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Abstract.

Data assimilation obtains improved estimates of the state of a physical system by combining imperfect

model results with sparse and noisy observations of reality. Not all observations used in data assimila-

tion are equally valuable. The ability to characterize the usefulness of different data points is important

for analyzing the effectiveness of the assimilation system, for data pruning, and for the design of future5

sensor systems.

In the companion paper (Sandu et al., 2012) we derive an ensemble-based computational procedure

to estimate the information content of various observations in the context of 4D-Var. Here we apply

this methodology to quantify the signal and degrees of freedom for signal information metrics of satel-

lite observations used in a global chemical data assimilation problem with the GEOS-Chem chemical10

transport model. The assimilation of a subset of data points characterized by the highest information

content yields an analysis comparable in quality with the one obtained using the entire data set.

1 Introduction

The information content of observations in the context of data assimilation is defined by their con-

tribution to decreasing the uncertainty in the state estimate (Fisher, 1922). In the companion paper15

(Sandu et al., 2012) we show that the posterior statistics of the variational cost function and its gradient
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can be used to quantify the information content of observations in the context of four dimensional

variational (4D-Var) data assimilation. Several information metrics are considered in (Sandu et al.,

2012): the Fisher information matrix, the Shannon information, and the degrees of freedom for signal,

which measure the decrease in error variance, and the signal information, which measures the effects20

of data assimilation in terms of adjusting the mean. An efficient computational approach is developed

to estimate the information metrics using ensemble averages.

While the information theoretic approach discussed in (Sandu et al., 2012) is general, our application of

interest is chemical data assimilation (Carmichael et al., 2008) involving gas phase (Daescu et al., 2000;

Carmichael et al., 2003; Constantinescu et al., 2007; Liao et al., 2006) and particulate phase (Sandu et al.,25

2005; Hakami et al., 2005; Henze et al., 2004) atmospheric tracers. Examples of large scale applications

are discussed in (Chai et al., 2006, 2007). Ensemble Kalman filters have also been used in chemical data

assimilation (Constantinescu et al., 2007a,b,c; Sandu et al., 2005).

In this paper we consider the problem of global ozone data assimilation using the GEOS-Chem model,

and satellite observations from the Tropospheric Emission Spectrometer. We use the new methodol-30

ogy to estimate the signal and the degrees of freedom for signal contents of different ozone column

retrievals. The assimilation of a subset of data points characterized by the highest information content

gives analyses that are comparable in quality with the one obtained using the entire data set.

The paper is organized as follows. Section 2 reviews a computationally feasible estimation technique

for information content developed in the companion paper (Sandu et al., 2012). All estimates require35

the ability to compute expected values with respect to the analysis probability distribution; obtaining

such expected values is discussed in Section 3. Section 4 presents in detail the setup of the global data

assimilation experiment, and Section 5 shows the information content of TES ozone column retrievals

results obtained with the proposed technique. Section 6 summarizes the findings of this work and

points to future research directions.40

2 Information Metrics and Their Estimation

The 4D-Var analysis xA
0 is the initial condition which minimizes the cost function

J (x0) =
1

2

(
x0−xB

0

)T
B−1

0

(
x0−xB

0

)

︸ ︷︷ ︸
J B(x0)

+
1

2

N

∑
i=1

(H(xi)−yi)
T R−1

i (H(xi)−yi)

︸ ︷︷ ︸
∑

N
i=1J

obs
i (x0)

(1)

subject to the model equation constraints. Here xB
0 ∈Rn is the background value of the initial state, B0

is the covariance of the initial background errors B0, yi ∈Rm are the observations at time ti, i = 1,··· ,N,

and Ri are the corresponding observation error covariances.

2



The information content of the observations y quantifies the decrease in uncertainty from before data45

assimilation (PB) to after data assimilation (PA). The information content depends not only on the

data (yi), but also on the data accuracy (R−1
i ), on all other observations yj, j 6= i, on the background

uncertainty (B−1
0 ), and on the model dynamics M.

In the companion paper (Sandu et al., 2012) we have developed a computationally feasible methodology

way to estimate the information content of various observations in the context of 4D-Var. This approach50

is based on an approximate sampling from the posterior error distribution in 4D-Var. We assume that

we have the ability to compute expected values with respect to the posterior density E
A [ f (x0)].

