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Abstract. Data assimilation obtains improved estimates of the state of a physical system by combining

imperfect model results with sparse and noisy observations of reality. all observations used in data

assimilation are equally valuable. The ability to characterize the usefulness of different data points

is important for analyzing the effectiveness of the assimilation system, for data pruning, and for the

design of future sensor systems.5

This paper focuses on the four dimensional variational (4D-Var) data assimilation framework. Met-

rics from information theory are used to quantify the contribution of observations to decreasing the

uncertainty with which the system state is known. We establish an interesting relationship between dif-

ferent information-theoretic metrics and the variational cost function/gradient under Gaussian linear

assumptions. Based on this insight we derive an ensemble-based computational procedure to estimate10

the information content of various observations in the context of 4D-Var. The approach is illustrated

on a nonlinear test problem. In the companion paper (Singh et al., 2012a) the methodology is applied

to a global chemical data assimilation experiment.
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1 Introduction

The ability to characterize the usefulness of different observation locations in data assimilation is im-15

portant in analyzing the effectiveness of the assimilation system, for data pruning/data selection, for

the design of future sensor systems, and for defining strategies for targeting observations. In order

to quantify the contribution of observations in improving the state estimate obtained through data

assimilation, we employ metrics from information theory. Broadly speaking, the information content

of a data in information theory describes the amount of novelty brought in by that data. Information20

theory was devised in the field of electrical engineering and since then has been applied to diverse

areas as complexity theory, network analysis, financial mathematics and mathematical statistics.

In the context of data assimilation, the information content of observations is loosely defined by their

contribution to decreasing the uncertainty in the state estimate (Fisher, 1922). Several of the information

theoretic metrics employed here measure the decrease in the (co-)variance of the error (the trace of the25

Fisher information matrix, the Shannon information, and the degrees of freedom for signal). Others

measure the benefit of data assimilation in terms of adjusting the mean of the distribution (the signal

information). Relative entropy offers a combination of both mean and variance effects.

Information theory has been used in atmospheric sciences for uncertainty studies, instrument devel-

opment, and data selection. Abramov and Majda (2004); Majda and Wang (2006) propose the use the30

relative entropy to quantify the lack of information in climate systems; their approach is applicable

to non-Gaussian distributions and non-linear models. They demonstrate the methodology with two

“toy“ models, Burgers-Hopf and Lorenz ’96 (Lorenz, 1996); the approach becomes computationally

intractable for real large scale models. Information theoretic metrics like the entropy reduction and

the degrees of freedom for signal are being used in the development of remote-sounding instruments35

(Rodgers, 1996, 1998, 2000; Rabier et al., 2002; Worden et al., 2004). Data selection strategies were

defined using information theory (Rabier et al., 2002).

The information theory has recently been used in data assimilation to characterize the information con-

tent of various observations (i.e., the usefulness of these observations). Fisher (2003) proposes methods

to estimate the entropy reduction and degrees of freedom for signal with large variational analysis40

systems. Cardinali et al. (2004) study the influence-matrix diagnostic of data assimilation systems. Xu

(2006) analyzes the relative entropy versus Shannon entropy difference to measure information con-

tent from observations for data assimilation. Zupanski et al. (2007) discusses the use of information

measures in ensemble data assimilation.

In this paper we discuss a characterization of the information content of observations in the context45

of four dimensional variational (4D-Var) data assimilation framework. The analysis carried out in this

paper assumes that errors are normally distributed and that the model dynamics is linear. It is shown
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that, under these assumptions, the posterior statistics of the variational cost function and its gradient

can be used to quantify the information content of observations. This result leads to the following

computational procedure. After data assimilation is complete, an ensemble of simulations is carried50

out with initial conditions drawn from (an approximation of) the analysis probability distribution.

Mean values of the cost function and of adjoint norms are used to estimate the information content of

various observations in the context of 4D-Var. Note that all information metrics obtained here are with

respect to the beginning of each assimilation window (as 4D-Var provides the analysis in form of the

model initial conditions).55

The paper is organized as follows. Section 2 reviews the variational approach to data assimilation from

a Bayesian perspective. Various metrics for information content are discussed in Section 3. Section 4

develops computationally feasible estimation techniques for the information content of observations

in the context of 4D-Var data assimilation; this is the main contribution of this work. The numerical

results are presented and discussed in Section 5. Section 6 summarizes the findings of this work and60

points to future research directions.

