
Non-Reciprocating Sharing Methods in
Cooperative Q-Learning Environments

Bryan Cunningham
Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, USA
bcunn06@vt.edu

Yong Cao
Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, USA
yongcao@vt.edu

Abstract—Past research on multi-agent simulation with co-
operative reinforcement learning (RL) focuses on developing
sharing strategies that are adopted and used by all agents in
the environment. In this paper, we target situations where this
assumption of a single sharing strategy that is employed by
all agents is not valid. We seek to address how agents with no
predetermined sharing partners can exploit groups of cooper-
atively learning agents to improve learning performance when
compared to independent learning. Specifically, we propose 3
intra-agent methods that do not assume a reciprocating shar-
ing relationship and leverage the pre-existing agent interface
associated with Q-Learning to expedite learning.

Keywords-Multi-Agent Reinforcement Learning; Coopera-
tive Learning; Agent Interaction Protocols; Information Ex-
changes in Multi-Agent Systems

I. INTRODUCTION

Traditional reinforcement learning (RL) simulations im-
bue an agent with no knowledge of the environment in which
they are located a priori. By exploring this environment and
gaining direct experience with it, the agent will update its
policy, or memory, to remember the best action(s) to take
in each state. The goal of the agent is to improve its policy
to maximize its performance in the environment [1]. Multi-
agent-based cooperative RL simulations allow for multiple
agents to coexist in the same environment and improve learn-
ing performance by exploiting the policy information of the
other agents (Tan 1993). Enabling multiple agents to exist
in the same environment adds complexity to the learning
problem. Agents need to balance the tasks of exploring the
environment and exploiting their own policy in addition
to exploring the usefulness of the other agents’ policies
and exploiting them. Ideally, this improves the learning
performance of the agents when compared to training them
separately in single-agent RL.

Past research on multi-agent simulation with cooperative
reinforcement learning (RL) focuses on developing shar-
ing strategies that are adopted and used by all agents in
the environment. We consider these sharing strategies to
be reciprocating because all participating agents have a
predefined agreement regarding what type of information
is shared and when to share it. The sharing strategies

Figure 1. Separate groups of cooperative learning agents employing
distinct sharing strategies interspersed with individual learning agents.

are specifically designed around manipulating this shared
information to improve learning performance. In this paper,
we target situations where this assumption of a single sharing
strategy that is employed by all agents is not valid. This
research generalizes the cooperative learning domain by
considering situations in which agents may use differing
sharing strategies to cooperatively learn a task, as shown in
Fig. 1. We seek to address how agents with no predetermined
sharing partners can exploit groups of cooperatively learning
agents to improve learning performance when compared
to independent learning. Specifically, we propose 3 intra-
agent methods that do not assume a reciprocating sharing
relationship and leverage the pre-existing agent interface
associated with Q-Learning to expedite learning.

Whereas other cooperative learning research assumes the
simulation designer has control of all other agents in the
environment for the purposes of encoding an agent interac-
tion strategy, this research will investigate algorithms that
do not so assume. The other agents’ functions and their
sharing strategies are unknown and inaccessible from the
point of view of the agent(s) using our proposed methods.
We contribute 3 sharing methods: the modified averaging
(MA) method, the modified experience counting (MEC)
method, and the hybrid experience counting and averaging

(HECA) method. These 3 methods adapt existing sharing
strategies to perform in environments where other agents do
not reciprocate. We analyze our methods by testing them
in 3 unique environments where the other agents employ a
variety of standard sharing methods.

Findings indicate that learning performance while us-
ing our proposed methods is improved when compared
to independent learning. Results show that agents with
no predetermined sharing partners can successfully exploit
groups of cooperatively learning agents. Additionally, the
modified experience counting method performs best overall
when compared to the other presented methods.

The paper is organized as follows. Section 2 presents
the related work and further motivation for this research.
Section 3 provides the background information relevant to
this research and describes the assumptions behind our work.
Section 4 describes the 3 proposed algorithms and section
5 discusses the experiments associated with this research.
Section 6 presents the results of our experiments and section
7 provides concluding remarks and presents future work.