2.1 Degrees of freedom for signal

The Degrees of freedom for signal (DFS) metric for the information content has been previously em-

ployed in meteorological data assimilation (Rodgers, 1996; Fisher, 2003; Cardinali et al., 2004; Zupanski55

et al., 2007; Stewart et al., 2008).

The degrees of freedom for signal (DFS) measures the total reduction in variance after assimilation.

For Gaussian background and analysis distributions

IDFS = n− trace
(

B−1
0 A0

)
(2)

where A0 denotes the analysis covariance matrix at the initial time, and n is the dimension of the

system (the number of variables in the model).

It is shown in the companion paper (Sandu et al., 2012) that the contribution of each observation y` to

the DFS information metric can be estimated via

IDFS
y`

= 2E
A
[
J obs

`
(x0)

]
−2J obs

`

(
xA

0

)
(3)

where E
A represents the expected value with respect to the posterior distribution. After the data

assimilation has been performed, one runs the forward model Nens times. The ensemble average of the60

cost function, minus the cost function at the analysis, estimates the DFS information.

2.2 Signal information

The signal part of the relative entropy (Xu, 2006)

ISignal =
1

2

(
xA

0 −xB
0

)T
B−1

0

(
xA

0 −xB
0

)
(4)

measures the reduction of uncertainty due to change in the best estimate from the background state

to the analysis state. As described in the companion paper (Sandu et al., 2012), the contribution of the
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data point y` to the signal information can be (coarsely) approximated as:

I
Signal
y`

≈
(

y`−H`

(
xB

`

))T
R−1

`

(
H`

(
xA

`

)
−H`

(
xB

`

))
(5)

The model is run from the analysis and the “synthetic observations” H`

(
xA

`

)
are recorded. The model

is run again starting from the background state, and (5) is evaluated for each data point y`.

3 Expected Values With Respect to the Analysis Probability Density65

The information metric estimates discussed in (Sandu et al., 2012) require expected values with respect

to the analysis probability distribution. Since 4D-Var does not provide immediately an approximation

of the posterior density, a discussion of how to obtain these expected values is necessary.

3.1 Expected values as weighted background ensemble averages

Consider the following sample from the background distribution:

x
q
0 ∈PB(x0) , q = 1,··· ,Nens

The drawing is such that each sample has an equal weight 1/Nens. We can approximate expected

values with respect to the posterior density by weighted ensemble averages as follows (Wikle and

Berliner, 2007):

E
A [ f (x0)]≈

Nens
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q
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=
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x
q
0

)

The posterior average can be calculated as a weighted average of samples taken from the background

distribution. Using the Bayes’ theorem, the new weights are:

wq =
PA(x

q
0)

PB(x
q
0)

1

Nens
=

P(y|x
q
0)

P(y)

1

Nens

With the relationship that the observation part of the cost function is the logarithm of the observation

likelihood (Sandu et al., 2012), we can compute the weights as:

vi = exp
(
J obs(xi

0)
)

, wq =
vq

∑
Nens
i=1 vi

The computational procedure is as follows. Start with an equally weighted sample x
q
0 of the back-

ground probability density. For each sample run the model, and compute the observations part of the
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4D-Var cost function J (x
q
0), as well as the metric of interest J (x

q
0). The analysis mean is a weighted

average of the obtained values:

E
A [ f (x0)] =

Nens

∑
q=1

(
exp(J obs(x

q
0))

∑
Nens
i=1 exp(J obs(xi

0))

)
f
(

x
q
0

)

3.2 Approximate posterior sampling by estimated posterior covariance70

In this simple approach one assumes that the correlation structures of B0 and A0 are similar, and

that the difference comes from changes in variances. The background and analysis variances can be

estimated roughly by comparing the background and analysis against data, and by measuring the

model-data discrepancies. It is then assumed that the decrease in the model-data discrepancy for each

variable, vertical level, area, etc. is representative of the corresponding decrease in variance. The75

analysis variances are obtained by rescaling the background variances (for each variable, vertical level,

area, etc.). These variances, together with the specified correlation structure of B0, define the analysis

covariance A0.

