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Abstract

In the attribute-based encryption (ABE) model, attributes (as op-
posed to identities) are used to encrypt messages, and all the receivers
with qualifying attributes can decrypt the ciphertext. However, com-
promised attribute keys may affect the communications of many users
who share the same access control policies. We present the notion of
forward-secure attribute-based encryption (fs-ABE) and give a concrete
construction based on bilinear map and decisional bilinear Diffie-Hellman
assumption. Forward security means that a compromised private key by
an adversary at time t does not break the confidentiality of the commu-
nication that took place prior to t. We describe how to achieve both
forward security and encryption with attributes, and formally prove our
security against the adaptive chosen-ciphertext adversaries. Our scheme
is non-trivial, and the key size only grows polynomially with log N (where
N is the number of time periods). We further generalize our scheme
to support the individualized key-updating schedule for each attribute,
which provides a finer granularity for key management. Our insights on
the required properties that an ABE scheme needs to possess in order to
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be forward-secure compatible are useful beyond the specific fs-ABE con-
struction given. We raise an open question at the end of the paper on the
escrow problem of the master key in ABE schemes.
Keywords: Attribute-based encryption, forward security, key update

1 Introduction

The main feature of a forward-secure encryption scheme is that the compromise
of current decryption keys does not compromise past decryption keys; there-
fore the confidentiality of past communications is preserved. Forward security
aims at mitigating the damages caused by stolen secret keys. This concept
was first coined by Günther [1] and later by Diffie et al. [2]. In forward secure
schemes, secret keys are updated at regular intervals throughout the lifetime
of the system; furthermore, exposure of a secret key corresponding to a given
interval does not enable an adversary to break the system for any prior time
period. To prevent the adversary from breaking the security of the system for
any subsequent time period, one needs to revoke the compromised keys. So-
lutions for supporting the forward security have been proposed in the context
of symmetric-key encryption schemes [3], public-key encryption schemes [4],
identity-based encryption [5], digital signature schemes [6, 7, 8], and recently in
cloud-based content delivery [9].

In this paper, we point out that forward security is important for preserv-
ing the security of attribute-based encryption (ABE) schemes [10, 11, 12]. In
ABE schemes, attributes (as opposed to identities) are used for encryption,
and only users with qualified attributes (and corresponding private keys) can
decrypt. Attribute-based encryption enables the implicit encoding of autho-
rization policies in the private key of the user (e.g., key-policy attribute-based
encryption [10]) or in the ciphertext (e.g., ciphertext-policy attribute-based en-
cryption [13]). However, because the attribute-based secrets are shared among
all qualifying users, compromised keys can affect other users’ communication.
This shared key feature in the key management of ABE motivates our work on
designing forward-secure attribute-based encryption (fs-ABE). In a fs-ABE, any
compromised attribute key at time t does not affect the confidentiality of any
of the prior communication encrypted with that attribute.

Attribute-based encryption has practical applications in advanced access
control and data management, such as electronic medical records [14, 15]. In
real world, ABE system can be naturally used to construct a targeted broad-
cast system, which is first descibed in [10]. In this kind of system, the needs
of individual users is targeted at, while a broadcast channel still offer the con-
tent with economies-of-scale. For such an application, the construction based
on ABE scheme is more efficent than other broadcast encryption schemes. As
in broadcast encryption, forward security in this situation is very important.
Forward secure ABE schemes can improve the practicability of the contruction.

Our contributions are summarized as follows.

• We give the model and definition for a general forward-secure attribute-
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based encryption scheme that is secure against adaptive chosen-ciphertext
adversaries. We define the security in a game model allowing the adversary
to issue key-generation queries and decryption queries. The users refresh
their private keys autonomously, which is scalable. We support dynamic
join where users can join the fs-ABE system at any time.

• We give a concrete instantiation of a forward-secure attribute-based en-
cryption scheme, where secrets corresponding to all the attributes evolve
and update based on the same schedule. Our construction makes use of
the operations in key-policy attribute-based encryption scheme by Goyal,
Pandey, Sahai, and Waters (GPSW-ABE) [10], and inherits its bilinear
map usage as well as the hardness assumption of decisional bilinear Diffie
Hellman (DBDH). We formally prove the security of our scheme and an-
alyze the complexities of the operations.

We also provide insights on the general properties that an ABE scheme
should posses in order to support forward security. We explain why CP-
ABE scheme cannot be converted into a non-trivial forward secure one
with the existing cryptographic tools and leave it as an open problem.

• We further improve the flexibility of our basic fs-ABE scheme by sup-
porting the individualized key-updating schedule for each attribute, and
provide the sketch for its security. Individualized key update improves the
efficiency, usability, and security of the fs-ABE scheme.

Our work provides the insights and solutions to the problem of hardening
authorization-enabling encryption schemes namely attribute-based encryption
(ABE) against compromised secret keys. Although our specific construction is
based on key-policy ABE (KP-ABE), we summarize the properties that can be
used determine whether an attribute-based encryption scheme is forward-secure
compatible or not. This contribution is significant beyond the specific KP-ABE
scheme studied.
Organization of the paper Related work is given in the next section. We
present our definitions and model of a forward-secure attribute-based encryption
scheme in Section 3. We give some trivial schemes and discuss why they are
not good in Section 4. We present requirements that an ABE scheme needs to
satisfy in order to become foward-secure compatible in Section 5. A concrete
construction based on bilinear maps is described in Section 6. Our basic fs-ABE
scheme is extended into a ifs-ABE scheme in 7. Several extensions are presented
to further improve the security of our scheme in Section 8. Conclusions and an
open problem are given in Section 9. Our formal proof is given in Appendix B.

2 Related Work

The notion of non-interactive forward security was proposed by Anderson [16],
which was formalized by Bellare and Miner [6]. Forward-secure digital signature
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schemes were also proposed [6, 7, 8]. Bellare and Yee [3] provided a compre-
hensive description of forward security in the context of symmetric-key based
cryptographic primitives. The first forward-secure public-key encryption (fs-
PKE) scheme was given by Canetti et al. [4], based on the decisional bilinear
Diffie-Hellman assumption [17].

The fs-PKE scheme in [4] constructs a binary tree, in which a tree node
corresponds to a time period and has a secret key. Children of a node w are
labeled w0 and w1, respectively. Given the secrets corresponding to a prefix of
a node representing time t, one can compute the secrets of time t. In order to
make future keys computable from the current key, the secrets associated with
a prefix of a future time are stored in the current key. After the key for the
next time period is generated, the current decryption key is erased. The data
structure was inspired by the identity hierarchy in the Gentry-Silverberg HIBE
scheme [18], and is also used by our work to encode the time information in
policies.

Authors in [5] investigated how to bring forward security to the hierarchical
identity-based encryption (HIBE) scheme by providing private keys that are
both self-evolving for forward secrecy and delegatable for generating identity-
based keys. Due to the inherent key-escrow property, key exposure is a realistic
threat over the lifetime of such a scheme, and the standard notion of HIBE
security crucially depends on secret keys remaining secret. The forward-secure
hierarchical identity-based encryption (fs-HIBE) scheme allows each user in the
hierarchy to refresh his or her private keys periodically while keeping the public
key the same.

Attribute based encryption schemes are related to the identity-based encryp-
tion (IBE) schemes [19, 20, 21, 22, 23], as both cryptosystems are novelty public-
key encryption schemes with properties that can be leveraged for authorization.
Solutions have been proposed to utilize IBE schemes for access control [5, 24],
specifically encoding authorization policies in the public keys. Researchers re-
cently found that ABE schemes can provide expressive and anonymous autho-
rization mechanisms for the information sharing in the cloud [25, 26, 27, 28]. A
comprehensive survey on ABE schemes can be found in [29].