2 Variational Data Assimilation

Variational methods solve the data assimilation problem in an optimal control framework (Courtier

and Talagrand, 1987; Le Dimet and Talagrand, 1986; Lions, 1971). Specifically, one finds the control

variable values (e.g., initial conditions) which minimize the discrepancy between model forecast and65

observations; the minimization is subject to the governing dynamic equations, which are imposed as

strong constraints. In this discussion, for simplicity of presentation, we focus on discrete models where

the initial conditions are the control variables.

Consider that the true state of the system xtrue ∈Rn is unknown and needs to be estimated form the

available information. In order to obtain an estimate of xtrue data assimilation combines three different70

sources of information, as follows.

The background (prior) probability density PB(x) encapsulates our current knowledge of the true state

of the system. Specifically, it describes the uncertainty with which one knows xtrue at a given moment,

before any (new) measurements are taken. The mean taken with respect to this probability density is

denoted by E
B [·]. The current best estimate of the true state is called the apriori, or the background75

state xB. The background estimation errors εB = xB − xtrue ∈ N (0,B) are assumed Gaussian and are

characterized by the background error covariance matrix B ∈Rn×n. With many nonlinear models this

assumption is difficult to justify, but is nevertheless widely used because of its convenience.

The model encapsulates our knowledge about physical and chemical laws that govern the evolution of

the system. The model evolves an initial state x0 ∈Rn at the initial time t0 to future state values xi ∈Rn
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at future times ti,

xi =Mt0→ti
(x0) . (1)

The size of the state space in realistic chemical transport models is very large. For example, a GEOS-

Chem simulation at the 2o ×2.5o horizontal resolution has n∈O(108
)

variables.80

Observations represent snapshots of reality available at several discrete time moments. Specifically,

measurements yi ∈Rm of the true state are taken at times ti, i = 1,. . .,N

yi =H(xi)− εobs
i , i = 1,. . .,N . (2)

The observation operator H maps the model state space onto the observation space. The observation

error term εobs
i accounts for both the measurement (instrument) errors, as well as representativeness

errors (i.e., errors in the accuracy with which the model can reproduce reality). Typically observation

errors are assumed unbiased and normally distributed

εobs
i ∈N (0,Ri) , i = 1,. . .,N . (3)

Moreover, observation errors at different times (εobs
i and εobs

j for i 6= j) are assumed to be independent.

Based on these three sources of information data assimilation computes the analysis (posterior) proba-

bility density PA(x). Specifically, PA(x) describes the uncertainty with which one knows xtrue after all

the information available from measurements has been accounted for. The mean taken with respect to

this probability density is denoted by E
A [·]. The best estimate xA is called the aposteriori, or the anal-85

ysis state. The analysis estimation errors εA = xA−xtrue are characterized by the analysis error covariance

matrix A ∈Rn×n.

If both the the background and the observation errors are Gaussian, and the error propagation through

the model (1) is linear, then he probability density of the analysis (estimation) errors εA is also Gaussian,

εA = xA −xtrue ∈N (0,A) ⇔ PA(x) =N
(

xA,A
)

. (4)

2.1 The Bayesian point of view to data assimilation

The estimation problem is posed in a Bayesian framework. The analysis probability density is the

probability density of the state conditioned by all the available observations y= [y1,··· ,yN]. Bayes theorem

allows to express the analysis probability density as follows:

PA(x) =P(x|y) = P(y|x) ·PB(x)

P(y)
, (5)

The denominator P(y) is the marginal probability density of the observations and plays the role of a

scaling factor. The probability of the observations conditioned by the states P(y|x) is the probability
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that the observation errors in (2) assume certain values. If the observation errors at different times are

independent, and the observation errors are Gaussian (3), we have that

P (y|x) = 1

(2π)mN/2
√

∏
N
i=1 detRi

exp

(
−1

2

N

∑
i=1

(H(xi)−yi)
T R−1

i (H(xi)−yi)

)
. (6)

In the maximum likelihood approach one looks for the argument that maximizes the posterior distri-

bution, or, equivalently, minimizes its negative logarithm:

xA = argmax
x

PA(x) = argmin
x

J (x) , J (x) =−lnPA(x) . (7)

In this context the data assimilation problem is formulated as an optimization problem. Using (5) the

minimization cost function can be written as

−lnPA(x)︸ ︷︷ ︸
J (x)