Random draws are taken from the normal distribution xr
0 ∈N (xA

0 ,A0), r = 1,. . .,Nens. The expected

values with respect to the posterior density are estimated by the ensemble averages:

E
A [ f (x0)]≈

1

Nens

Nens

∑
r=1

f (xr
0)

3.3 Approximate posterior sampling by principal components

This approach uses the fact that the analysis covariance matrix is approximated by the inverse Hessian

of the cost function, evaluated at the optimum (Thacker, 1989; Gejadze et al., 2008)

A0 ≈
(
∇2

x0,x0J
)−1

Several eigenvectors corresponding to the smallest eigenvalues of the Hessian are computed. The80

inverses of these eigenvalues, together with their eigenvectors, approximate the principal components

of the posterior error and can be used for approximate sampling from the posterior distribution. The

computation of the smallest eigenpairs of the Hessian can be performed by a Lanczos procedure using

only Hessian vector products, obtained via a second order adjoint model (Sandu and Zhang, 2008).

3.4 Approximate posterior sampling by subspace analysis85

The hybrid of 4D-Var and ensemble approach discussed in (Cheng et al., 2010) is able to sample

the posterior distribution. Suppose we are given the background state xB
0 ∈Rn and an ensemble of
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perturbation vectors drawn from the background error distribution

(
∆xB

0

)r
∈N (0,B0) , r = 1,2,. . .,Nens (6)

Starting from xB
0 , we save the first k iterates x

(j)
0 , j = 1,. . .,k, generated by the numerical optimization

routine used in the 4D-Var assimilation. We also save the corresponding gradients ∇J (x
(j)
0 ), j = 1,. . .,k.

Let U be the subspace spanned by successive increments

U = span
{

x
(1)
0 −x

(0)
0 , . . .,x

(k)
0 −x

(k−1)
0

}

In essence, 4D-Var reduces the error components in U, and leaves unmodified the error components in

the orthogonal complement of U.

Compute the orthogonal projector P onto the orthogonal complement of U (the multiplication P ·∆x090

removes the components of ∆x0 in the subspace U). From the saved sequence of gradients a low

rank quasi-Newton approximation of the inverse Hessian H−1
QN is constructed; this approximates the

posterior covariance in the subspace U.

The analysis perturbations are obtained by removing the background error components in U, and

replacing them with random draws from the approximate analysis error distribution in U

(
∆xA

0

)r
= P ·

(
∆xB

0

)r
+ H−1/2

QN ξr , ξr ∈N (0,I) , r = 1,2,. . .,Nens (7)

4 Application to Data Assimilation of Global Ozone

We apply the estimation methodology to a 4D-Var data assimilation study with a global chemical trans-95

port model. The data assimilation experiment focuses on ozone. Ozone is an important constituent of

stratosphere which absorbs the high energy UV-B and UV-C rays, thus preventing the disintegration

of DNA molecules and supporting the existence of life. However, ozone present in mid to low tropo-

sphere is a pollutant, a powerful oxidizing agent leading to destruction of tissues, damaging fibers and

creating breathing problems.100

The data are satellite ozone column retrievals. We estimate the information content of satellite obser-

vations taken at different times using different information theoretic metrics.

4.1 The model: GEOS-Chem

The model used for the numerical experiments in this paper is GEOS-Chem (http://acmg.seas.harvard.

edu/geos), a global three-dimensional chemical transport model (CTM) driven by assimilated meteo-105

rological observations from Goddard Earth Observing System. A detailed description of the model
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is presented in (Bey et al., 2001). GEOS-Chem accounts in detail for emissions from both natu-

ral and anthropogenic sources, for gas phase chemistry, aerosol processes, long range transport of

pollutants,troposphere-stratosphere exchanges, etc. GEOS-Chem is being widely used world-wide for

global atmospheric chemistry studies. We use GEOS-Chem v7-04-10. Subsequent model releases and110

references can be found at http://geos-chem.org.