3 Definitions and Models in Forward-secure Attribute-
Based Encryption

We define the syntax of forward-secure ABE (fs-ABE) scheme and security
model for such schemes in this section. Most of the recent ABE schemes can be
categorized as key-policy attribute-based encryption (KP-ABE) or ciphertext-
policy attribute-based encryption (CP-ABE). In KP-ABE schemes (e.g., [10]),
each private key is associated with an access structure that is chosen by the
authority, and each ciphertext is labeled with a set of attributes. A private key
can decrypt a ciphertext if and only if the attributes in the ciphertext satisfy
the access structure in the private key. A KP-ABE scheme can be realized with
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a tree access structure which is composed of threshold gates as interior nodes
and the attributes as leaves. Ostrovsky et al. [11] described a KP-ABE scheme
where non-monotonic access structures can be specified and enforced. Bethen-
court et al. [13] gave the first concrete CP-ABE scheme, where each private key
is described by a set of attributes, and each ciphertext is associated with an
access structure that is determined by the party encrypting the message. Our
definitions and construction in this paper follows the KP-ABE paradigm. We
point out the challenges associated with providing non-trivial forward security
for CP-ABE schemes in Section 5.

In our foward-secure ABE scheme, the private key of a user is evolved with
time. At the time period 0 a user is issued an initial private key associated
with an access tree by the Private Key Generator (PKG). At the end of each
time period he updates his private key for the next time period and erases the
current key. During the time period i, a message is encrypted using a set of
attributes and the time period i. A user can decrypt the encrypted message
using his private key for the time period i, if and only if the access tree in his
private key can be satisfied by the set of attributes in the ciphertext.

3.1 Notations

Time Period We assume for simplicity that the total number N of time periods
is a power of 2; that is N = 2d. Let 〈i〉 denote the d-bit representation of the
time period i (where 0 ≤ i ≤ 2d − 1). Let w = w1w2 · · ·wl be the l-bit prefix of
the bit representation of some time period. In our fs-ABE scheme, time periods
are associated with the leaf nodes of a binary tree. This representation of time
follows that of fs-PKE [4]. Figure 1(a) shows the time period 〈5〉 = 101, where
d = 3. A simple tree T101 associated with the time period 〈5〉 = 101 is shown
in Figure 1(b).
Access Trees An access structure can be represented by a tree T . Each interior
node x of the tree represents a threshold gate with a positive threshold value kx,
which is not greater than the number nx of children of the node. We denote a
kx of nx threshold gate by (kx, nx)-gate. Each leaf node x of the tree represents
an attribute, and the threshold value kx associated with the leaf node is defined
as 1. We define the function parent(x) as the parent of the node x. If x is a leaf
node, then we use att(x) to denote the attribute associated with x. The children
of every node are numbered from 1 in some order. Such a number associated
with a node x can be returned by the function index(x).

We denote the subtree of T rooted at the node x by T |x. Thus T is the same
as T |r, where r is the root node of the tree T . If a set γ of attributes satisfies
the access tree T |x, we denote it as T |x(γ) = 1. If x is an interior node, then
T |x is satisfied by γ if and only if at least kx subtrees T |x′ of T |x is satisfied,
where x′ is a child of x. If x is a leaf node, then T |x(γ) = 1 if and only if
att(x) ∈ γ.

In the construction of fs-ABE scheme, we add a trivial (1, 1)-gate z above
the root node r of an access tree T to obtain the tree Tε, then add attributes
“1-w1”, “2-w2”, · · · , “l-wl” in turn to the tree Tε as children of the root node
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Figure 1: The time period 〈5〉 = 101 in (a) and the tree T101 in (b) associated
with the time period 〈5〉 = 101, where the total number of time periods is
N = 2d = 23.

z
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· · ·
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(l + 1, l + 1)-gate

T

Figure 2: The tree Tw, where “1-w1”, “2-w2”, · · · , “l-wl” are components of a
prefix w = w1w2 · · ·wl (1 ≤ l ≤ d) of some time period. The time period is
d-bit long.

z of Tε, where “1-w1”, “2-w2”, · · · , “l-wl” are the components of a prefix w =
w1w2 · · ·wl(1 ≤ l ≤ d) of some time period. We denote the new tree by Tw.
Notice that the root node z is converted from (1, 1)-gate to (l + 1, l + 1)-gate.
Let skT ,w denote the secret key associated with Tw. The tree Tw is illustrated
in Figure 2.
Keys We denote the private key associated with an access tree T and a time
period i by SKT ,i. The private key SKT ,i consists of some secret keys associated
with the tree T and some prefixes of the time period i:

SKT ,i =
(
skT ,〈i〉, {skT ,i0i1···ik−11}ik=0

)

where skT ,〈i〉 is the secret key used to decrypt a ciphertext, {skT ,i0i1···ik−11}ik=0

are the secret keys used by a user to update his private key for the next time
period i+1. Notice that if i0i1 · · · ik−10 is a prefix of the time period i then the

6



Table 1: Symbol Descriptions
Symbol Interpretation
T An access tree

w = w1w2 · · ·wl l-bit prefix of some time period
Tw The access tree associated with w = w1w2 · · ·wl

skT ,w The secret key associated with Tw

SKT ,i The private key associated with T and a time period i
e(u, v) A bilinear pairing
∆i,S(x) Lagrange coefficient

q
(l)
x (X) The polynomial associated with the node x in Tw

D
(l)
x The D value of the leaf node x in Tw

R
(l)
x The R value of the leaf node x in Tw

secret key skT ,i0i1···ik−11 is included in SKT ,i, this setting ensures that a user
can compute his private key for the next time from the current private key.

A list of important symbols and their interpretation used throughout the
paper is given in Table 1.

3.2 fs-ABE: Syntax

A fs-ABE scheme is specified by five algorithms: Setup, Encryption, Key Gen-
eration, Update, Decryption:

Setup This algorithm takes as input an implicit security parameter and the
total number of time periods N , and outputs the public parameters PK and the
master key MK. The master key MK will be known only to the Private Key
Generator (PKG).
Encryption The sender takes as input a message m, a set γ of attributes, the
current time period i and the public parameters PK, and outputs a pair 〈i, C〉
as the ciphertext.
Key Generation A user requests to join the fs-ABE system at time i. The
PKG takes as input an access tree T , the master key MK and the public pa-
rameters PK, and computes an initial secret key SKT ,0. If the joining time
i 6= 0, then the PKG evolves the initial secret key SKT ,0 to obtain the secret
key SKT ,i for time i and outputs SKT ,i, else the PKG directly outputs the
initial secret key SKT ,0.
Update At the end of time period i, the receiver uses the secret key SKT ,i to
compute his secret key SKT ,i+1 for the next time period i + 1, then erases the
current secret key SKT ,i.
Decryption The receiver takes as input the ciphertext 〈i, C〉, the secret key
SKT ,i and the public parameters PK, and outputs the message m if T (γ) = 1.

The standard correctness condition must be satisfied, namely for any (PK,MK)
generated by Setup, any SKT ,0 output by Key Generation, any secret key SKT ,i

generated by Update for the time period i and any message m, we have

Decryption(〈i, C〉,SKT ,i,PK) = m, where 〈i, C〉 ←Encryption(m, γ, i,PK).

7



3.3 fs-ABE: Security Model

We use a game between a challenger and an adversary to model the security
of fs-ABE scheme. We say a fs-ABE scheme is semantically secure against ad-
versaries who adaptively choose the ciphertext, attributes, and time period, if
all polynomial time adversaries have at most a negligible advantage against the
challenger in the following game.

Setup The challenger runs the Setup algorithm of fs-ABE and gives the public
parameters PK to the adversary. It keeps the master key to itself.
Phase 1 The adversary is allowed to issue the following two types of queries:

1. Private key query SKT ,j associated with an access tree T and a time
period j: the challenger runs the Key Generation algorithm to generate the
private key SKT ,0 corresponding to the tree T and the initial time period
0, then recursively runs the Update algorithm to generate the private key
SKT ,j , and sends SKT ,j to the adversary.

2. Decryption query (T , 〈j, C〉): the challenger runs the Key Generation al-
gorithm to generate the private key SKT ,0 corresponding to the tree T
and the initial time period 0, recursively runs the Update algorithm to
generate the private key SKT ,j , then runs the Decryption algorithm to
decrypt 〈j, C〉 using SKT ,j , and sends the result to the adversary.

These queries may be issued adaptively. The adversary is allowed to query for
any access tree and any time period.
Challenge Once the adversary decides that Phase 1 is over, it submits two
equal length messages m0, m1, a set γ of attributes and a time period i on
which it wishes to be challenged. The constraint is that no private key query
has been issued for the access tree T such that T (γ) = 1 for any time j ≤ i.

