard is the protection of the private key confiden-
tiality. Our framework provides secure storage for cryp-
tographic private keys by isolating and storing them on a
dedicated trusted device instead of keeping them on the un-
trusted host. All cryptographic operations involving the pri-
vate keys take place in the external trusted device as well.
Therefore, the values of private keys are not revealed to the
host and the confidentiality of private keys is preserved. We
ensure the confidentiality of the private keys even if the host
is compromised.

Message Confidentiality. In the secure decryption proto-
col, the confidentiality of the message is preserved because
the decryption is performed and displayed on the trusted de-
vice. The host only has the access to the ciphertext. With
a (semantically) secure encryption scheme, the host learns
nothing about the message from the ciphertext.

Message Integrity. In the secure signing protocol, the in-
tegrity of the message can be preserved and signature can-
not be forged, as the digital signature can only be gener-
ated by the trusted device uniquely possessing the private
key. Therefore, all three security goals are achieved in Data-
Guard.

Bluetooth is chosen to provide bi-directional communi-
cation channel in our solution. The host and the trusted
device are securely connected to each other by identifying
the Bluetooth service ID, where the Universal Unique Iden-
tifier is used before they get connected with passkey agreed
by them. In addition, all communication between them can
be encrypted and authenticated using standard protocols.
Therefore, the attacker will neither be able to eavesdrop on
the communication channel nor masquerade as a real host
or as a trusted device. The trusted device has secure com-
munication with the host.

We consider the case where the DataGuard daemon or the
OS kernel is tampered with by stealthy malware that escapes
any detection on the host (e.g., anti-virus scan). The confi-
dentiality of the private key is still preserved, as its storage
and involved operations are isolated on the trusted device.
In addition, the message confidentiality in the secure decryp-
tion protocol and the signature unforgeability in the secure
signing protocol hold as well. The host controlled by the
attacker may ask the trusted device to sign arbitrary mes-
sages, thus the signing person (e.g., Alice) who controls the
trusted device is responsible for distinguishing the messages
that should be signed from rogue ones.

However, the availability of decrypting and signing ser-
vices provided by the trusted device may not be guaranteed
in the face of compromised host. The malware-controlled
host may drop packets in the communication with the trusted
device or refuse to pair with the trusted device or to trans-
mit data, which is undesirable. Such an issue is out of the
scope of DataGuard security model. A mitigation strategy
is to disinfect the host as soon as any disruption in the com-
munication is discovered. In an event, Alice will be able
to easily detect such forms of attack and take appropriate
countermeasures.

Secure Decryption
Extension

Decrypted Message
Displayed on Trusted Device

Figure 4: Screenshots of DataGuard prototype showing the secure decryption extension on the host and the
trusted device. The ciphertext received by the host via Gmail is decrypted on the handheld without exposing
the private key to the untrusted host.

5. PERFORMANCE EVALUATION
We conduct several experiments to evaluate the efficiency

of our DataGuard prototypes, including the running time of
cryptographic operations on the trusted device and commu-
nication bandwidth between the host and the trusted device.

We use a Lenovo T410 laptop as a host which has 2.40GHz
dual core Intel Core i5 processors, 2GB memory, a Blue-
tooth chipset compatible with Bluetooth 2.1 specification,
and Ubuntu 10.04 LTS. We perform our evaluations on two
different trusted handheld devices: Android Development
Phone (ADP) and Samsung Galaxy Tab 10.1. Both of them
meet the requirements for the trusted device described in
Section 2.1. DataGuard applications (namely Secure De-
cryption App and Secure Signing App) are deployed on them.
Android Development Phone (ADP) is a smartphone that
runs Google Android OS 2.1 and has a 576MHz processor
with 512MB ROM, 288MB RAM, and Bluetooth 2.0. Sam-
sung Galaxy Tab 10.1 is a tablet computer that runs Google
Android OS 3.1 and has a dual-core 1GHz processor, 32GB
ROM, 1GB RAM, and Bluetooth 2.1. We ran our exper-
iments on both ADP and tablet and reported the results
from both devices. All results are averages of five runs 1.