The GEOS-Chem-Adjoint system (http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_

Adjoint) has been developed through a joint effort of groups at Caltech, University of Colorado, Vir-

ginia Tech, Harvard, and Jet Propulsion Laboratory (Henze et al., 2007; Singh, 2009a,b; Eller et al.,

2009). The system can perform adjoint sensitivity analyses and 4D-Var chemical data assimilation.115

Inverse modelling studies with GEOS-Chem-Adjoint are exemplified in (Henze et al., 2009; Kopacz et

al., 2007; Zhang et al., 2009).

4.2 The data: Tropospheric Emission Spectrometer (TES) ozone column retrievals

We assimilate ozone profile retrievals from the Tropospheric Emission Spectrometer (TES), in order to

obtain improved estimates of the ozone initial conditions. TES (Beer et al., 2001), one of four science120

instruments aboard NASA’s Aura satellite, measures the infrared-light energy (radiance) emitted by

Earth’s surface, and by the chemical tracers in the atmosphere (http://tes.jpl.nasa.gov). Vertical profiles

of chemical concentrations are retrieved from the radiance measurements using an off-line inversion

process.

A-priori information about the vertical concentration profile of the species of interest is needed to solve125

the retrieval inverse problem (the prior information does not come from the measurement). Let xprior be

the prior vertical ozone concentration profile (in volume mixing ratio units), and let zprior = lnxprior. Let

xradiance be the atmospheric profile as resulting directly from the radiances and zradiance = lnxradiance.

The vertical ozone profile is retrieved according to the formula (Parrington et al., 2009)

ẑ = zprior + Av

(
zradiance−zprior

)
+Gη, x̂ = exp(ẑ) (8)

Here Av is the averaging kernel matrix, G is the gain matrix, and η is the spectral measurement error

(assumed to have mean zero and covariance Sη). More details can be found in (Worden et al., 2004;130

Jones et al., 2003; Bowman et al., 2002).

The corresponding TES observation operator is linear with respect to the logarithm of the concentra-

tions, but nonlinear with respect to the concentration profile:

H(x) = zprior + Av

(
ln
(

L(x)
)
−zprior

)

The ozone column x represented on the Nlev GEOS-Chem grid vertical levels is interpolated by the
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operator L to an ozone column L(x) represented on the p TES profile retrieval levels.

For this reason several chemical data assimilation studies based on TES retrieved profiles (Jones et

al., 2003; Bowman et al., 2006; Parrington et al., 2009) have opted to perform the suboptimal Kalman

filtering step in the logarithm of the concentrations:

lnxA = lnx f +K
(

ẑ−H
(

x f
))

In case of 4D-Var data assimilation, the forcing calculation is carried out in the model state space. For

this reason an adjoint of the observation operator needs to be derived explicitly to update the gradients.135

(H′(x))T ·v =

(
∂

∂x

(
Av ln

(
L(x)

)) )T

·v

=

(
∂L

∂x

)T

·





1
[L(x)]0

0 ··· 0

0 1
[L(x)]1

··· 0

...
...

. . .
...

0 0 ··· 1
[L(x)]p




·AT

v ·v

Here (H′(x))T is a matrix and v = R−1 (H(x)−y). The product Av ·v is scaled by the diagonal matrix

with the i-th diagonal entry 1/[L(x)]i. The result is fed to (∂L/∂x)T, the adjoint of the interpolation

operator, which entities from TES profile retrieval domain back to the GEOS-Chem model domain.140

4.3 The validation data: INTEX ozonesonde profiles

In order to assess the quality of the data assimilation results, we compare the respective analyses

against an independent data set. The independent data are the ozonesonde profiles measured during

the INTEX Ozonesonde Network Study 2006 (IONS-6) (http://croc.gsfc.nasa.gov/intexb/ions06.html,

(Thompson et al. , 2007a, 2007b)) for the month of August. There were 418 ozonesondes launched from145

22 stations across North America. A detailed description of the number of ozonesondes launched per

station with longitude and latitude information can be found in (Parrington et al., 2008).

We use ozonesonde parameters such as launch time, longitude, latitude and pressure level to inter-

polate the concentration fields generated by the model. Differences between the ozone concentrations

from ozonesonde observations, model forecasts, and model analyses are averaged individually over150

longitude, latitude and time to create vertical profiles of model errors. We report the vertical distribu-

tion of the mean and the standard deviation of model errors.
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4.4 Experimental Setting

The GEOS-Chem simulations are carried out at a resolution of 4◦×5◦. At this resolution, each latitude-

longitude grid box on the ground level covers an area of about 400Km× 500Km. The chemical system155

accounts for 43 different chemical species. The dimension of the state space in our simulations is

n≈ 8 million (72 longitude grid points, times 46 latitude grid points, times 55 vertical levels, times 43

chemical tracers).