The challenger flips a random coin b ∈ {0, 1}, and sets

〈i, C∗〉 = Encryption(mb, γ, i,PK).

It sends 〈i, C∗〉 as a challenge to the adversary.
Phase 2 The adversary issues more queries:

1. Private key query SKT ,j , where the access tree T and the time period j
are under the same restriction as in Challenge: the challenger responds as
in Phase 1.

2. Decryption query (T , 〈j, C〉) 6= (T ∗, 〈i, C∗〉), where T ∗ is the access tree
such that T ∗(γ) = 1: the challenger responds as in Phase 1.

Guess The adversary outputs a guess b′ of b.

The adversary wins the game if b = b′. We define its advantage in this
game to be |Pr[b = b′] − 1

2 |. A weaker type of security model against selective
chosen plaintext, a set of attributes and time period attack differs from the
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above model, in which the adversary declares the set of attributes and the time
period on that it wishes to be challenged before the Setup in the game, and the
adversary is not allowed to issue decryption queries in Phase 1 and Phase 2.

For security proof, we reduce the security of fs-ABE to the security of GPSW-
ABE [10]. The security model for GPSW-ABE is similar to the weaker type of
model for fs-ABE except that there is no time involved in the former one.

4 Some Trivial Forward-Secure Schemes

In this section, we take a quick look at three trivial forward-secure ABE con-
structions, and explain why these schemes are not good.

Scheme I. Consider a scheme based on any KP-ABE or CP-ABE schme
(In fact, this construction can work for any other cryptosystem). A user is
given a different private key per time period. This scheme is forward-secure.
However, it has the following issues. First, a user cannot update the private key
autonomously, and the workload of the PKG is increased. Second, the key size
of the private key grows linearly with the number N of time periods, it is not
good.

Scheme II. Consider a scheme based on GPSW-ABE [10]. During a time
period i (where 0 ≤ i ≤ N − 1), the access tree in the private key of a user is
original-tree T AND (time period i OR time period i+1 OR · · · OR time period
N − 1). In this scheme, a user can update the private key for the next time
period i + 1 from the current private key. This scheme is also forward-secure.
However, the key size of the private key grows linearly with N , that is the same
as Scheme I.

Scheme III. Our final trivial scheme is still based on GPSW-ABE. The initial
private key of a user is composed of N secret keys, which are associated with N
access trees: T AND time period 0, T AND time period 1, · · · , T AND time
period N − 1. At the end of every time period, the corresponding secret key is
erased. During a time period i, the remaining secret keys are all used to decrypt
a ciphertext. Thus, the access tree in the private key for the time period i is
equivalent to the tree (T AND time period i) OR (T AND time period i + 1)
OR · · · OR (T AND time period N−1), that is, T AND (time period i OR time
period i + 1 OR · · · OR time period N − 1). We see this scheme is equivalent
to Scheme II, and it is not good due to the key size.

All the above trivial schemes are not the fs-ABE we needed. For simplicity,
the constructions of fs-ABE mentioned later do not include these trivial schemes.
In our construction, a user can update the private key autonomously, and the
key size of the private key only grows polynomially with log N . In addition, the
secret keys composed of the private key are not all used to decrypt. Actually,
only one secret key is used to do this, and the other secret keys are used to
compute the private key for the next time period.
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5 Generalization on Forward-Secure Compati-
bility

In this section, we discuss what properties should an ABE scheme have in order
to support forward security, which we refer to as forward-secure compatibility
or FS-compatibility. The two requirements are the ability to delegate decryption
keys and the extensibility of attributes, which are explained next.

Delegation of private keys. In ABE schemes, the delegation of private keys
means that a user who has a private key for an access tree T (for KP-ABE
schemes) or a set S of attributes (for CP-ABE schemes) can compute a new
private key for a more restrictive access tree than T or a subset of S. The
ability of delegating the decryption capability to others (i.e., the delegation of
private keys) in ABE schemes is a must for FS-compatibility. This requirement
is because in a forward-secure scheme, a user needs to update his private key
at the end of each time period; he must generate a new private key for the
next time period using his current private key by himself without contacting
the PKG. The delegation property is used in this process. In the construction
(see Section 6) of our fs-ABE, the Update algorithm calls the Compute Next
algorithm to compute the secret keys skT ,ww(l+1) from skT ,w using the delegation
property. Notice that the new time attribute “(l+1)-w(l+1)” is added during this
process. Most of the key-policy ABE schemes based on GPSW-ABE [10] can
do this.

Extensibility of attributes. However, the delegation property alone is not
a sufficient condition for FS-compatibility. For example, the CP-ABE scheme
in [13] has the property of delegation of private keys. However, it cannot be
converted to a non-trivial forward secure one in our construction. The reason
is that new time attribute cannot be added to the existing set of attributes,
which are used to describe necessary secret keys. In [13], the existing secret key
associated with a set of attributes can only be used to generate a secret key for a
subset of attributes – however, new attribute cannot be introduced. In constrast,
for KP-ABE schemes the new time attribute can be added to the access tree
associated with the existing secret keys – satisfying the attribute-extensibility
requirement. This property allows one to construct the required secret keys for
future time periods. How to support CP-ABE schemes with non-trivial forward
security remains an interesting challenge.

6 A Forward-secure ABE Construction

In this section, we first give some mathematical preliminaries, then present the
construction of a concrete forward-secure attribute-based encryption scheme.

6.1 Preliminaries

The security of our fs-ABE scheme is based on the decisional bilinear Diffie-
Hellman (DBDH) assumption. We first introduce the concept of bilinear pair-
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ings.
Bilinear Pairings Let G1 and G2 be two multiplicative cyclic groups of prime
order p. A bilinear pairing e : G1 × G1 → G2 is a map with the following
properties:

1. Bilinear: ∀u, v ∈ G1 and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: The map does not send all pairs inG1×G1 to the identity
in G2.

3. Computable: ∀u, v ∈ G1, e(u, v) can be efficiently computed.

We callG1 a bilinear group if the group operation inG1 is efficiently computable.
Decisional Bilinear Diffie-Hellman (DBDH) Assumption The DBDH
assumption is that all probabilistic polynomial time algorithms have at most
a negligible advantage to distinguish the tuple (ga, gb, gc, e(g, g)abc) from the
tuple (ga, gb, gc, e(g, g)z), where g is a generator of G1, e : G1 × G1 → G2 is a
bilinear pairing, and a, b, c, z are chosen from Zp randomly. The advantage of
an algorithm A is defined as

∣∣Pr[A(ga, gb, gc, e(g, g)abc) = 1]− Pr[A(ga, gb, gc, e(g, g)z) = 1]
∣∣.

6.2 fs-ABE: Construction

Let G1 be a bilinear group of prime order p with a generator g. Let e : G1×G1 →
G2 denote the bilinear pairing. The size of the groups is determined by a security
parameter κ. We define the Lagrange coefficient ∆i,S(x) =

∏
j∈S,j 6=i

x−j
i−j for

i ∈ Zp and a set S of elements in Zp. This construction uses all elements of Z∗p
as attributes, and it also allows us to apply a collision resistant hash function
H : {0, 1}∗ → Z∗p so that we can use arbitrary strings as attributes. The message
will be encrypted under a time period i and a set γ of n elements of Z∗p 1. The
construction is shown below.

Setup (n, d) Let g1 = gy, where y is chosen randomly from Zp. Choose ran-
dom g2 ∈ G1, and choose t1, t2, · · · , tn+d+1 uniformly at random from G1. We
define a function

T (X) = gXn+d

2

n+d+1∏

i=1

t
∆i,Q(X)
i ,

where Q = {1, 2, · · · , n+d+1}. This algorithm outputs g1, g2, t1, t2, · · · , tn+d+1

as the public parameters PK and y as the master key MK. The master key will
be known only to the Private Key Generator (PKG).