We measured the Bluetooth throughput to examine the
empirical communication bandwidth of Bluetooth between
the host and the trusted device 2. In our experiments, the
host sends various amount of data (ranging from 10KB to
100MB) to the handheld devices (both ADP and tablet,
respectively), and we measure the duration of the trans-
mission. Our experimental results show that a maximum
throughput of 2Mbps can be achieved on both handheld
devices, which is sufficient for the purpose of DataGuard.
The empirical throughput reported by others previously is
2.1Mbps [2]. We did not measure the bandwidth of USB
communication but it is expected to be up to the manu-
facturer’s maximum throughput which depends on the USB
standard used.

Although the descriptions in previous sections are based

1Variances are negligible and not shown.
2The theoretical throughput of Bluetooth (2.0 and 2.1) re-
ported by the manufacturer is up to 3Mbps.

on public-key cryptosystems, DataGuard supports symmetric-
key cryptosystems such as AES for encryption and DSA for
digital signature. For completeness, we implement and eval-
uate all relevant operations of both public-key and symmetric-
key schemes in DataGuard, including encryption/decryption
and signing/verification.

Figure 5 shows the decryption performance of different ci-
phertext sizes on both handheld devices by using AES (128-
bit, 192-bit and 256-bit keys) and RSA (512-bit, 1024-bit,
and 2048-bit keys), respectively.

0

5

10

15

20

Ti
m

e
 (

m
s)

Data Size (bytes)

(b) AES Decryption on Tablet

AES-128 bit
AES-192 bit
AES-256 bit

0

1000

2000

3000

4000

5000

Ti
m

e
 (

m
s)

Data Size (bytes)

(c) RSA Decryption on ADP

RSA-512 bit

RSA-1024 bit

RSA-2048 bit

0
200
400
600
800

1000
1200
1400
1600
1800

Ti
m

e
 (

m
s)

Data Size (bytes)

(d) RSA Decryption on Tablet

RSA-512 bit

RSA-1024 bit

RSA-2048 bit

0

10

20

30

40

50

60

Ti
m

e
 (

m
s)

Data Size (bytes)

(a) AES Decryption on ADP

AES-128 bit
AES-192 bit
AES-256 bit

Figure 5: Decryption performance of AES and RSA
on handheld devices.

We also measured the performance of encryption on both
handheld devices in AES and RSA. The performance of sym-
metric key decryption/encryption (AES) is faster than RSA
as expected. (Encryption results are not shown.) In prac-
tice, the public-key encryption scheme such as RSA is only
used for encrypting (short) symmetric keys (e.g., AES keys)
that are used for encrypting the message. Therefore, we

expect the decryption time on the handheld devices to be
fast.

Figure 6 shows the signing and verification performance on
both handheld devices by using DSA (512-bit, 1024-bit) keys
and RSA (512-bit, 1024-bit, 2048-bit) keys, respectively.

RSA with 512-bit and 1024-bit keys are much faster than
2048-bit key as shown in Figures 6(a) and 6(b). The tablet
performs cryptographic signing operation faster than ADP
as expected. Signing in DSA with 512-bit and 1024-bit keys
is faster than RSA with the same key lengths on both com-
puting devices, which is expected. However, for signature
verification, RSA with 512-bit and 1024-bit keys is slightly
faster than DSA with the same key lengths, respectively.

Our experimental results show feasible performance of
DataGuard as all cryptographic operations can be performed
efficiently on the external trusted handheld devices without
significant overhead, and the communication bandwidth of
Bluetooth is sufficient for transmitting large amounts of data
(e.g., ciphertext or digital signature) in a timely fashion.

6. RELATED WORK
In this section we review and discuss related work on ex-

ternal device-based security. Moreover, we briefly review
recent works on studying the security of mobile platform es-
pecially for Android OS since we focus our implementation
on Android-based mobile handheld devices.