The control variables are the initial concentrations of ozone throughout the simulation domain. While

GEOS-Chem is capable of performing simulations up to 75 Km (55 vertical levels), the model error160

increases with height and the model bias is non-negligible in the upper troposphere and into the

stratosphere. For this reason we perform data assimilation only up to 21 Km (the bottom 23 vertical

levels). The dimension of the control vector for data assimilation is nc ≈ 80,000 (72 longitude grid

points, times 46 latitude grid points, times 23 vertical levels, times 1 chemical tracer – ozone).

The assimilation time window has a length of 5 days, starting on August 1st, 2006 (00 GMT) and ending165

on August 6th, 2006 (00 GMT). The observation time window is 4 hours, i.e., the observation operator

treats all retrievals available in a 4 hour window as a single data point. Specifically, the observation yi

at time ti consists of all the data available for the time interval [ti −2hours,ti +2hours]. There were a

total of 85011 unique individual observation locations during this 5-day interval.

We estimate the information content of ozone profile retrievals from TES when used to improve the170

ozone initial conditions in GEOS-Chem through 4D-Var data assimilation. The main computational

costs come from: (1) the 4D-Var run, which requires 11 iterations of the optimization routine, with

each iteration performing a forward and adjoint model run; and (2) an ensemble of 20 additional model

runs, including adjoints, to gather the data needed for the estimation of different information content

metrics. Concentrations and other time dependent variables are checkpointed during the forward runs,175

and are read during the adjoint runs. The adjoint forcing calculations are performed every observation

window (4 hours). The numerical optimization method is the limited memory bound-constrained

BFGS method (Zhu et al., 1997), which has become the "gold standard" in solving large scale 4D-Var

chemical data assimilation problems (Sandu et al., 2005). The total computational time is 14 minutes

and 46 seconds per forward plus adjoint model runs. All the simulations are parallel and use eight180

cores; they were performed on a Dell Precision T5400 workstation with 2 quadcore Intel(R) Xeon(R)

processors with clock speed 2.33GHz and a RAM of 16GB shared between the eight cores.

We consider a diagonal background error covariance matrix (B0) in all our experiments for simplic-

ity. The setting can be easily extended to use a non-diagonal B0 that captures spatial error correla-

tions(Singh et al., 2010). The initial variances (the diagonal entries of the B0 matrix) are constructed
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from the average background concentrations xB
0 on each of the Nlev vertical layers

B0 =





B
(0)
0 0.. . 0

0 B
(1)
0 . . . 0

...
. . .

...

0 0.. . B
(Nlev)
0




(9)

where

B
(`)
0 =





σ2
`

0.. . 0

0 σ2
`

. . . 0
...

. . .
...

0 0.. . σ2
`





dim×dim

, dim = Nlon ·Nlat , (10)

with

σ` =
rel

dim

Nlon

∑
i=1

Nlat

∑
j=1

xB
0 (i, j,`,sO3) , ` = 1,··· ,Nlev , sO3 = index of ozone (11)

The relative uncertainty level in the background initial conditions is taken to be 50%, i.e., rel = 0.5.

The following simple technique is employed to approximately sample the analysis distribution. We

perform data assimilation and compare the background and the analysis fields against the INTEX185

ozonesonde validation data set. This provides a vertical distribution of mean errors and of their vari-

ance. We make the following assumptions: the analysis covariance matrix is diagonal (the correlation

length is smaller than one grid size); the relative error reduction realized through data assimilation is

similar in all gridpoints at the same vertical level; and the relative error reduction is similar throughout

the assimilation window. Under these assumptions the error reduction measured against the INTEX190

ozonesonde data is representative of the reduction in error at the initial time throughout the entire

computational grid. Consequently, the analysis error standard deviation at a given grid point is ob-

tained by scaling the background standard deviation. The scaling factor is the ratio of the standard

deviation of the analysis against INTEX data over the standard deviation of the background against

INTEX data; the same scaling factor is applied to all grids at the same vertical level. In summary,195

the analysis mean is provided by the result of the data assimilation. The analysis covariance matrix is

diagonal, with the diagonal entries obtained by scaling the corresponding background variances. The

scaling factors are obtained by comparing the background and the analysis against the validation data

set.