1Strictly speaking, γ is a set of n elements of Z∗p\{“1-0”,“1-1”,· · · ,“d-0”,“d-1”}, where
{“1-0”,“1-1”,· · · ,“d-0”,“d-1”} denote all possible components of the d-bit representation of a
time period. These components as attributes associated with time are also elements of Z∗p.
For clarity, we use these symbols to denote the components instead of using the numbers in
Z∗p.
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Encryption (m, γ, i, PK) Let 〈i〉 = i1i2 · · · id. Choose random s ∈ Zp. For a
message m ∈ G2, this algorithm outputs 〈i, C〉 as the ciphertext, where

C =
(
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}, C ′ = me(g1, g2)s,

C ′′ = gs, {Ck = T (k)s}k∈γ∪{“1-i1”,“2-i2”,··· ,“d-id”}
)
.

Key Generation (T , MK, PK) The PKG computes an initial private key as-
sociated with the access tree T for the user, so that a message encrypted under
a set γ of attributes and the time period 0 can be decrypted by the user if and
only if the access tree T can be satisfied by the set γ of attributes.

Choose a degree dx = kx − 1 of polynomial qx for each node x in the tree T
in a top down manner, where kx is the threshold value of the node x. For the
root node r, we completely define the polynomial qr by setting qr(0) = y and
dr other points of qr randomly. For any other node x, we completely define qx

by setting qx(0) = qparent(x)(index(x)) and dx other points randomly. We add a
new (1, 1) threshold gate z above the root node r of the tree T , which becomes
the parent of r. Define the polynomial associated with z: qz(X) ≡ y such that
qr(0) = qz(1) satisfied to the above constraint, where 1 is the index of r as a
child of z. We use Tε to denote the new tree to which z is added.

After all the polynomials are decided, for each leaf node x of the tree Tε, let

D(0)
x = g

qx(0)
2 · T (att(x))rx

R(0)
x = grx ,

where rx is chosen randomly from Zp. Let the secret key skT ,ε associated with
the tree Tε as

skT ,ε =
(
{D(0)

x , R(0)
x }x is a leaf node of T , ∅

)
.

Using (skT ,ε, Tε, ε), recursively apply algorithm Compute Next (defined be-
low) to obtain the private key

SKT ,0 =
(
skT ,〈0〉, {skT ,1, skT ,01, · · · , skT ,0d−11}

)
,

which is associated with the tree T and the time period 0. Output SKT ,0, and
erase all other information.

Notice that if the user joins the fs-ABE system at time i 6= 0, then PKG
recursively runs the Update (defined later) algorithm using SKT ,0 to obtain
SKT ,i associated with time i, and gives SKT ,i to the user. For simplicity, we
assume that the user joins the system at time 0.

Compute Next (skT ,w, Tw, w) This algorithm takes a prefix w = w0w1 · · ·wl

of some time period, where w0 = ε, 0 ≤ l ≤ d − 1, the access tree Tw and
the secret key skT ,w associated with Tw as input, and outputs the secret keys
associated with the trees Tw0 and Tw1. Recall that if w 6= ε then Tw denotes the
tree that is obtained by adding the attributes “1-w1”, “2-w2”, · · · , “l-wl” in turn
to the tree Tε in the Key Generation algorithm as children of the root node z of
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Tε, where “1-w1”, “2-w2”, · · · , “l-wl” are the components of w = w1w2 · · ·wl.
Notice that the root node z of the tree Tw is a (l + 1, l + 1) threshold gate. We
add the attribute “(l+1)-w(l+1)” to the tree Tw to convert the root node z from
(l+1, l+1)-gate to (l+2, l+2)-gate, and obtain the tree Tww(l+1) , where w(l+1)

represents a bit 0 or 1.
Compared to Tw, the trees Tw0, Tw1, add one new time attribute respectively.

This method needs to compute the secret keys skT ,w0 and skT ,w1 for Tw0 and
Tw1. Specifically, it needs to define the polynomial for the new time attribute.
In addition, the polynomials associated with the existing attributes need to be
refreshed. Then, it uses the constant terms of the polynomials associated with
all the attributes in the tree to define the components of the secret key associated
with the tree. Recall that in an access tree an attribute is represented by a leaf
node.

Let q
(l)
x (X) denote the polynomial associated with the node x in the tree

Tw, and let d
(l)
x denote the degree of q

(l)
x (X). Define q

(0)
x (X) = qx(X), d

(0)
x = dx

if x is in T or x = z.

1. We refresh the polynomials for all the existing nodes and define the poly-
nomial for the new node as follows.

(a) (refresh) Refresh the polynomial for z:

q(l+1)
z (X) = (− 1

l + 2
X + 1)q(l)

z (X) + p(l+1)
z (X),

where p
(l+1)
z (X) is a random polynomial of degree d

(l+1)
z = d

(l)
z + 1

such that p
(l+1)
z (0) = 0. Thus, q

(l+1)
z (0) = q

(l)
z (0) = · · · = q

(0)
z (0) = y,

where y is the master key.
(b) (refresh) For each node x in the tree T , refresh the polynomial for x:

q(l+1)
x (X) = (− 1

l + 2
· 1 + 1)q(l)

x (X) + p(l+1)
x (X),

where p
(l+1)
x (X) is a random polynomial of degree d

(l+1)
x = dx such

that p
(l+1)
x (0) = p

(l+1)
parent(x)(index(x)). These polynomials are chosen

in a top-down manner.
(c) (refresh) If w = ε, then go to step 1d, else for each node “k-wk”

(1 ≤ k ≤ l), refresh the polynomial for “k-wk”:

q
(l+1)
“k-wk”(X) = (− 1

l + 2
· (k + 1) + 1)q(l)

“k-wk”(X) + p
(l+1)
“k-wk”(X),

where p
(l+1)
“k-wk”(X) is a polynomial of degree 0 such that p

(l+1)
“k-wk”(0) =

p
(l+1)
z (k + 1).

(d) (define) For the new node “(l+1)-w(l+1)”, define the polynomial for
“(l+1)-w(l+1)”:

q
(l+1)
“(l+1)-w(l+1)”

(X) = 0 + p
(l+1)
“(l+1)-w(l+1)”

(X),
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where p
(l+1)
“(l+1)-w(l+1)”

(X) is a polynomial of degree 0 such that p
(l+1)
“(l+1)-w(l+1)”

(0) =

p
(l+1)
z (l + 2).

All the above polynomials satisfy to the constraint in the Key Generation
algorithm.

2. If w 6= ε, then let

skT ,w =
(
{D(l)

x , R(l)
x }x is a leaf node of T , {D(l)

“k-wk”, R
(l)
“k-wk”}1≤k≤l

)
.

Let the secret key associated with the tree Tww(l+1) as

skT ,ww(l+1) =
(
{D(l+1)

x , R(l+1)
x }x is a leaf node of T , {D(l+1)

“k-wk”, R
(l+1)
“k-wk”}1≤k≤l+1

)
.

Next, we use the constant terms of the polynomials associated with all
the leaf nodes in the tree Tww(l+1) to define the components of the secret
key skT ,ww(l+1) . We refresh the D, R values for all the existing nodes and
define the D, R values for the new node as follows.

(a) (refresh) For each leaf node x in the tree T , refresh D, R values for
x:

D(l+1)
x = (D(l)

x )−
1

l+2 ·1+1 · gp(l+1)
x (0)

2 · T (att(x))r(l+1)
x

R(l+1)
x = (R(l)

x )−
1

l+2 ·1+1 · gr(l+1)
x

where r
(l+1)
x ∈ Zp is chosen randomly.

(b) (refresh) If w = ε, then go to step 2c, else for each node “k-wk”
(1 ≤ k ≤ l), refresh D, R values for “k-wk”:

D
(l+1)
“k-wk” = (D(l)

“k-wk”)
− 1

l+2 ·(k+1)+1 · gp
(l+1)
“k-wk”(0)

2 · T (att(“k-wk”))r
(l+1)
“k-wk”

R
(l+1)
“k-wk” = (R(l)

“k-wk”)
− 1

l+2 ·(k+1)+1 · gr
(l+1)
“k-wk”

where r
(l+1)
“k-wk” ∈ Zp is chosen randomly.

(c) (define) For the new node “(l+1)-w(l+1)”, define D,R values for
“(l+1)-w(l+1)”:

D
(l+1)
“(l+1)-w(l+1)”

= g
p
(l+1)
“(l+1)-w(l+1)”

(0)

2 · T (att(“(l+1)-w(l+1)”))
r
(l+1)
“(l+1)-w(l+1)”

R
(l+1)
“(l+1)-w(l+1)”

= g
r
(l+1)
“(l+1)-w(l+1)”

where r
(l+1)
“(l+1)-w(l+1)”

∈ Zp is chosen randomly.