II. RELATED WORK AND MOTIVATION

Previous research on direct communication cooperative
learning agents focus on developing sharing strategies that
are adopted by all agents in the environment. Tan [2]
introduced cooperative learning methods where agents share
sensations, episodic information, or learned policies to
achieve improved learning rates. The work presented the
concept of policy averaging (PA), in which agents average
their learned policies together and exploit the other agents’
shared knowledge to expedite learning. Another cooperative
learning technique is to have agents make use of a joint
policy table [3]. Using this method, several distinct agents
explore an environment and update the same policy that is
shared by all agents. Agents do not communicate directly
with one another but rather to a central entity that stores
the shared policy. In our work, we refer to this method
as the Centralized sharing method and use it as an upper
bound to compare our agents’ learning performance against.
A similar concept was proposed by Yang et al. with a
blackboard-based communication method in which agent
communication is relayed through and controlled by this
central blackboard architecture [4]. Ribeiro et al. propose a
cooperation model that uses a global action policy to ensure
proper convergence. The global action policy unifies agents’
partial action policies to produce optimal policies for the
generic interaction model case [5]. Multi-agent cooperative
learning has been shown to improve learning performance
for both the homogeneous and heterogeneous cases [6].

The weighted-strategy sharing (WSS) measures the ex-
pertness of the cooperating agent’s policies and weighs their
contributions according to this value. This method has been
shown to be effective when agent experiences differ [7], [8].
The WSS cooperative learning method could be considered

a viable strategy to use in a non-reciprocating environ-
ment. However, results show that for the case where all
agents start in a similar initial location, the agents’ learning
performance does no better than when using independent
learning. Another technique for determining an agents area
of expertise uses several classifiers [9] to extract partial
policies containing expertise. Other techniques furthering the
identification and exploitation of agents areas of expertise
have also been presented [10].

III. BACKGROUND

In this section we will briefly describe the mechanics
necessary to understand the basics of RL in addition to the
action-selection (AS) method used in this paper.

A. Reinforcement Learning

RL is a bottom-up programming methodology that gives
agents the ability to extract salient environmental cues
online. RL uses Markov decision processes (MDP) to model
how an agent interacts with its environment. An MDP is a 4-
tuple taking the form (S,A, P ass′ , R

a
ss′) where S is the state

space, A is the action set, P is the transition function where
P ass′ represents the probability of transitioning from state s
to state s′ via action a, and R is the reward function where
Rass′ represents the expected value of the reward achieved
when an agent moves from state s to state s′ via action a.
As an agent explores its environment, it updates its policy
function π that maps each state s ∈ S and action a ∈ A(s)
to π(s, a). The agent attempts to maximize the expected total
sum of rewards gained over time to converge to an optimal
policy π∗ (multiple may exist).

For this paper, we use a popular form of RL called Q-
Learning: a type of temporal-difference (TD) learning where
Q : S × A → R. TD learning is a learning technique in
which an agent will update its previously estimated state
values using the differences between its current and former
values. This effectively propagates more accurate estimates
of the state values as learning continues. Agents define an
action-value function for policy π by Qπ(s, a) where the
agent takes action a in state s and then applies policy π. Q-
Learning represents an off-policy form of TD control which,
for the one-step case used in this paper, takes the following
form:

Q(st, at)← Q(st, at) + αt(st, at)
[
rt+1

+γmax
a

Q(st+1, a)−Q(st, at)
]
. (1)

where t is the time step parameter, α is the learning rate
parameter, and γ is the discount rate parameter. In this paper,
the single-agent form of RL is applied to each agent in a
multi-agent environment.

B. Agent Action-Selection

As agents navigate the environment, various strategies
for selecting an action in each state can be used, some of
which take into account the exploration-exploitation trade-
off. Typical strategies include random selection, optimal
selection, ε–greedy selection, ε–decreasing selection, and
softmax selection [1]. In this paper we use softmax AS.
Agents use the softmax AS rule with the Boltzmann distribu-
tion, as seen in (2), to determine the probability of selecting
action ai in state s.