McCune et al. [18] proposed a framework called Bump
in the Ether (BitE) to ensure the integrity of sensitive user
input to the applications running on the host. BitE cap-
tures the user’s keypress on the keyboard and send it to a
trusted mobile device to encrypt the keyboard events. The
mobile device, in turn, sends the encrypted keyboard events
to specific application on the host, where they can be de-
crypted and used. In [19], the authors introduced a Bumpy
system that protects the sensitive user input for web appli-
cations by processing the input in an isolated code module
on the user’s system, where they can be processed for a re-
mote webserver. Our work differs from BitE and Bumpy in
that they address the integrity of user input to the appli-
cations, while we address the confidentiality requirement of
secret data (cryptographic keys) used in sensitive operations
(decryption and signing). Bumpy uses a different approach
for protecting user inputs, i.e. isolated code module on the
user’s system not an external trusted device for processing
or encrypting the inputs.

Storage Capsules system is a recent approach introduced
by Borders et al. [7] to protect confidential files on a per-
sonal computer. It allows a compromised host to securely
view and edit sensitive files by isolating the primary op-
erating system in a virtual machine and disabling network
and other device output before it is accessing confidential
files. Once the files editing is done in Storage Capsules, it
restores system state to a snapshot taken before accessing
Capsule system and resumes network and other device out-
put. Storage Capsule can be considered as an alternative to
our device-based isolation solution where private keys can
be stored and used in a secure manner. However, Storage
Capsule performs the isolation on the same machine, while
our work uses a separate device for isolation to achieve the
data confidentiality.

Zic and Nepal [28] designed and implemented a prototype
personal trusted device called the Trust Extension Device
(TED) that provides users with a portable trustworthy en-

vironment for performing transactions on computer which
is connected to Internet. TED is implemented on a small
portable device i.e. flash drive. Also, Nepal et al. [20] de-
signed and built a mobile and portable Trusted Comput-
ing Platform (TCP) based on Trusted Computing Group
(TCG) [5] specification. Their solution provides a TCP on
a USB device to enable the mobility and portability of trust
for enterprise applications. The solutions in [28] and [20] do
not provide a complete isolation from untrusted host as their
proposed device does not have any input/output devices on
its own, instead it relies on the input/output devices of the
untrusted host machine. Hence, these I/O devices are not
isolated and subjected to malicious attacks such as keyboard
loggers and screen scrapers. On the other hand, our work
offloads all the security features to be run on an external
trusted device and does not relay on I/O devices of the host
which provides a complete isolation from untrusted host.

Some solutions used mobile handheld devices to provide
secure authentication techniques [17, 27], provide secure re-
mote access to the user’s home computing environment [23],
propose a realistic mobile ticket system [9], and enhance web
browsing security on public terminals [26].

A different, but related in the spirit of data protection,
solution is represented by Samarati et al. [24], where the
authors addressed the privacy issues such as data confiden-
tiality in data outsourcing scenarios. Another different, but
related, technique is represented by [8], where the authors
proposed a new protocol for authentication using minimally
trusted servers.

A number of recent proposals have studied Android plat-
form security to identify potential security risks of Android
OS [10, 12, 14], or to improve the overall security of Android-
based mobile devices [13, 21, 22]. Chin et al. [10] analyzed
the vulnerability in inter-application communication in An-
droid apps and found a number of exploitable vulnerabil-
ities. Enck et al. [12] analyzed the security of 1,100 top
free Android apps from the official Android Market to un-
derstand security characteristics such as use/misuse of per-
sonal/phone identifiers information. Felt et al. [14] studied
940 Android apps and found that about 1/3 of the stud-
ied apps are requesting more permissions than they need.
Kirin [13] framework provides a lightweight certification of
Android apps at install time to block the installation of po-
tential unsafe apps based on certain undesirable permission
combination. Ongtang et al. [21] proposed Porscha frame-
work to provide content protection for Android by enforc-
ing security policies. Saint [22] is another framework which
proposes install-time permission granting policies and run-
time inter-application communication policies to address the
current limitations of Android security. The existing work
reviewed above on Android security is vital to enhance the
security of Android Mobile OS and can be integrated to our
work to provide a generic robust solution for enhancing data
security on the host.