All the above D,R values are in the same form as in the Key Generation
algorithm.

The algorithm outputs the secret keys skT ,w0, skT ,w1 associated with the trees
Tw0, Tw1.
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Update (SKT ,i, i + 1)(where i < N − 1) Let 〈i〉 = i0i1 · · · id, where i0 = ε.
Let SKT ,i =

(
skT ,〈i〉, {skT ,i0i1···ik−11}ik=0

)
. Erase skT ,〈i〉. We distinguish two

cases. If id = 0, simply output the remaining keys as the key SKT ,i+1 for
the next period. Otherwise, let k̃ be the largest value such that ik̃ = 0 (such
k̃ must exist since i < N − 1). Let i′ = i0i1 · · · ik̃−11. Notice that skT ,i′ is
included as part of SKT ,i. Using (skT ,i′ , Ti′ , i

′), recursively apply algorithm
Compute Next to generate keys skT ,i′1, skT ,i′01, · · · , skT ,i′0d−k̃−11, skT ,i′0d−k̃ .
Erase skT ,i′ and output the remaining keys as SKT ,i+1.

Decryption (〈i, C〉, SKT ,i) This algorithm outputs m if and only if T (γ) = 1.
Let 〈i〉 = i0i1 · · · id, where i0 = ε. Let

SKT ,i =
(
skT ,〈i〉, {skT ,i0i1···ik−11}ik=0

)
,

skT ,〈i〉 =
(
{D(d)

x , R(d)
x }x is a leaf node of T , {D(d)

“k-wk”, R
(d)
“k-wk”}1≤k≤d

)
.

We first define a recursive algorithm DecryptNode(C, skT ,〈i〉, x), where C =(
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}, C ′, C ′′, {Ck}k∈γ∪{“1-i1”,“2-i2”,· · · ,“d-id”}

)
, and x

is a node in the tree T〈i〉.
• If x is a leaf node, then

DecryptNode(C, skT ,〈i〉, x)

=





e(D(d)
x ,C′′)

e(R
(d)
x ,Ck)

if k = att(x) ∈ γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}
⊥ otherwise

• If x is an interior node, then DecryptNode(C, skT ,〈i〉, x) is defined as fol-
lows: If x is not satisfied, then DecryptNode(C, skT ,〈i〉, x) returns ⊥. Oth-
erwise, call DecryptNode(C, skT ,〈i〉, x′) for all children x′ of x and denote
the output by Fx′ . Let Sx denote a set that consists of kx nodes x′ such
that Fx′ 6= ⊥. We define

DecryptNode(C, skT ,〈i〉, x) =
∏

x′∈Sx

F
∆j,S′x (0)

x′

where j = index(x′) and S′x = {index(x′) : x′ ∈ Sx}.
The decryption algorithm calls the DecryptNode with (C, skT ,〈i〉, z), where z is
the root of the tree T〈i〉. If the output of the DecryptNode is not ⊥, then we
use it to divide into C ′ and output the result. The correctness is shown in the
appendix.

Proof of Security We reduce the security of fs-ABE to the security of GPSW-
ABE [10]. We prove that the fs-ABE scheme is secure in the selective chosen
plaintext, a set of attributes and time period model. In section 8, we will
describe that how a selective chosen plaintext secure fs-ABE scheme can be
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transformed into one that is secure against adaptive chosen ciphertext adver-
saries.

The security is proven in a game model. The adversary A who can break
the fs-ABE scheme can be used to construct an adversary B who attacks the
GPSW-ABE scheme with a non-negligible advantage. B is given the public
parameters of the GPSW-ABE scheme by its challenger, then it simulates the
fs-ABE environment for A. Although B does not have the master key of fs-
ABE, B needs to answer the private key queries and the challenge ciphertext
query from A. B’s responses have to be well-formed, i.e., compliant with the
specifications of the fs-ABE scheme.

Theorem 1 If an adversary has advantage ε to attack the fs-ABE scheme in
the selective chosen plaintext, a set of attributes and time period model, then a
simulator can be constructed to attack the GPSW-ABE scheme in the selective
chosen plaintext, a set of attributes model with the same advantage ε.

The full proof is shown in the appendix. We summarize our proof strategy here.
The simulator B needs to answer the private key queries SKT ,j in two cases:
1. T (γ) = 1 and j > i. 2. T (γ) = 0. To make B’s responses well-formed,
we define a procedure PolyUnsat, which sets up a polynomial for each node of
an unsatisfied access tree. For case 1, B runs PolyUnsat on the trees T〈j〉 and
{Tj0j1···jk−11}jk=0, then constructs the secret keys associated with these trees
using the polynomials defined by PolyUnsat. B passes the set of above secret
keys to A as SKT ,j . For case 2, B runs PolyUnsat on the tree T , and constructs
the secret key associated with T , then uses this key to obtain SK ′

T ,0 as in Key
Generation of fs-ABE. Next, B runs Update in fs-ABE with SK ′

T ,0 to generete
SK ′

T ,j , and passes SK ′
T ,j to A as SKT ,j . The private key SKT ,j in two cases

both have identical distribution to that of the fs-ABE scheme. We also manage
to make the simulator B’s generation of the public parameters and the challenge
ciphertext identical to that of the fs-ABE scheme. Thus, the Theorem 1 holds.

7 Individualized Forward-secure Attribute-Based
Encryption (ifs-ABE)

In fs-ABE described above, all attributes need to be updated according to the
same schedule. We further extend our fs-ABE scheme to support more flex-
ible and individualized key-update schedules, specifically each attribute may
enjoy its own forward-secure key-updating precision. Our main motivation is to
achieve more efficient operations. We refer to this new scheme as individualized
fs-ABE (ifs-ABE). The ifs-ABE scheme provides the same security as fs-ABE in
the fs-ABE security model. The security of the ifs-ABE scheme can be proven
using a similar method as in Theorem 1. We outline our scheme next.

In an ifs-ABE scheme, each attribute has its own time precision. If the
standard time period is i, then for an attribute x with the time precision dx

(dx ≤ d) the local time period is i|dx , where i|dx is the integer converted from
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the dx-bit prefix i1i2 · · · idx of 〈i〉 = i1i2 · · · id. In such a scheme, the private key
of a user is evolved with time. At the standard time period 0 a user is issued an
initial private key associated with an access tree by the Private Key Generator
(PKG). At the end of each standard time period he updates his private key
for the next standard time period and erases the current key. For an attribute
x with the time precision dx, the corresponding component of the private key
is not always updated when the standard time period changes. Specifically, if
the next standard time period is multiple of 2d−dx then it will be updated. As
an example, let the standard time precision d = 3 and the time precision dx

associated with an attribute x be 2. When the standard time period changes
from 〈4〉 = 100 to 〈5〉 = 101, the component corresponding to x in the private
key will not be updated because for the attribute x the local time period does not
change. When the standard time period changes from 〈5〉 = 101 to 〈6〉 = 110,
the component will be updated because the local time period changes from
〈5〉|2 = 10 to 〈6〉|2 = 11, i.e., from 2 to 3.

We provide the detailed description on such an ifs-ABE scheme in the fol-
lowing. Let G1 be a bilinear group of prime order p with a generator g. Let
e : G1 × G1 → G2 denote the bilinear pairing. The size of the groups is
determined by a security parameter κ. We define the Lagrange coefficient
∆i,S(x) =

∏
j∈S,j 6=i

x−j
i−j for i ∈ Zp and a set S of elements in Zp as before.

This construction uses elements of Z∗p as attributes. The message will be en-
crypted under a standard time period i and a set γ of n elements of Z∗p. The
construction is shown below.

Setup (n, d) This algorithm runs the Setup of fs-ABE with (n, nd). Let (PK,MK)
denote the output of that process. Output PK as the public parameters and
MK as the master key. The master key MK will be known only to the Private
Key Generator (PKG).