P (ai|s) =
exp(Q(s, ai)/τ)∑

a∈A(s) exp(Q(s, ak)/τ)
. (2)

where τ represents the temperature parameter. As τ → ∞
the probability of selecting actions becomes more random.
As τ → 0 the probability of selecting the actions with higher
Q-values becomes more likely.

C. Key Assumptions

We make the following 3 assumptions in this work that
persist throughout the paper:

1) Agents are assumed to be using Q-Learning. The agents
have a public interface that allows other agents to query
their Q-tables. This is a minimal method for catalyzing
cooperative learning.

2) All agents have the same Q-Learning parameter values.
3) The agent(s) employing our method knows how many

other agents are in the environment and has enough
memory to store the Q-tables and E-tables for them.

IV. THE ALGORITHMS

In this section we describe the architecture of the agent
in addition to the 3 algorithms we have developed.

A. General Agent Structure and Behavior

Traditional agents in a RL simulation have a single policy
representing their memory. Our approach gives the agent the
memory capacity to embed the policies of the other agents.

Definition 1: An agent’s memory, M , is a set of N
policies {π0, ..., πN−1} where π0 is the agent’s own, or self,
policy and policies {π1, ..., πN−1} are shared policies. Each
shared policy πi ∈ M is a policy from each of the other
(N − 1) agents.

Our approach separates the two types of policies in
memory and updates both accordingly. The agent updates
its self policy when an action is directly taken by the agent
and therefore experiences being in state st, taking action
at, and arriving at state st+1 with reward rt+1. The agent
updates its shared policies after each time step by querying
the other agents for their Q-tables.

There are 5 steps taken by the agent at each time step:
1) Action Selection: Take a step with action a in state s
using policy π0 to make a decision, 2) Update π0 based
on the experience gained by taking action a in state s, 3)

Query Q-values from the other agents’ policies and update
policies {π1, ..., πN−1} accordingly , 4) Assess/evaluate the
best values to use, and 5) Combine the values to create an
updated policy, π0 (that is then accessible to others). This
interaction cycle is shown in Fig. 2. Our proposed methods
operate at the level of steps 4 and 5 and are differentiated
by the actions taken in these steps. Note that the 3 methods
presented below still perform learning by trial-and-error, as
in step 2. These methods simply supplement the agents’
knowledge by exploiting the other agents’ knowledge.

B. Algorithm 1: Modified Averaging (MA) Method

The PA method first suggested by [2] is a simple sharing
strategy that averages all agent policies together – according
to each (s,a) pair – and assigns the averaged policy to all
agents. After all agents have taken their step for time step t
in the episode, the PA method averages the Q-value of each
action a ∈ A(s)∀s ∈ S with all other corresponding actions
in their corresponding states across all agent policies. The
method then overwrites the Q-values across all policies for
each action a ∈ A(s)∀s ∈ S with the corresponding average
for that action. As all agents participate and use the same
averaged policy, this is considered a reciprocating sharing
strategy.

We propose the MA method, a non-reciprocating version
of the PA method. The MA method, as seen in (3), is similar
to the PA method except that after averaging all agents’
policies, only π0 is assigned the averaged Q-table because
the other agents are not participating in the sharing method.

MA(s, a) =
1

n

n−1∑
i=0

Qπi(s, a) (3)

for s ∈ S, a ∈ A(s), πi ∈M

C. Algorithm 2: Modified Experience Counting (MEC)
Method

The experience counting (EC) method, also referred to
as the non-trivial update counting method in [11], is a
popular sharing strategy that has been shown to outperform
the PA method. The EC method makes use of a E-table,
or experience table, in addition to a Q-table to keep track
of which states and what actions an agent has actually
experienced during the simulation. The central idea behind
this method is that the most experienced agent with regard
to each (s,a) pair should have the most contribution to the
Q-table that is synchronized by all agents after each step.