= −lnPB(x)︸ ︷︷ ︸
J B(x)+const

−lnP (y|x)︸ ︷︷ ︸
J obs(x)+const

+lnP (y)︸ ︷︷ ︸
const

. (8)

The minimization function has two terms: the first one (J B) comes from the negative logarithm of the

background probability density, while the second one (J obs) comes from the negative logarithm of the

observation error probability density. Some scaling factors of the probability densities are usually left

out as they give a constant component of the cost function and do not affect the minimization. The third

term (−lnP(y)) does not depend on x and can also be left out of the minimization function. Under the

assumption that the background errors are normally distributed, and after leaving out constant terms,

we have that

J B(x) =
1

2

(
x−xB

)T
B−1

(
x−xB

)
. (9)

Similarly, under the assumption that observation errors are normally distributed and independent (6),

and after leaving out the constant terms,

J obs(x) =
N

∑
i=1

J obs
i (x) ; J obs

i (x) =
1

2
(H(xi)−yi)

T Ri (H(xi)−yi) . (10)

Because observation errors are independent each set of observations yi at time ti brings its own contri-

bution J obs
i to the total cost function.90

2.2 Four dimensional variational (4D-Var) data assimilation

In strongly-constrained 4D-Var data assimilation all observations (2) at all times t1,··· ,tN are simulta-

neously considered. The control parameters are the initial conditions x0; they uniquely determine the

state of the system at all future times via the model equation (1). The background state is the prior

value of the initial conditions xB
0 .95
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Given the background value of the initial state xB
0 , the covariance of the initial background errors B0,

the observations yi and the corresponding observation error covariances Ri, i = 1,··· ,N, the 4D-Var

problem looks for the maximum likelihood estimate xA
0 of the true initial conditions by solving the

optimization problem (7). Combining (8), (9), and (10) leads to the 4D-Var cost function:

J (x0) =
1

2

(
x0−xB

0

)T
B−1

0

(
x0−xB

0

)
+

1

2

N

∑
i=1

(H(xi)−yi)
T R−1

i (H(xi)−yi) . (11)

Note that the departure of the initial conditions from the background is weighted by the inverse back-

ground covariance matrix, while the differences between the model predictions H(xi) and observations

yi are weighted by the inverse observation error covariances.

The 4D-Var analysis is computed as the initial condition which minimizes (11) subject to the model

equation constraints (1)

xA
0 = argminJ (x0) subject to(1). (12)

The model (1) propagates the optimal initial condition (11) forward in time to provide the analysis at

future times, xA
i =Mt0→ti

xA
0 .100

The optimization problem (12) is solved numerically using a gradient-based technique. The gradient

of (11) reads

∇J (x0) =B−1
0

(
x0−xB

0

)
+

N

∑
i=1

(
∂xi

∂x0

)T

HT
i R−1

i (H(xi)−yi) . (13)

The 4D-Var gradient requires not only the linearized observation operator Hi =H′(xi), but also the

transposed derivative of future states with respect to the initial conditions. The 4D-Var gradient can

be obtained effectively by forcing the adjoint model with observation increments, and running it back-

wards in time. The construction of an adjoint model requires considerable effort.

3 Information Metrics and Gaussian Probabilities105

The 4D-Var data assimilation of the observations y changes the distribution of errors (uncertainty) in

the initial conditions from the background probability density PB(x) to the analysis probability density

PA(x). If the data assimilation is beneficial the uncertainty associated with the new distribution PA is

smaller than the uncertainty associated with the original distribution PB.

Roughly speaking, the information content of the observations y is measured by the decrease in un-110

certainty from before data assimilation (PB) to after data assimilation (PA). The information content

depends not only on the data (yi) but also on the data accuracy (R−1
i ), on the background uncertainty

(B−1
0 ), and on the model dynamics M.

We are interested to rigorously quantify the information content of observations in 4D-Var. For this we

use several information theoretic metrics, which are reviewed below.115
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3.1 Fisher information matrix

The Fisher information matrix (FIM) (Fisher, 1922) associated with the probability density function

P(x) is defined as

F (P) =
∫Rn

[
∂ (−lnP(x))

∂x

][
∂ (−lnP(x))

∂x
)

]T

P(x)dx ∈Rn×n . (14)

The trace of the FIM offers a measure of the total level of uncertainty associated with the distribution.