Encryption (m, γ, i, PK) Let γ = {γ1, γ2, · · · , γn} and 〈i〉 = i1i2 · · · id. For a
message m ∈ G2, this algorithm chooses random s ∈ Zp and outputs 〈i, C〉 as
the ciphertext, where

C =
(
γ ∪ {“γ1-1-i1”, · · · , “γ1-dγ1 -idγ1

”, · · · , “γn-1-i1”, · · · , “γn-dγn-idγn
”},

C ′ = me(g1, g2)s, C ′′ = gs,

{Ck = T (k)s}k∈γ∪{“γ1-1-i1”,··· ,“γ1-dγ1 -idγ1
”,··· ,“γn-1-i1”,··· ,“γn-dγn -idγn

”}
)
.

Notice that “γj-1-i1”, · · · , “γj-dγj-idγj
” for j = 1 to n denote the components

of 〈i〉|dγj
= i1i2 · · · idγj

corresponding to the attribute γj .

Key Generation (T , MK, PK) The PKG computes an initial private key as-
sociated with the access tree T for the user, so that a message encrypted under
a set γ of attributes and the standard time period 0 can be decrypted by the
user if and only if the access tree T can be satisfied by the set γ of attributes.
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Choose a polynomial for each node in the tree T as in the Key Generation of
fs-ABE. For each leaf node x, add a new (1, 1) threshold gate z above x, which
becomes the parent of x replacing the former one y. Define the polynomial
associated with z: qz(X) ≡ qy(index(z)) such that qx(0) = qz(1) satisfied to the
constraint in the Key Generation of fs-ABE, where 1 is the index of x as a child
of z. There is no need to modify the polynomials associated with the ancestor
nodes of y. After each leaf node is processed above, we still use T to denote the
new tree.

For each leaf node x of the tree T , let

D(0)
x = g

qx(0)
2 · T (att(x))rx

R(0)
x = grx ,

where rx is chosen randomly from Zp. Let (T |x)ε denote the the subtree T |z
of the tree T , where z is the (1,1) threshold gate added above x. Let the secret
key skT ,x,ε associated with the tree (T |x)ε as

skT ,x,ε =
(
{D(0)

x , R(0)
x }, ∅

)
.

Using (skT ,x,ε, (T |x)ε, ε), recursively apply algorithm Compute Next (defined
below) to obtain the private key

SKT ,0 = {SKT ,x,0|dx
}x is a leaf node of T ,

SKT ,x,0|dx
=

(
skT ,x,〈0〉|dx

, {skT ,x,1, skT ,x,01, · · · , skT ,x,0dx−11}
)
,

which is associated with the tree T and the standard time period 0. Output
SKT ,0 and erase all other information.

Compute Next (skT ,x,w, (T |x)w, w) This algorithm takes a prefix w = w0w1 · · ·wl

of some local time period, where w0 = ε, 0 ≤ l ≤ dx − 1, the access tree (T |x)w

and the secret key skT ,x,w associated with (T |x)w as input, and outputs the
secret keys associated with the trees (T |x)w0 and (T |x)w1. Notice that if w 6= ε
then (T |x)w denote the tree that is obtained by adding the attributes “att(x)-
1-w1”, “att(x)-2-w2”, · · · , “att(x)-l-wl” in turn to the tree (T |x)ε in the Key
Generation algorithm as children of the root node z of (T |x)ε, where x is a leaf
node of the tree T , and “att(x)-1-w1”, “att(x)-2-w2”, · · · , “att(x)-l-wl” are the
components of w = w1w2 · · ·wl corresponding to x. The tree (T |x)w is shown
in Figure 3.

If w 6= ε, then let

skT ,x,w =
(
{D(l)

x , R(l)
x }, {D(l)

“att(x)-k-wk”, R
(l)
“att(x)-k-wk”}1≤k≤l

)
.

Run the Compute Next of fs-ABE with (skT ,x,w, (T |x)w, w) and obtain the
secret keys skT |x,w0 and skT |x,w1 associated with the trees (T |x)w0 and (T |x)w1

respectively. This algorithm outputs skT |x,w0 and skT |x,w1 as the secret keys
skT ,x,w0 and skT ,x,w1.
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z

x “att(x)-1-w1”“att(x)-2-w2” · · ·

· · ·

“att(x)-l-wl”

y

· · ·

T

(T |x)w

Figure 3: In the Compute-Next operation of ifs-ABE, the tree (T |x)w, where x
is a leaf node of T , z is a node added above x to become the parent of x replacing
the former one y in the Key Generation algorithm, and “att(x)-1-w1”, “att(x)-
2-w2”, · · · , “att(x)-l-wl” are the components of w = w1w2 · · ·wl corresponding
to x.

Update (SKT ,i, i + 1)(where i < N − 1) Let 〈i〉 = i0i1 · · · id, where i0 = ε.
Let

SKT ,i = {SKT ,x,i|dx
}x is a leaf node of T ,

SKT ,x,i|dx
= (skT ,x,〈i〉|dx

, {skT ,x,i0i1···ik−11}ik=0)

where 〈i〉|dx = i0i1 · · · idx , i|dx is the integer converted from the binary string
〈i〉|dx , and k ≤ dx. For each leaf node x of T , if i ≡ 1 mod 2d−dx and 0 < i <
2d− 1 then run the Update of fs-ABE with (SKT |x,i|dx

, i|dx +1) and obtain the
output SKT |x,i|dx+1 of that process as SKT ,x,i|dx+1. This algorithm outputs

{SKT ,x,i|dx+1}x is a leaf node of T

as the secret key SKT ,i+1 associated with the tree T and the standard time
period i + 1.

Decryption (〈i, C〉, SKT ,i) This algorithm outputs the message m if and only
if the access tree T can be satisfied by the set γ of attributes in the ciphertext.
Let 〈i〉 = i0i1 · · · id, where i0 = ε. Let

SKT ,i = {SKT ,x,i|dx
}x is a leaf node of T ,

SKT ,x,i|dx
=

(
skT ,x,〈i〉|dx

, {skT ,x,i0i1···ik−11}ik=0

)
,

where 〈i〉|dx = i0i1 · · · idx , i|dx is the integer converted from the binary string
〈i〉|dx , and k ≤ dx. This algorithm takes

{skT ,x,〈i〉|dx
}x is a leaf node of T
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as the secret key skT ,〈i〉 associated with the tree T〈i〉 that is obtained by adding
the attributes “att(x)-1-i1”, “att(x)-2-i2”, · · · , “att(x)-dx-idx” to the tree T in
the Key Generation algorithm for each leaf node x of the T . Call the function
DecryptNode defined in the Decryption of fs-ABE with (C, skT ,〈i〉, r), where r
is the root of the tree T〈i〉. If the output of the DecryptNode is not ⊥, then
we use it to divide into C ′ (recall that C ′ is a component of C) and obtain the
message m.

We can verify that decryption of ifs-ABE is performed correctly as in Ap-
pendix A. The process of verification is omited. The ifs-ABE scheme can be
proven secure in the security model defined in section 3.3 using a similar method
to that is used to proof the security of fs-ABE. We have the following theorem.

Theorem 2 If an adversary can break the ifs-ABE scheme in the selective cho-
sen plaintext, a set of attributes and time period model, then a simulator can be
constructed to solve the DBDH problem with a non-negligible advantage.

8 Discussion

Convert Selective CPA Secure fs-ABE to Adaptive CCA Secure One. We de-
scribe that how to convert a fs-ABE scheme that is secure against selective
chosen plaintext attack (CPA) to one that is secure against adaptive chosen
ciphertext attack (CCA).

A strongly unforgeable one-time signature scheme will be used. We denote
the verification key and signing key of such a signature scheme by vk and sk
respectively. If a sender wants to use a set γ of attributes, the current time
period i and the public parameters PK to encrypt a message, then he now uses
γ ∪ {“vk”}, i and PK to encrypt it, where “vk” is an attribute corresponding
to the verification key vk. Next, the sender signs the ciphertext 〈i, C〉 using
sk and takes

(
vk, 〈i, C〉, σ)

as the new ciphertext, where σ is the signature. A
receiver with the private key associated with an access tree T and the current
time period i first uses the verification key vk in the ciphertext to check if the
signature is valid. If not, he rejects the ciphertext. Otherwise, the receiver adds
the attribute “vk” to the tree T〈i〉 as a child of the root z of T〈i〉. Notice that z
is converted from (d+1, d+1)-gate to (d+2, d+2)-gate. Then he computes the
secret key associated with the new tree using the same method in the Compute
Next algorithm, and uses it to decrypt 〈i, C〉. The receiver obtains the message
if and only if the access tree T is satisfied by the set γ of attributes.