5 Information content of TES ozone column retrievals200

We exhibit three different sets of results that provide estimates of the information content of individual

observation locations in the context of 4D-Var data assimilation. Essentially, we demonstrate assimila-
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tion results using subsets of observation locations, with high and low DFS information content, high

and low signal information content, and high information content common to both signal and DFS

metrics.205

5.0.1 The DFS information content

Loosely speaking, the DFS metric (discussed in Section 2.1) indicates the number of states that benefit

from the assimilation of observations. The closer the IDFS is to the total number of model states n, the

more information the observations have brought into the system through data assimilation. Tehnically,

the DFS measures the relative decrease in the error covariance through assimilation.210

The DFS information content for individual data points yi is estimated using equation (3). Here one

data point yi consists of all the ozone retrievals available in the 4 hours interval [ti − 2 hours, ti −

2 hours]. As the Aura satellite orbits the Earth, observations are taken over different locations and at

different times of the day. It is therefore expected that some data points will contain more information

than other, i.e., are more useful in reducing uncertainty when assimilated. We utilize an ensemble215

of Nens + 1 model runs initialized with states drawn from an approximate analysis distribution, as

discussed in Section3.2 . During each run, the cost function contribution of each observation location

is saved. These results are used to estimate IDFS via (3).

Figure 1 presents the DFS acquired from the data in each observation window. The data in the window

16:00 GMT - 20:00 GMT, August 3rd, 2006 has the highest information content. The DFS information220

content decreases with time, and the impact of the observations taken later in the assimilation window

is smaller.

We next study the DFS contributions of individual retrievals to the assimilation result. Each column

and each vertical level is considered separately: one data point corresponds to one retrieved ozone

value in one column, and at one vertical level.225

All the data points are ranked according to their estimated DFS information values. We consider the

most informative set of observations (those that belong to the top 20%), as well as the least informative

set of observations (that forms the bottom 20%). Figure 2 presents the locations of observations within

the top and and within the bottom twentieth percentiles. Perspective, top, latitudinal, and longitudinal

views of these locations are presented. The DFS information content of each observation location has230

been normalized to a value between 0 and 1. Red points represent locations of observations with

high DFS information content, while blue points correspond to locations with a low DFS information

content.

Panels (a) and (b) show that the locations with the highest information content are located within
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Fig. 1. The DFS information content of observations taken at different times within the 5 days assimilation window

starting at 00:00 GMT August 1, 2006, and ending at 00:00 GMT August 6, 2006.

model vertical levels 0 to 21 (roughly, below 100 hPa). Vice-versa, the least informative observations235

are taken above 100 hPa (model vertical levels 22 to 55). As seen in panel (a), among the most informa-

tive observations, those located near tropopause (100 hPa) bring the highest DFS. The non-informative

observations are evenly distributed along latitudes and longitudes, see panel (b). The horizontal dis-

tribution of the high information content locations does not display any localized pattern.

Next, we perform additional data assimilation experiments using only subsets of observations. Specif-240

ically, in one experiment we utilize only the data points in the top 20%, and in another only the data

points in the bottom 20%, filtered by their DFS information content. The results are presented in Figure

3. The assimilation results using only the top 20% most informative observations are almost as accurate

as the result using all observations. The quality of the analysis obtained using only the bottom 20%

observations is similar to that of free model run. The fact that almost all information is captured by the245

top 20%, and almost no information is captured by the bottom 20%, suggests that the DFS provides a

sharp diagnostic to distinguish between the most and the least important data points.
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(a) Top 20%, perspective view (b) Bottom 20%, perspective view

Fig. 2. The location of observations within the top and and within the bottom twentieth percentiles, when ranked

according to their DFS information content. The DFS contribution of each observation is normalized to a value

between 0 to 1.
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Fig. 3. Plot of ozonesonde data, free model run, and 4D-Var analysis trajectories obtained using subsets of obser-

vation locations. The subsets are selected according to their DFS information content.
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5.0.2 The Signal information content

The signal information content of individual data points y` is estimated using the formula (5). No

gradient calculations are necessary. The estimate depends only on the innovation vectors associated

with the background trajectory dB
`

= y` −H(xB
`
), and with the analysis trajectory dA

`
= y` −H(xA

`
).