7. CONCLUSION AND FUTURE WORK
With the proliferation of personal handheld computing

devices, such as smartphones and tablet computers, we pro-
posed a device-based isolation approach and its prototype
called DataGuard to protect the secrecy of the highly sensi-
tive data (namely cryptographic keys) through the storage
isolation and secure tunneling. Our solution does not re-
quire highly specialized (system-specific) services and hence

0
20
40
60
80

100
120
140
160

Ti
m

e
 (

m
s)

Data Size (bytes)

(a) RSA Signing on ADP

RSA-512 bit RSA-1024 bit RSA-2048 bit

0

10

20

30

40

50

Ti
m

e
 (

m
s)

Data Size (bytes)

(b) RSA Signing on Tablet

RSA-512 bit RSA-1024 bit RSA-2048 bit

0
5

10
15
20
25
30
35
40
45

Ti
m

e
 (

m
s)

Data Size (bytes)

(c) DSA Signing on ADP

DSA-512 bit

DSA-1024 bit

0

1

2

3

4

5

6

7

Ti
m

e
 (

m
s)

Data Size (bytes)

(d) DSA Signing on Tablet

DSA-512 bit

DSA-1024 bit

0
5

10
15
20
25
30
35
40
45

Ti
m

e
 (

m
s)

Data Size (bytes)

(e) RSA Verifying on ADP

RSA-512 bit
RSA-1024 bit
RSA-2048 bit

0

1

2

3

4

5

6
Ti

m
e

 (
m

s)

Data Size (bytes)

(f) RSA Verifying on Tablet

RSA-512 bit
RSA-1024 bit
RSA-2048 bit

0

10

20

30

40

50

Ti
m

e
 (

m
s)

Data Size (bytes)

(g) DSA Verifying on ADP

DSA-512 bit

DSA-1024 bit

0

2

4

6

8

10

12

Ti
m

e
 (

m
s)

Data Size (bytes)

(h) DSA Verifying on Tablet

DSA-512 bit

DSA-1024 bit

Figure 6: Digital signing and verification performance of RSA and DSA on handheld devices.

it would be easily ported to other platforms. We presented
our design and implementation of DataGuard framework
along with two security protocols to illustrate how Data-
Guard is deployed in practice. We conducted extensive ex-
periments to evaluate the feasibility and performance of Data-
Guard. The results show that our method performs well
without significant overhead.

For future work, we plan to explore other applications
that utilize mobile handheld devices to provide desirable se-
curity enhancement to personal computers. For example,
the handheld device may serve as the attestor in the TPM
attestation that checks and verifies the system integrity of
a TPM-enabled host. We have showed in our paper that
our solution is simple to adopt. We plan to perform more
systematic studies to evaluate the usability of our approach.
We plan to find out users’ experiences in using an external
device to store secret keys and perform cryptographic oper-
ations. The findings will help us improve the transparency
of our solution, which will provide a seamless experience to
users besides enhanced security guarantees.

8. REFERENCES
[1] Bluecove. http://bluecove.org/.

[2] Bluetooth measuremet fundamentals.
http://www.home.agilent.com/agilent/.

[3] Bluez: What is bluez? http://BlueZ.org.

[4] Nixysa. http://code.google.com/p/nixysa.

[5] Trusted Computing Group.
http://www.trustedcomputinggroup.org.

[6] What is Android?
http://developer.android.com/guide/basics/what-is-
android.html.

[7] K. Borders, E. V. Weele, B. Lau, and A. Prakash.
Protecting confidential data on personal computers
with storage capsules. In 18th USENIX Security
Symposium, pages 367–382. USENIX Association,
2009.