According to the work by Canetti et al. [30], a selective CPA secure fs-ABE
scheme can be transformed into an adaptive CCA secure one by the above
construction. We can also use other method [31] to obtain the same result.

Private Key With Expiration Time. In the fs-ABE scheme we can add an
expiration time to the private key of a user, so that during the time period time
i the user can decrypt the ciphertext if and only if, i is less than the expiration
time, and the access tree T in the private key is satisfied by the set γ of at-
tributes in the ciphertext. As an example, let the total number of time periods
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r

· · ·

(1, 3)

“1-0” “2-0” (2, 2)

“3-0” “4-0”

T

Figure 4: A subtree corresponding to the expiration time 〈13〉 = 1101 is added
to the access tree T as a child of the root r of T , where (1,3), (2,2) are threshold
gates.

N = 2d = 24, the current time period be 〈12〉 = 1100 and the expiration time be
〈13〉 = 1101. As in [13] we construct a subtree corresponding to the expiration
time 〈13〉 = 1101 as shown in Figure 4, and add it to the tree T as a child of the
root r of T . The node r is converted from (kr, nr)-gate to (kr + 1, nr + 1)-gate.
Notice that there is a relationship between the construction of the subtree and
the bit representation of the expiration time. The PKG generates the initial
private key for the user according to this new tree instead of the tree T . The
user updates his private key by himself when the time period changes. During
the current time period 〈12〉 = 1100 the subtree is satisfied by the components
“1-1”, “2-1”, “3-0”, “4-0” of 〈12〉 = 1100, and the private key does not expire.
The user can decrypt the ciphertext if and only if the access tree T is satisfied
by the set γ of attributes in the ciphertext. If the time period is 〈14〉 = 1110,
then the subtree is not satisfied by the components “1-1”, “2-1”, “3-1”, “4-0”
of 〈14〉 = 1110, and the private key expires. The user can not decrypt the ci-
phertext even if the access tree T is satisfied by the set γ of attributes.

Analysis of Complexities. We present the running time complexities and
key sizes of fs-ABE and ifs-ABE schemes in Table 2. For both fs-ABE and
ifs-ABE schemes, Key Generation and Update algorithms need to call Compute
Next algorithm of fs-ABE. The time complexity of Compute Next depends on
the number of all nodes in the input access tree. We show the key-generation
time and key-update time in Table 2. Notice that in the ifs-ABE scheme we
assume that each attribute has time precision d for the worst. If the number
of all nodes in the access tree T of a user is large, and many attributes have
time precision less than d, then the Key Generation and Update algorithms of
ifs-ABE are more efficient than those of fs-ABE. As in GPSW-ABE [10], the
decryption time of fs-ABE and ifs-ABE can be improved by the similar method.
We omit the improvement procedure and show the optimized time in Table 2.
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Table 2: Time Complexities and Key Sizes
Parameters fs-ABE ifs-ABE

Key generation time O((h + log N) log N) O(m log2 N)
Encryption time O(n + log N) O(n log N)
Decryption time O(m + log N) O(m log N)
Key update time O((h + log N) log N) O(m log2 N)
Ciphertext length O(n + log N) O(n log N)
Public key size O(n + log N) O(n log N)
Secret key size O((m + log N) log N) O(m log2 N)

Note 1: The running time complexities and key sizes of fs-ABE
and ifs-ABE, where N is the total number of time periods, n is
the maximum size of the set of attributes a sender can encrypt
under, m and h are respectively the number of leaf nodes and all
nodes in the access tree T of a user.
Note 2: In the ifs-ABE scheme we assume that each attribute
has time precision d for the worst, where d = log N . If the
number of all nodes in the access tree T of a user is large, and
many attributes have time precision less than d, then the Key
Generation and Update algorithms of ifs-ABE are more efficient
than those of fs-ABE.

The Key Update algorithm has the same computation cost O((h+log N) log N)
as the Key Generation algorithm, we show that in Table 2. The Key Update
algorithm cannot be replaced by the Key Generation algorithm. A user needs
to update his private key on his own, without contacting the PKG.

Delegation. Our fs-ABE scheme has the property of delegation of private
keys. For a private key SKT ,i associated with an access tree T and a time
period i, we can make use of the same operations in [10] to convert every secret
key in SKT ,i to a secret key for an access tree T ′ which is more restrictive than
T . The set of these new secret keys is just the private key SKT ′,i for the access
tree T ′ and the time period i.

9 Conclusions and an Open Problem

In this paper, we provided in-depth and formal descriptions on how to de-
fine, construct, and analyze a forward-secure attribute-based encryption scheme,
which is a public-key encryption scheme with evolving decryption keys. The for-
ward security protects the confidentiality of past communications against stolen
decryption keys. This property is important for the attribute-based encryption
paradigm. We gave several extensions to our fs-ABE scheme to further improve
its usability and security.

Not all the existing ABE schemes may be converted into a non-trivial for-
ward secure one. We generalize the properties that an ABE scheme should
possess in order to support forward security. This analysis on forward-secure
compatibility of ABE schemes is general and useful beyond the concrete cryp-
tographic construction that we presented. We pointed it out an open problem
on how to support non-trivial forward secrecy in the existing ciphertext-policy
ABE scheme.
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An open problem. Both ABE and IBE schemes have the inherent key-escrow
property – the key generator can derive the description keys for everyone in
the system – thus creating a single point of failure. A compromised master key
would compromise all communications. In pairing-based IBE constructions, the
master key can enjoy forward security [5], which significantly mitigates the key-
escrow problem. However, in our construction the master key (y) cannot evolve
with time, and it is kept the same. It remains an interesting open problem
on how to construct a fs-ABE scheme that preserves the confidentiality of past
communications of all users even in the face of a compromised master secret. In
such a scheme, the current master key cannot be used to derive decryption keys
of previous time periods. This attack is not included in our current security
model.

A Correctness of Decryption Algorithm

We verify that decryption of fs-ABE is performed correctly. Recall

C =
(
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}, C ′ = me(g1, g2)s,

C ′′ = gs, {Ck = T (k)s}k∈γ∪{“1-i1”,“2-i2”,··· ,“d-id”}
)
.

When decrypting, for each leaf node x, if k = att(x) ∈ γ∪{“1-i1”, “2-i2”, · · · , “d-id”}
then

DecryptNode(C, skT ,〈i〉, x) =
e(D(d)

x , C ′′)

e(R(d)
x , Ck)

=
e(gq(d)

x (0)
2 · T (k)r̄(d)

x , gs)

e(gr̄
(d)
x , T (k)s)

=
e(gq(d)

x (0)
2 , gs) · e(T (k)r̄(d)

x , gs)

e(gr̄
(d)
x , T (k)s)

= e(g, g2)s·q(d)
x (0),

where r̄
(d)
x can be computed from the iterative expression of D

(d)
x . For each

interior node x, if x is satisfied then

DecryptNode(C, skT ,〈i〉, x) =
∏

x′∈Sx

F
∆j,S′x (0)

x′

=
∏

x′∈Sx

(e(g, g2)s·q(d)
x′ (0))∆j,S′x (0)

=
∏

x′∈Sx

(e(g, g2)
s·q(d)

parent(x′)(index(x′)))∆j,S′x (0)

=
∏

x′∈Sx

e(g, g2)
s·q(d)

x (j)·∆j,S′x (0)

= e(g, g2)s·q(d)
x (0).
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We have DecryptNode(C, skT ,〈i〉, z) = e(g, g2)s·y = e(g1, g2)s if and only if
T〈i〉

(
γ∪{“1-i1”,“2-i2”, · · · , “d-id”}

)
= 1. Thus,

C ′

DecryptNode(C, skT ,〈i〉, z)
=

me(g1, g2)s

e(g1, g2)s
= m

if and only if T (γ) = 1. Decryption succeeds.