Each (s,a) visitation results in the corresponding (s,a)
entry of the E-table being updated by increasing the vis-
itation, or experience, count for that entry by 1. After all
agents have taken their step for time step t in the episode,
the EC method goes through each (s,a) pair in the Q-
table and allows the agent with the most experience for
that (s,a) pair to contribute its current Q-value for (s,a) to

Π0 ΠN-1Π1 Π2

Action Selection
Stage

Self Policy Shared
Policies

Agent

action at
Environment

rt+1

st+1

reward rt

state st

Evaluate Shared
Policy Values

Update Self
Policy

Figure 2. Extended RL agent-environment interaction cycle.

the resultant Q-table that will overwrite all agent policies.
Experience ties are resolved by randomly selecting from
the tied experience values, which correspond to Q-values.
Similarly, each (s,a) entry in the E-table for all agents is
updated to the highest count experienced out of all agents
because the corresponding entry in the Q-table was updated.
At the end of each step all agents have the same Q-table and
E-table.

We propose the MEC method, as seen in (4), a non-
reciprocating version of the EC method. Because an agent
employing the MEC method cannot assume the other agents
are reciprocating, it cannot rely on receiving others’ E-
tables for counting experience. Instead, we propose that the
agent queries and stores the other agents’ Q-tables in M .
Additionally, the agent will store a E-table for each of the
other agents in M as well. The agent can then observe
which Q-values have changed since the last time step t
and will associate this with an experience point for that
particular (s,a) entry in the E-table for that agent. Therefore,
the essence of the EC method is captured and the agent
can reconstruct the (s,a) pair(s) that the other agents have
experienced to determine which agents should contribute
to the policy that will be assigned to π0. We propose 3
variations of the MEC method for testing: Any, Positive, and
Negative. The MEC – Any variation assigns an experience
point when a Q-value for (s,a) at time step t does not equal
the Q-value for (s,a) at time step t+1. The MEC – Positive
variation assigns an experience point when a Q-value for
(s,a) at time step t is less than the Q-value for (s,a) at time
step t+1. Finally, the MEC - Negative variation assigns an
experience point when a Q-value for (s,a) at time step t is
greater than the Q-value for (s,a) at time step t+ 1.

MEC(s, a) = Qπj (s, a) (4)
where j = arg max

i
Eπi(s, a)

for s ∈ S, a ∈ A(s), πi ∈M

D. Algorithm 3: Hybrid Experience Counting and Averaging
(HECA) Method

The HECA method is a hybrid method combining ele-
ments from both the MA and MEC methods. This method
is similar to the MEC method except that experience, or E-
table, ties are resolved by averaging the Q-values associated
with the tied experience values. We propose only 1 variation
of the HECA method for testing: Any. The Any variation
assigns an experience point when a Q-value for (s,a) at time
step t does not equal the Q-value for (s,a) at time step t+1.

V. EXPERIMENTS

A. Maze World Domain

To explore the methods we propose, an 8×8 grid-based
environment is used to simulate the maze world domain [12].
Agents attempt to navigate to the goal location with the
intention of reaching it using the fewest number of steps.
The set of states S is composed of each cell position (x,y)
on the map. |S| = c × d where c is the number of cells in
the horizontal direction and d is the number of cells in the
vertical direction. In each state, agents can move one step
and choose from the following action set: A={North, East,
South, West}. Agents that attempt to move into a wall are
blocked and will remain in the same position. Similarly, if
an agent attempts to leave the bounds of the map, the agent
will remain in the same position. Agents are not aware of the
location of the other agents and may occupy the same cell.
Agents take turns taking steps. For time step t agent 1 takes
a turn, followed by agent 2, and so forth until all agents have
taken a turn for time step t. Agents start each episode in the
cell with position (0,3). The goal cell is located in position
(7,3). For every step an agent takes that leads to a non-goal
state the agent receives a reward of -1.5. Conversely, actions
that lead the agent into a goal state provide the agent with
a reward of 20. The maze world map used in testing was
randomly generated with respect to wall placement. See Fig.
3 for an example of the maze world environment.

Figure 3. An 8 × 8 maze world domain map. The white lines are walls,
the white dot is an agent, and the green cell is the goal.

B. Evaluation

An episode consists of the steps taken after an agent starts
in the initial state and spans until the agent reaches the goal
state. A run is defined by a series of episodes. The number
of episodes per run is determined by the number of episodes
that are necessary to allow the learning performance of the
agents to stabilize. Agent policies are carried over from
one episode to the next, but not from run to run. In our
experiments, we evaluate the learning performance of the
agents over 500 runs, where each run consists of 60 episodes.
For the simulation parameters we set α = 0.15, γ = 0.99,
and τ = 0.4; these are default parameters for the maze world
domain [11].