Under the assumption that the background errors are normally distributed the Fisher information ma-

trix of the background error probability density PB(x) =N (xB
0 ,B0) is just the inverse of the background

error covariance:

F
(
PB
)
=
∫Rn

[
∇J B(x0)

][
∇J B(x0)

]T
PB(x0)dx0 =B−1

0 . (15)

Here we have used the relation (8) to link the background error probability densities with the back-

ground part of the 4D-Var cost function.

Similarly, assuming that the analysis error probability density is Gaussian (4) the analysis Fisher infor-120

mation matrix is

F
(
PA
)
=
∫Rn

[∇J (x0)][∇J (x0)]
T PA(x0)dx0 =A−1

0 . (16)

The information content of the observations used in data assimilation can be measured as the trace of

the background FIM (total uncertainty in the background) minus the trace of the analysis FIM (total

uncertainty in the analysis) (Rodgers, 1998, 2000). In the Gaussian case this reduces to the trace of

difference between the analysis and background error covariance matrices

IFIM = trace
(
F
(
PA
))

− trace
(
F
(
PB
))

= trace
(

A−1
0 −B−1

0

)
. (17)

3.2 Shannon information

The entropy associated with a probability density is defined as (Shannon and Weaver, 1949; Bartlett,

1962)

H(P) =
∫Rn

P(x) ln(P(x))dx

and offers a measure of the average uncertainty with which one knows the state x, if the estimation error

has a probability density P .125

For example, assume that the background error distribution is Gaussian. The entropy of the back-

ground probability density is given by the relation (Rodgers, 2000)

PB(x) =N
(

xB
0 ,B0

)
⇒ H

(
PB
)
= n ln

(√
2πe

)
+

1

2
lndet(B0) .

6



In this case, the entropy may be interpreted as a measure of the volume in phase space enclosed by a

surface of constant probability.

Using the Bayes rule (5) the entropy of the analysis error probability distribution can be written as

H
(
PA
)
=
∫ [

lnPB(x)+ lnP(y|x)− lnP(y)
]
PA(x)dx .

The Shannon information content of observations y used in 4D-Var data assimilation is defined as

the decrease in the average uncertainty with which the initial state is known. Specifically, the Shan-

non information content is given by the difference between the background entropy and the analysis

entropy,

IShannon =H
(
PB
)
−H

(
PA
)

. (18)

Under the assumption that both the background and the analysis error probability densities are Gaus-

sian (4), the Shannon information content of the observations used in data assimilation is

IShannon =
1

2
lndet(B0)−

1

2
lndet(A0) =

1

2
lndet

(
B0 A−1

0

)
=

1

2
lndet

(
A−1/2

0 B0 A−1/2
0

)
. (19)

3.3 Degrees of freedom for signal

The Degrees of freedom for signal (DFS) metric for the information content has been previously em-

ployed in meteorological data assimilation (Rodgers, 1996; Fisher, 2003; Cardinali et al., 2004; Stewart130

et al., 2008; Zupanski et al., 2007).

Consider the symmetric matrix square root B1/2
0 of the background covariance; we have that

B0 =B1/2
0 B1/2

0 , B−1
0 =B−1/2

0 B−1/2
0 .

Consider also the orthogonal matrix Q whose columns are the eigenvectors of the symmetric matrix

B−1/2
0 A0 B−1/2

0

QT
(

B−1/2
0 A0 B−1/2

0

)
Q=Σ,

with Σ a diagonal matrix. The matrix L = B−1/2
0 Q has the property that it transforms simultaneously

the background and the analysis covariances to diagonal forms (Fisher, 2003) when it is symmetrically

applied:

LT B0 L = In×n , LT A0 L =Σ .

The diagonal elements of the transformed background error covariance matrix are equal to unity and

each corresponds to an individual degree of freedom. The eigenvalues of the transformed matrix Σ,

on the other hand, can be interpreted as the relative reduction in variance in each of the n statistically

independent directions corresponding to the n components of error in the state vector. The degrees of135

freedom for signal measures the total reduction in variance and is defined as
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IDFS = trace(In×n−Σ) = n− trace
(

B−1/2
0 A0 B−1/2

0

)
= n− trace

(
B−1

0 A0

)
. (20)

The relative reduction in variance B−1
0 A0 could also be interpreted as the gradient of the analysis in

observation space with respect to the observations.