[8] L. Chen, D. Gollmann, and C. J. Mitchell.
Authentication using minimally trusted servers. ACM
SIGOPS Operating Systems Review, 31:16–28, July
1997.

[9] Y.-Y. Chen, C.-L. Chen, and J.-K. Jan. A mobile
ticket system based on personal trusted device.
Wireless Personal Communications: An International
Journal, 40:569–578, March 2007.

[10] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in
Android. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and
Services (MobiSys), pages 239–252. ACM, 2011.

[11] F. Cohen. Computer viruses theory and experiments.
Computers and Security, 6:22 – 35, 1987.

[12] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A study of Android application security. In
Proceedings of the 20th USENIX conference on
Security. USENIX Association, 2011.

[13] W. Enck, M. Ongtang, and P. D. McDaniel. On
lightweight mobile phone application certification. In
Proceedings of the ACM Conference on Computer and
Communications Security, pages 235–245. ACM, 2009.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM Conference on Computer
and Communications Security, pages 627–638. ACM,
2011.

[15] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van
Doorn, and X. Zhang. Trustworthy and personalized
computing on public kiosks. In Proceedings of the 6th
International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 199–210.
ACM, 2008.

[16] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg,
and M. Peter. L4Android: a generic operating system
framework for secure smartphones. In Proceedings of
the 1st ACM workshop on Security and privacy in

smartphones and mobile devices, pages 39–50, New
York, NY, USA, 2011. ACM.

[17] M. Mannan and P. C. van Oorschot. Using a personal
device to strengthen password authentication from an
untrusted computer. In 11th International Conference
on Financial Cryptography and Data Security, and 1st
International Workshop on Usable Security, Lecture
Notes in Computer Science, pages 88–103. Springer,
2007.

[18] J. M. McCune, A. Perrig, and M. K. Reiter. Bump in
the ether: A framework for securing sensitive user
input. In USENIX Annual Technical Conference,
General Track, pages 185–198, 2006.

[19] J. M. McCune, A. Perrig, and M. K. Reiter. Safe
passage for passwords and other sensitive data. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS). The Internet Society,
2009.

[20] S. Nepal, J. Zic, D. Liu, and J. Jang. A mobile and
portable trusted computing platform. EURASIP
Journal on Wireless Communications and Networking,
75, 2011.

[21] M. Ongtang, K. R. B. Butler, and P. D. McDaniel.
Porscha: policy oriented secure content handling in
Android. In 26 Annual Computer Security
Applications Conference (ACSAC), pages 221–230.
ACM, 2010.

[22] M. Ongtang, S. E. McLaughlin, W. Enck, and P. D.
McDaniel. Semantically rich application-centric
security in Android. In 25 Annual Computer Security
Applications Conference (ACSAC), pages 340–349.
IEEE Computer Society, 2009.

[23] A. Oprea, D. Balfanz, G. Durfee, and D. K. Smetters.
Securing a remote terminal application with a mobile
trusted device. In 20th Annual Computer Security
Applications Conference (ACSAC), pages 438–447.
IEEE Computer Society, 2004.

[24] P. Samarati and S. De Capitani di Vimercati. Data
protection in outsourcing scenarios: Issues and
directions, April 2010.

[25] A. Shabtai, Y. Fledel, and Y. Elovici. Securing
Android-powered mobile devices using SELinux. IEEE
Security and Privacy, 8(3):36–44, 2010.

[26] R. Sharp, A. Madhavapeddy, R. Want, and T. Pering.
Enhancing web browsing security on public terminals
using mobile composition. In Proceedings of the 6th
International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 94–105.
ACM, 2008.

[27] G. Starnberger, L. Froihofer, and K. M. Göschka.
QRTAN: Secure mobile transaction authentication. In
Proceedings of the The Forth International Conference
on Availability, Reliability and Security (ARES),
pages 578–583. IEEE Computer Society, 2009.

[28] J. Zic and S. Nepal. Implementing a portable trusted
environment. In Future of Trust in Computing, pages
17–29, 2009.