B Proof of fs-ABE Security

Suppose there exists a polynomial-time adversary A, that can attack the fs-
ABE scheme in the selective chosen plaintext, a set of attributes and time
period model with advantage ε. We construct a simulator B that can attack the
GPSW-ABE scheme in the selective chosen plaintext, a set of attributes model
with the same advantage ε. The simulation proceeds as follows:

We first let the challenger set the groups G1 and G2 with an efficient bilinear
map e and generator g. Then the challenger sets the parameters of GPSW-ABE,
and passes g1(= gy), g2, t̃1, t̃2, · · · , t̃n+d+1 to B. It keeps y as the master key.

Init The simulator B runs A. A sends a set γ of attributes and a time
period i on which it wishes to be challenged to B. Then B sends the set
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”} of attributes as its challenge set to the chal-
lenger.

Setup B chooses a random n + d degree polynomial f(X) and calculates a
n + d degree polynomial u(X) as follows: set u(X) = −Xn+d for all X ∈
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”} and u(X) 6= −Xn+d for other X. B sets tj =
g

u(j)
2 gf(j) for all j = 1 to n + d + 1. Because f(X) is a random n + d de-

gree polynomial, all tj will be chosen independently at random as in the fs-

ABE construction. Implicitly, B defines T (X) = g
Xn+d+u(X)
2 gf(X). B passes

{g1, g2, t1, t2, · · · , tn+d+1} to A as the public parameters of fs-ABE.

Phase 1 A issues queries for private keys SKT ,j associated with a tree T and
a time period j. No private key query for the access tree T such that T (γ) = 1
for any time j ≤ i is allowed. B has to generate the private keys for A.

We first define a procedure PolyUnsat(T ′|x, γ′, gλx), where T ′|x is an un-
satisfied access tree with the root node x, γ′ is a set of attributes such that
T ′|x(γ′) = 0, and λx ∈ Zp. The procedure sets up a polynomial for each node
of T ′|x.

PolyUnsat(T ′|x, γ′, gλx) It first defines a polynomial qx of degree dx for the
root node x such that qx(0) = λx by setting gqx(0) = gλx . For each x′ of
hx(≤ dx) satisfied children of x, the procedure defines qx′(0) = λx′ , where
λx′ ∈ Zp is chosen randomly, and sets qx(index(x′)) = λx′ . To completely
define qx it then sets dx−hx points of qx randomly. For each subtree T ′|x′
of T ′|x, the algorithm proceeds as follows:
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• If T ′|x′ is satisfied, it sets dx′ other points of qx′ randomly to com-
pletely define qx′ . For any other node y in T ′|x′ , it completely de-
fines qy by setting qy(0) = qparent(y)(index(y)) and dy other points
randomly.

• If T ′|x′ is not satisfied, it recursively calls PolyUnsat(T ′|x′ , γ′, gqx(index(x′))).
Notice that only gqx(index(x′)) can be got by interpolation.

Notice that all defined polynomials satisfy to the constraint in the Key
Generation algorithm of fs-ABE scheme.

For the query for SKT ,j from A, B distinguishes two cases:

• T (γ) = 1 and j > i. In the construction of fs-ABE,

SKT ,j =
(
skT ,〈j〉, {skT ,j0j1···jk−11}jk=0

)
.

B has to generate the secret keys associated with the trees T〈j〉 and
{Tj0j1···jk−11}jk=0. Since j > i, {j0j1 · · · jk−11}jk=0 are not prefixes of
i. Thus,

Tj0j1···jk−11

(
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}

)
= 0.

The simulator B runs PolyUnsat on the trees T〈j〉 and {Tj0j1···jk−11}jk=0

with
(
γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}, g1

)
. This defines a polynomial for

each node of T〈j〉 and {Tj0j1···jk−11}jk=0. The constant terms in the poly-
nomials associated with the roots of the above trees are all y. B first
constructs the secret key skT ,〈j〉 associated with the tree T〈j〉 as follows.
For each leaf node x of T〈j〉,

– If att(x) ∈ γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}. B knows the polynomial
qx completely.

D(d)
x = g

qx(0)
2 T (att(x))r(d)

x = g
Q(d)

x (0)
2 T (att(x))r(d)

x

R(d)
x = gr(d)

x

where r
(d)
x ∈ Zp is chosen randomly, and we denote qx(0) by Q

(d)
x (0)

for consistency.

– If k = att(x) /∈ γ ∪ {“1-i1”, “2-i2”, · · · , “d-id”}. B knows gqx(0).

D(d)
x = g

−qx(0)f(k)
kn+d+u(k) (gkn+d+u(k)

2 gf(k))rx

= g
qx(0)
2 (gkn+d+u(k)

2 gf(k))
−qx(0)

kn+d+u(k) (gkn+d+u(k)
2 gf(k))rx

= g
qx(0)
2 (gkn+d+u(k)

2 gf(k))rx− qx(0)
kn+d+u(k)

= g
qx(0)
2 T (k)r(d)

x

= g
Q(d)

x (0)
2 T (att(x))r(d)

x

R(d)
x = g

−qx(0)
kn+d+u(k) grx = g

rx− qx(0)
kn+d+u(k) = gr(d)

x
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where rx ∈ Zp is chosen randomly, r
(d)
x = rx − qx(0)

kn+d+u(k)
, and we

denote qx(0) by Q
(d)
x (0) for consistency.

B takes the set of above secret pairs as skT ,〈j〉. In a similar manner B can
construct {skT ,j0j1···jk−11}jk=0 associated with the trees {Tj0j1···jk−11}jk=0.
The distribution of each one of these secret keys is identical to that of the
fs-ABE scheme. B passes these keys to A as SKT ,j .

• T (γ) = 0. B runs PolyUnsat on the tree T with (T , γ, g1). This defines
a polynomial for each node of T . The constant term in the polynomial
associated with the root of T is y. Define the secret key associated with
the tree T as in above case. B uses this key to recursively apply the
Compute Next algorithm of fs-ABE, and obtains SK ′

T ,0. Then B runs
the Update of fs-ABE with SK ′

T ,0 to generate SK ′
T ,j . The distribution

of SK ′
T ,j is identical to SKT ,j in the fs-ABE scheme. B passes this key

to A as SKT ,j .

Challenge The adversary A submits two equal messages m0 and m1 to the
simulator B. B submits m0 and m1 to the challenger. The challenger flips a fair
coin b ∈ {0, 1}, and returns an encryption of mb in the GPSW-ABE scheme.
The ciphertext is output as:
(
γ∪{“1-i1”, “2-i2”, · · · , “d-id”},mbe(g1, g2)s, gs, {T̃ (k)s}k∈γ∪{“1-i1”,“2-i2”,··· ,“d-id”}

)

B modifies this ciphertext as follows:
〈
i,

(
γ∪{“1-i1”, “2-i2”, · · · , “d-id”},mbe(g1, g2)s, gs, {(gs)f(k)}k∈γ∪{“1-i1”,“2-i2”,··· ,“d-id”}

)〉

Then B passes it to A as the challenge ciphertext, which is a valid random
encryption of message mb in the fs-ABE scheme since (gs)f(k) = (gf(k))s =
T (k)s by the construction of T (X).

Phase 2 The simulator B acts exactly as it did in Phase 1.

Guess The adversary A submits a guess b′ of b to B. B submits b′ to the
challenger as its guess of b.

As shown above the simulator’s generation of public parameters, private keys
and the challenge ciphertext is identical to that of the actual fs-ABE scheme.
The advantage of the simulator attacking GPSW-ABE scheme in selective cho-
sen plaintext, a set of attributes game is

∣∣Pr[B’s guess of b is correct]− 1
2

∣∣

=
∣∣Pr[A’s guess of b is correct]− 1

2

∣∣
= ε.

For reducing the security of fs-ABE to hardness of DBDH problem, we need the
following Theorem 3 from [10].
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Theorem 3 If an adversary has advantage ε to attack the GPSW-ABE scheme
in the selective chosen plaintext, a set of attributes model, then a simulator can
be constructed to solve the DBDH problem with the advantage 1

2ε.

Combining Theorem 1 and Theorem 3, we obtain the following Theorem 4 for
the fs-ABE scheme.

Theorem 4 If an adversary can break the fs-ABE scheme in the selective cho-
sen plaintext, a set of attributes and time period model, then a simulator can be
constructed to solve the DBDH problem with a non-negligible advantage.
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