3.4 Relative entropy

The information content of the observations used in data assimilation can also be measured by the140

relative entropy (RE) of the analysis probability density with respect to the background probability

density:

IRE =
∫Rn

PA(x) ln
PA(x)

PB(x)
dx .

Under the assumption that both the background and the analysis error probability densities are Gaus-

sian (4), the relative entropy of the analysis over the background is (Xu, 2006):145

IRE =
1

2

(
xA

0 −xB
0

)T
B−1

0

(
xA

0 −xB
0

)
(21a)

+
1

2
trace

(
B−1/2

0 A0 B−1/2
0

)
(21b)

−n

2
(21c)

+
1

2
lndet

(
B1/2

0 A−1
0 B1/2

0

)
. (21d)

The signal part of the relative entropy

ISignal =
1

2

(
xA

0 −xB
0

)T
B−1

0

(
xA

0 −xB
0

)
(22)

measures the reduction of uncertainty due to the change in the best estimate from the background state150

to the analysis state. The terms (21b), (21c), and (21d) together form the dispersion part of the relative

entropy.

Comparing (21a)–(21b)–(21c)–(21d) and (19), (20), (22) reveals that

IRE = ISignal
︸ ︷︷ ︸
(21a)

+IShannon
︸ ︷︷ ︸

(21d)

−(1/2)IDFS

︸ ︷︷ ︸
(21b)−(21c)

.

8



Let us have a closer look at the relative entropy between two Gaussian distributions:

IRE =
∫Rn

PA(x) ·
(

lnPA(x)− lnPB (x)
)

dx

=
∫Rn

PA(x) ·
(
−1

2
lndetA0−

1

2

(
x−xA

0

)T
A−1

0

(
x−xA

0

)
155

+
1

2
lndetB0+

1

2

(
x−xB

0

)T
B−1

0

(
x−xB

0

))
dx

=
1

2
lndetA−1

0 B0−
n

2
+

1

2

∫Rn
PA(x) ·

(
x−xB

0

)T
B−1

0

(
x−xB

0

)
dx

We see that the Shannon part (21d) of the relative entropy comes from the scaling factors of the Gaus-

sian distributions (the difference between the logarithms of the (2π)−n/2 (detB0)
−1/2 and (2π)−n/2

(detA0)
−1/2 factors). Since 4D-Var cost functions do not account for this scaling we cannot hope to160

accurately recover the Shannon part of the dispersion just by analyzing the cost function.

The constant term (21c) comes from the integration (averaging) of the exponent of the analysis distri-

bution; this is shown in Appendix A in relation (A2). The signal part (21a) and the DFS part (21b)

come from the integration (averaging) of the exponent of the background distribution; this is shown in

Appendix A in relation (A3).165

The three terms (21a), (21c), and (21b) are represented in the 4D-Var cost function, and we could be

estimated from statistics of different parts of the 4D-Var cost function.

4 Estimation of the Data Information Content in the Context of 4D-Var Data Assimilation

We seek to derive a computationally-easy way to estimate the information content of various observa-

tions in the context of 4D-Var. The proposed approach is based on an approximate sampling from the170

posterior error distribution in 4D-Var. Thus, our approach is a hybrid one: ensembles are used to infer

the information content of observations used in variational data assimilation.

Sampling from the posterior probability density at t0 is challenging since this probability density is not

explicitly computed by 4D-Var. Approximate sampling can be performed using second order adjoints,

and computing a few eigenvectors corresponding to the dominant eigenvalues of the inverse Hessian.175

An alternative approach is based on a subspace analysis of 4D-Var Cheng et al. (2010). A detailed

discussion of sampling strategies is provided in the companion paper (Singh et al., 2012a).

Therefore, we assume that we have the ability to obtain the following sample of initial conditions from

the posterior distribution:

xr
0 ∈PA(x0) , r = 1,··· ,Nens . (23)

Based on it we can approximate expected values of any functional f (x) with respect to the posterior
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density by posterior ensemble averages as follows:

E
A [ f (x0)]≈ 〈 f (x0)〉A =

1

Nens

Nens

∑
r=1

f (xr
0) . (24)

4.1 Estimation of the FIM information content

In the 4D-Var setting a gradient based optimization method is typically employed to minimize the cost

function J (x). The gradients are evaluated by the adjoint model; specifically, the value of the adjoint

variable at the initial time equals the gradient of the cost function with respect to the initial state

λ0(x0) =∇x0J (x0) .