For each of the 3 experiments in this paper, we present a
graph comparing the average number of steps per episode for
Agent 0, or A0, vs. the number of cooperating agents in the
simulation for the proposed sharing methods. The average
number of steps per episode signifies learning performance.
These graphs provide visual results displaying the trends
associated with each of the sharing methods. We vary the
number of agents up to 8 because, at this point, we near
performance convergence for the sharing methods. For each
experiment, we also include a table displaying the average
number of steps per episode for A0 for the case when the
simulation has 8 agents. As aforementioned, the sharing
method performance converges when the agent count is 8
and therefore these step averages are good overall indicators
of the performance for the sharing methods. We also include
the averages’ respective 95% confidence intervals (CI) cal-
culated by a t-test. A CI allows us to determine whether or
not the differences in learning performance, as indicated by
average steps per episode, are statistically significant.

To simulate testing environments with varying sharing
strategies and to test the effectiveness of our proposed meth-
ods, we have set up 3 unique environments that represent
a range of the types of sharing strategies that may be
encountered. A0 will employ one of the 3 proposed sharing

methods while the other agents, [A1, ..., AN−1] will employ
one of the following methods: 1) Independent: No sharing
strategy is employed and each agent’s Q-table will likely
be different from the other agents’ Q-tables. At each time
step t, at most 1 Q-value in the Q-table will change. 2) PA:
The agents use the PA sharing method. Agents using the PA
method will have the same policy π after each time step
t because the method dictates that agents synchronize their
Q-tables after averaging the values. Therefore, it is possible
for multiple Q-values to change between time steps. 3) EC:
The agents use the EC sharing method. Again, agents will
have same policy π after each time step t and it is possible
for multiple for multiple Q-values to change between time
steps. For each of the experiments we compare against 4
reference methods: Centralized, PA, EC, and Independent.
The Centralized sharing method represents an upper bound
for learning performance as all agents write to the same
policy after each step. Conversely, the Independent method
serves as a lower bound for performance as any methods
that perform worse than it might as well learn independently.
The 4 reference methods are run in an environment where
all agents are using that specific sharing method. Inclusion
of the PA and EC reference methods allows us to compare
the performances of the reciprocating and non-reciprocating
versions of the methods.

VI. RESULTS

A. Experiment 1

In this experiment, we explore how the proposed al-
gorithms perform for A0 when agents [A1, ..., AN−1] are
using the Independent sharing method. Results are shown in
Fig. 4. The results indicate that as the number of agents
increases, the average number of steps per episode for
each method decreases. Intuitively, this makes sense because
the agents are able to take advantage of more knowledge.
Once the sharing method’s performance stabilizes, it is
clear that the EC and Centralized methods perform best
and the Independent method performs worst. Table I shows
that, according to t-tests, the differences in performance
among all listed methods are statistically significant. The
MA method performs 1.12 times more poorly than the PA
method when there are 8 agents in the environment. This is
expected as the PA method operates with all agents partici-
pating in synchronizing Q-tables. However, the MA method
still outperforms Independent learning. This indicates that
it is possible for agents to improve learning performance
in environments where other agents do not reciprocate.
According to the results, the MEC – Any method performs
the best out of the proposed methods and only performs
2.44 times more poorly than the upper bound for learning
performance. The HECA – Any method performed better
than the MA method by a factor of 1.19 but performed
worse than the MEC – Any method by a factor of 1.20.
This experiment indicates that the MEC method performs

10
15
20
25
30
35
40
45
50
55

1 2 3 4 5 6 7 8

A
ve

ra
ge

 N
um

be
r o

f S
te

ps
 P

er

Ep
is

od
e

Number of Agents

Independent

MA

MEC - Negative

PA

MEC - Positive

HECA - Any

MEC - Any

EC

Centralized

Figure 4. Simulation results for A0 when the other agents use the
independent sharing method