Equation (5) can be written as

I
Signal
y`

≈
(

dB
`

)T
R−1

`

(
dB

`
−dA

`

)
(12)

We first perform a forward model run starting with the optimal initial condition xA
0 and save the

innovation vectors dA
`

for each observation location and for all observation windows. We then perform250

a second run starting with the background initial condition xB
0 . During this run we compute the

innovation vectors dB
`

, and, using the saved dA
`

values, we also compute the Signal information content

(12).

The time series of the Signal information content per each observation window is shown in Figure

4. The difference between the contribution of observations taken earlier and taken later during the255

assimilation window is small. This difference is relatively large for the DFS information metric, as will

be seen in Figure 1.
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Fig. 4. The Signal information content of observations taken at different times within the assimilation window.

We next relate the signal information content of each observation with its location. This approach

reveals the spatial distribution of observations that contribute more information to the data assimilation
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(a) Top 20%, perspective view (b) Bottom 20%, perspective view

Fig. 5. The location of observations with the highest, and with the lowest signal information content. The colors

represent vertical layer numbers of the model.

process.260

Panels (a) and (b) in Figure 5 present the locations with the highest and lowest signal information

content respectively. Similar to DFS, observations with highest information content are located within

model vertical levels 0 to 21 (roughly, below 100 hPa), while, the least informative observations are

located above 100 hPa (model vertical levels 22 to 55). However, observations within top 20% I
Signal
yi

have similar signal information values as opposed to DFS case, where, observations within top 20%265

had varied range of DFS values.

We now investigate the relationship between the estimated signal information content, and the benefit

that the respective observations bring to the 4D-Var data assimilation process. Specifically, we perform

a 4D-Var data assimilation using only the subset of observations within the top twentieth percentile,

and another 4D-Var data assimilation using only the subset of observations within the bottom twentieth270

percentile when ranked by their signal information content. All data assimilation experiments use the

same covariance matrices and the same background field xB
0 .

Figure 6 presents the results of the different data assimilation experiments. The errors are measured

against the independent data set of INTEX Ozonesonde Network Study 2006 (IONS-6). The leftmost

panel presents the mean ozone concentration vertical profiles. The central panel shows the mean275

errors, i.e., the relative difference between the mean model profiles and ozonesondes. The rightmost

panel presents the corresponding error standard deviations. A detailed discussion of the 4D-Var data

assimilation results using all the observations is provided in Singh et al. (2010).

The results in Figure 6 reveal that the observations with higher signal information content contribute

more to the 4D-Var analysis. The quality of the analysis using only the top 20% of observations is280

similar to the quality of the analysis using all observations, and the analysis based on the bottom 20%
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Fig. 6. Plot of ozonesonde data, free model run, and 4D-Var analysis trajectories obtained using subsets of obser-

vation points. The subsets are selected according to their signal information content.

of the observations is comparable to the free model run.

5.0.3 Common to signal and DFS information content

As described in the previous section, DFS and signal provide complementary measures of the infor-

mation content. Therefore, It would be of interest to consider observation points that have high DFS as285

well as high signal information content. We choose the top 20% of all observation points that rank high

on both DFS and signal metrics. In order to come up with such a selection, we arranged the complete

set of observation data points in two different arrays, first array with descending DFS information

content and second with descending signal information content. Starting from index 17002 (20% of

85011), we move to higher indexes and take the intersection of the grid coordinates of the two arrays290

until we find 20% observation locations with high DFS and signal contents.