The adjoint variable depends on the forward model trajectory about which the linearization is per-

formed. This is indicated explicitly by making the adjoint variable a function of the forward initial180

condition.

The trace of the analysis FIM (16) can be expressed as:

trace
(
F
(
PA
))

=
∫Rn

trace
(

λ0(x0)λT
0 (x0)

)
PA(x0)dx0 =E

A
[
‖λ0(x0)‖2

]
.

The trace of the analysis FIM is the average value of the adjoint variable norm with respect to the anal-

ysis distribution. Using the sample of initial conditions (23) the statistical average can be approximated

by the ensemble average.

Under the typical assumption that the background probability is Gaussian and using (15) and (17) we

obtain the following estimate for the FIM information content of all observations:

IFIM ≈
〈
‖λ0(x0)‖2

〉A
− trace

(
B−1

0

)
. (25)

4.1.1 Computational procedure for estimating the FIM information185

After the data assimilation has been performed, one runs the forward and the adjoint models Nens times

starting with forward initial conditions sampled from the analysis probability density (23). Each run

produces an adjoint gradient, whose norm is computed. The ensemble average of these gradient norms

estimates the trace of the analysis FIM.

4.2 Estimation of the DFS information content190

In this section we consider the idealized situation detailed in Appendix B. Specifically, we assume that

the model is linear (B1), the observation operator is also linear (B2), and both the background errors
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and the observation errors are normally distributed. The analysis relies on the properties of random

quadratic functionals presented in Appendix A.

Consider running the model with random initial conditions taken from the distribution x̂0 ∈N (µ,C).195

Each run results in different values of the 4D-Var cost function; we are interested to understand the

information provided by the statistics of the (ensemble of) cost function values.

Note that x̂0−xB
0 ∈N (µ−xB

0 ,C
)
. A direct application of (A1a) reveals that the background component

of the cost function has the following mean:

J B(x̂0) =
1

2

(
x̂0−xB

0

)T
B−1

0

(
x̂0−xB

0

)
200

E

[
J B(x̂0)

]
=

1

2

(
µ−xB

0

)T
B−1

0

(
µ−xB

0

)
+

1

2
trace

(
B−1

0 C
)

= J B(µ)+
1

2
trace

(
C1/2 B−1

0 C1/2
)

.

Since the dynamics is linear, for a given observation data vector yi we have that

Hi Mi x̂0−yi ∈N
(

Hi Mi µ−yi , Hi Mi CMT
i HT

i

)
.

Note that the above relation characterizes only the uncertainty in the initial conditions. The data is

given; the same data values yi are used for each initial condition x̂0.

The observation component of the cost function:

J obs (x̂0) =
1

2

N

∑
i=0

(Hi Mi x̂0−yi)
T R−1

i (Hi Mi x̂0−yi)

has the following mean:205 E[J obs (x̂0)
]
=

1

2

N

∑
i=0

E[(Hi Mi x̂0−yi)
T R−1

i (Hi Mi x̂0−yi)
]

=
1

2

N

∑
i=0

(Hi Mi µ−yi)
T R−1

i (Hi Mi µ−yi)

+
1

2

N

∑
i=0

trace
(

R−1
i Hi Mi CMT

i HT
i

)

= J obs (µ)+
1

2

N

∑
i=0

trace
(

C1/2 MT
i HT

i R−1
i Hi Mi C

1/2
)

= J obs (µ)+
1

2
trace

(
C1/2

(
N

∑
i=0

MT
i HT

i R−1
i Hi Mi

)
C1/2

)
210

= J obs (µ)+
1

2
trace

(
C1/2

(
A−1

0 −B−1
0

)
C1/2

)
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Putting the two formulas together results inE[J (x̂0)]−J (µ) =
1

2
trace

(
C1/2A−1

0 C1/2
)

. (26)

4.2.1 Sampling independent variables

Recall that in the Gaussian case the Fisher information matrix (FIM) is just the inverse of the covariance.

Let C = σ2I. Then the total reduction in uncertainty is given by the trace of the difference between the215

analysis and the background FIMs:E[J obs (x̂0)
]
−J obs (µ) =

σ2

2
trace

(
A−1

0 −B−1
0

)
.

Consequently the FIM information content of all observations y1 ···yN is

IFIM
y1···yN

=
2

σ2

(E[J obs (x̂0)
]
−J obs (µ)

)
.