Table I
SIMULATION RESULTS FOR A0 WHEN THE OTHER AGENTS USE THE

INDEPENDENT SHARING METHOD

Sharing Method Average Steps with 95% CI
Independent 44.98 ± (0.33)

MA 42.64 ± (0.37)
MEC - Negative 40.91 ± (0.30)

PA 37.94 ± (0.30)
MEC - Positive 37.42 ± (0.36)

HECA - Any 35.76 ± (0.33)
MEC - Any 29.84 ± (0.21)

EC 12.37 ± (0.11)
Centralized 12.24 ± (0.11)

well when the other agent’s policies have different values
and do not synchronize to the same policy after each time
step t.

B. Experiment 2

In this experiment, we explore how the proposed algo-
rithms perform for A0 when agents [A1, ..., AN−1] are using
the PA sharing method. Results are shown in Fig. 5. Table
II shows that, according to t-tests, the differences in perfor-
mance among the MA and HECA – Any methods are not
statistically significant. Similarly, Table II also shows that
the differences in performance among the MEC – Any and
MEC – Negative are not statistically significant. The MEC
– Negative method outperforms the Independent learning
method by a factor of 1.32 but performed worse than the
upper bound by a factor of 2.79. For this experiment, the
MEC method performs well when the other agent’s policies
have similar values and synchronize to the same policy after
each time step t. Both experiment 1 and 2 confirm that
the proposed methods can suitably adapt to both types of
situations encountered for sharing strategies.

C. Experiment 3

In this experiment, we explore how the proposed al-
gorithms perform for A0 when agents [A1, ..., AN−1] are
using the EC sharing method. Results are shown in Fig. 6.

10
15
20
25
30
35
40
45
50
55

1 2 3 4 5 6 7 8

A
ve

ra
ge

 N
um

be
r o

f S
te

ps
 P

er

Ep
is

od
e

Number of Agents

Independent

MA

HECA - Any

MEC - Positive

PA

MEC - Any

MEC - Negative

EC

Centralized

Figure 5. Simulation results for A0 when the other agents use the PA
sharing method

Table II
SIMULATION RESULTS FOR A0 WHEN THE OTHER AGENTS USE THE PA

SHARING METHOD

Sharing Method Average Steps with 95% CI
Independent 44.98 ± (0.33)

MA 38.94 ± (0.34)
HECA - Any 38.88 ± (0.35)

MEC - Positive 38.40 ± (0.35)
PA 37.94 ± (0.30)

MEC - Any 34.42 ± (0.26)
MEC - Negative 34.20 ± (0.27)

EC 12.37 ± (0.11)
Centralized 12.24 ± (0.11)

Table III
SIMULATION RESULTS FOR A0 WHEN THE OTHER AGENTS USE THE EC

SHARING METHOD

Sharing Method Average Steps with 95% CI
Independent 44.98 ± (0.33)

PA 37.94 ± (0.30)
MEC - Negative 15.09 ± (0.18)
MEC - Positive 14.43 ± (0.19)

MA 13.99 ± (0.17)
MEC - Any 13.17 ± (0.13)

HECA - Any 12.67 ± (0.12)
EC 12.37 ± (0.11)

Centralized 12.24 ± (0.11)

Table III shows that, according to t-tests, the differences
in performance among all listed methods are statistically
significant. The HECA – Any method performs the best,
outperforming the Independent method by a factor of 3.55
and performing slightly worse than the upper bound by
a factor of 1.04. All methods perform significantly better
in this experiment when compared to experiments 1 and
2 because the EC sharing method being used by agents
[A1, ..., AN−1] is an effective sharing strategy. Both the
HECA – Any and MEC – Any methods perform well
when the other agent’s policies have similar values and
synchronize to the same policy after each time step t.

10

15

20

25

30

35

40

45

50

55

1 2 3 4 5 6 7 8

A
ve

ra
ge

 N
um

be
r o

f S
te

ps
 P

er

Ep
is

od
e

Number of Agents

Independent

PA

MEC - Negative

MEC - Positive

MA

MEC - Any

HECA - Any

EC

Centralized

Figure 6. Simulation results for A0 when the other agents use the EC
sharing method

VII. CONCLUSIONS AND FUTURE WORK

Results from the 3 experiments show that it is possible
for agents to improve learning performance in environments
where other agents do not reciprocate. The 3 proposed
methods – MA, MEC, and HECA – all perform better
than the Independent learning method. This indicates that
by exploiting the pre-existing agent interface, learning per-
formance can be expedited. Most notably, the MEC – Any
method performed best overall across the 3 experiments.