We perform data assimilation using the common top 20% of all observations. Figure 7 compares the

quality of the vertical ozone profiles generated by the free model run, the 4D-Var analysis using all

observations, the top 20% signal, the top 20% DFS, and the top 20% data points common to both

DFS and signal. Results indicate that the data points satisfying combined signal and DFS criterion295

provide the most accurate analysis overall. The analysis generated using these points follows closely
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Fig. 7. Plot of ozonesonde data, free model run, and 4D-Var analysis trajectories obtained using subsets of obser-

vation points. The subsets are selected according to their information content common to DFS and Signal.

the analysis generated by using full observation data set from ground level up to 300 hPa and is better

than other observation data sets in the 100–300 hPa vertical region. This indicates that pruning the

least informative data points may actually improve the quality of the overall analysis.

A direct comparison of different assimilation results is provided in Figure 8. Specifically, we plot the300

differences in global ozone concentrations at the beginning of the assimilation window (00:00 GMT on

August 6, 2006) averaged over the first 10 GEOS-Chem vertical levels. Panels (a)-(c) show differences

between the 4D-Var analysis fields and the model forecast (solution without data assimilation); the

analyses use observation data points with top 20% IDFS
yi

, top 20% I
Signal
yi

, and top 20% signal and DFS,

respectively. Panels (d)-(f) show absolute differences between 4D-Var analyses using all observation305

data and using only the data within the top 20% IDFS
yi

, top 20% I
Signal
yi

and top 20% ICommon
yi

.

Since Figure 8 does not provide any comparison of 4D-Var analysis with real ozone observations, we

use Figure 7 as a baseline to assess the results. There is a limitation to this assessment however which

is the fact that the IONS-06 ozonesondes data used in Figure 7 are available only for North America

(mainly United States). Comparing Figures 7 and 8 reflect that in lower to mid troposphere (up to 10310

GEOS-Chem levels, 400 hPa), 4D-Var analysis using all observations is slightly different from analysis

using observations with highest DFS information while it is closer to analysis using observations with

highest signal information and observations which rank high on both DFS and signal metrics.
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(a) Absolute difference between the 4D-Var analysis using data

points with top 20% DFS and the free model run

(b) Absolute difference between the 4D-Var analysis using data

points with top 20% signal and the free model run

(c) Absolute difference between the 4D-Var analysis using data

points with top 20% common to signal and DFS and the free

model run

(d) Absolute difference between the 4D-Var analysis using all

observations and data points with top 20% DFS

(e) Absolute difference between the 4D-Var analysis using all

observations and data points with top 20% signal

(f) Absolute difference between the 4D-Var analysis using all

observations and data points with top 20% common signal and

DFS

Fig. 8. Direct comparison of different assimilation results using various subsets of the data. Differences in global

ozone concentrations are shown at 00:00 GMT on August 6, 2006 and averaged over the first 10 GEOS-Chem

vertical levels.
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6 Conclusions

This paper discusses a characterization of the information content of observations in the context of315

four dimensional variational (4D-Var) data assimilation framework. The ability to characterize the use-

fulness of different data points is important for analyzing the effectiveness of the assimilation system,

for data pruning, and for the design of future sensor systems. The companion paper (Sandu et al.,

2012) considers several metrics from information theory are used to quantify the information content

of data, including the trace of the Fisher information matrix, the signal information, and the degrees320

of freedom for signal. That paper shows how several of these metrics can be evaluated from expected

values of the 4D-Var cost function and its gradient.

The estimates require the computation of expected values with respect to the posterior distribution,

which is not readily available in 4D-Var data assimilation. In Section 3 we discuss several approaches

to obtain posterior expected values. The experiments reported here use random draws from a normal325

distribution with the mean given by the assimilation result, a diagonal covariance matrix, and the anal-

ysis variances obtain by properly scaling the background variances. The scaling factors are obtained

by comparing both the background and analysis results against an independent data set.

We consider a global ozone data assimilation problem using TES satellite observations and the GEOS-

Chem chemical transport model. The quality of the analysis is assessed by comparing the results330

against an independent data set (INTEX ozonesonde measurements). Assimilations of subsets (20%) of

the observation locations characterized by the highest signal, degrees of freedom for signal, and com-

bined information contents provide analyses that are comparable in quality with the analysis obtained

using all available observations. These results are highly encouraging as they indicate the effectiveness

of the proposed approach as a diagnostic tool for the value of observations used during data assimila-335

tion. The issue of pruning the least informative observations without degrading the analysis deserves

future investigation.
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