This research opens up the possibility for future work.
Currently, our method assumes that agents can communicate
with and query the Q-tables of all agents in the environment,
regardless of physical distance between the agents. In real
situations where agents are robots and take on a physical
form, this assumption may not hold. Future work could study
how the methods proposed in this paper are affected by a
limited communication range and propose modifications for
these methods that perform better in such conditions. In this
work we also assume that agents employing the proposed
methods have enough memory to store the Q-tables and
E-tables for all other agents in the environment. Again, if
the agents were actual robots, this assumption of a large
memory may prove to be unrealistic. Future work could
study how the methods proposed in this paper are affected
by a limited memory size and propose modifications for
these methods that would enable the methods to perform
in such environments. An implicit assumption with this
work was also that agents knew how many other agents
were in the environment in addition to assuming a reliable
communication channel among the agents where Q-tables
queries were always satisfied. The information bandwidths
associated with our methods could be taken into account.
Our method assumes unlimited bandwidth; however, for
some RL applications that are used with physical agents,
bandwidth is a limiting factor.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Introduction to Reinforcement
Learning, 1st ed. Cambridge, MA, USA: MIT Press, 1998.

[2] M. Tan, “Multi-agent reinforcement learning: Independent
versus cooperative agents,” in ICML. Morgan Kaufmann,
1993, pp. 330–337.

[3] H. R. Berenji and D. Vengerov, “Advantages of cooperation
between reinforcement learning agents in difficult stochastic
problems,” in In Proceedings of 9th IEEE International
Conference on Fuzzy Systems, 2000.

[4] Y. Yang, Y. Tian, and H. Mei, “Cooperative q learning based
on blackboard architecture,” in Proceedings of the 2007
International Conference on Computational Intelligence and
Security Workshops, ser. CISW ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 224–227. [Online].
Available: http://dx.doi.org/10.1109/CIS.Workshops.2007.36

[5] R. Ribeiro, A. P. Borges, and F. Enembreck, “Interac-
tion models for multiagent reinforcement learning,” in
CIMCA/IAWTIC/ISE, M. Mohammadian, Ed. IEEE Com-
puter Society, 2008, pp. 464–469.

[6] P. Zhang, X. Ma, Z. Pan, X. Li, and K. Xie, “Multi-agent
cooperative reinforcement learning in 3d virtual world,” in
ICSI (1), ser. Lecture Notes in Computer Science, Y. Tan,
Y. Shi, and K. C. Tan, Eds., vol. 6145. Springer, 2010, pp.
731–739.

[7] M. N. Ahmadabadi, M. Asadpour, and E. Nakano, “Coop-
erative q-learning: the knowledge sharing issue,” Advanced
Robotics, vol. 15, no. 8, pp. 815–832, 2001.

[8] M. N. Ahmadabadi and M. Asadpour, “Expertness based
cooperative q-learning,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B, vol. 32, no. 1, pp. 66–76, 2002.

[9] M. N. Ahmadabadi, A. Imanipour, B. N. Araabi, M. Asad-
pour, and R. Siegwart, “Knowledge-based extraction of area
of expertise for cooperation in learning,” in IROS. IEEE,
2006, pp. 3700–3705.

[10] B. N. Araabi, S. Mastoureshgh, and M. N. Ahmadabadi, “A
study on expertise of agents and its effects on cooperative
q-learning,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B, vol. 37, no. 2, pp. 398–409, 2007.

[11] L. Torrey and M. E. Taylor, “Help an agent out: Stu-
dent/teacher learning in sequential decision tasks,” in AAMAS.
(In Press), 2012.

[12] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforce-
ment learning: a survey,” Journal of Artificial Intelligence
Research, vol. 4, pp. 237–285, 1996.