The contribution of the observations yi taken at time ti to the decrease of the trace of FIM, i.e., the FIM220

information content of yi is:

IFIM
yi

=
2

σ2

(E[J obs
i (x̂0)

]
−J obs

i (µ)
)

=
1

σ2
E[(Hi Mix̂0−yi)

T R−1
i (Hi Mi x̂0−yi)

]

− 1

σ2
(Hi Mi µ−yi)

T R−1
i (Hi Mi µ−yi) .

While in the linear case this expression does not depend on µ, in the nonlinear case we can take µ= xA
0225

(after the analysis to assess the impact the observation had on the FIM) and µ= xB
0 (before the analysis

to assess the impact the observation will have on the FIM).

4.2.2 Sampling from the analysis distribution

A sample x̂0 ∈N (xA
0 ,A0

)
from the posterior distribution leads to

E
A
[
J B (x̂0)

]
= J B(xA

0 )+
1

2
trace

(
A1/2

0 B−1
0 A1/2

0

)
230

E
A
[
J obs (x̂0)

]
= J obs

(
xA

0

)
+

1

2
trace

(
A1/2

0

(
A−1

0 −B−1
0

)
A1/2

0

)

= J obs
(

xA
0

)
+

n

2
− 1

2
trace

(
A1/2

0 B−1
0 A1/2

0

)

E
A [J (x̂0)] = J (xA

0 )+
n

2
.
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The signal part of the relative entropy (21a) is given by J B(xA
0 ). Attributing the contribution of each

observation to the signal part of the entropy is more involved.235

We have the following estimate of the DFS information content (21b) of all observations y1 ···yN :

IDFS
y1···yN

= n− trace
(

A1/2
0 B−1 A1/2

0

)
= 2E

A
[
J obs (x̂0)

]
−2J obs

(
xA

0

)
. (27)

This method allows to account for the contribution of each observation yi to the DFS information as

follows:

IDFS
yi

= 2E
A
[
J obs

i (x̂0)
]
−2J obs

i

(
xA

0

)

= E
A
[
(Hi (x̂i)−yi)

T R−1
i (Hi (x̂i)−yi)

]

−
(
Hi

(
xA

0

)
−yi

)T
R−1

i

(
Hi

(
xA

0

)
−yi

)
240

For nonlinear models this relation holds within some approximation margin.

In practice the posterior expected value is replaced by the ensemble expected value

IDFS
yi

≈ 2
〈
J obs

i (x̂0)
〉A

−2J obs
i

(
xA

0

)
. (28)

4.2.3 Sampling from the background distribution

A sample x̂0 ∈N
(
xB

0 ,B0

)
from the background distribution leads to245

E
B
[
J B (x̂0)

]
= J B(xB

0 )+
n

2

E
B
[
J obs (x̂0)

]
= J obs

(
xB

0

)
+

1

2
trace

(
B1/2

0

(
A−1

0 −B−1
0

)
B1/2

0

)

E
B [J (x̂0)] = J

(
xB

0

)
+

1

2
trace

(
B1/2

0 A−1
0 B1/2

0

)
.

4.2.4 Computational procedure for estimating the DFS information

After the data assimilation has been performed, one runs the forward model Nens times. The initial250

conditions are sampled from the analysis distribution (23) (or from another distribution, e.g., diagonal,

to obtain different statistics). An additional run is performed starting from the analysis initial condi-

tions. During each run one records all individual contributions J obs
i of all observations yi to the cost

function. This data is post-processed according to (28). The ensemble average of the contributions

J obs
i , minus the contribution obtained from the analysis run, estimates (half of) the DFS information255

content of the data yi.
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4.3 Estimation of the RE information content

The relative entropy (RE) information content of all observations y1 ···yN is measured by the relative

entropy of the posterior probability density PA over the background probability density PB

IRE
y1···yN

=
∫Rn

PA(x) · ln PA(x)

PB (x)
dx260

=
∫Rn

PA(x) · ln P (y|x)
P (y)

dx

=
∫Rn

PA(x) ·
(

lnP (y|x)− lnP(y)
)

dx

= E
A [lnP (y|x)]− lnP(y)

= const−E
A
[
J obs(x)

]

where we have made use of Bayes rule (5) to derive the second relation, and of (8) to derive the last265

equation. The marginal distribution of observations y does not depend on x and its expected value is

a constant.

Assuming we can sample the posterior distribution this expected value can be approximated by the

ensemble mean. The RE information content of all observations is estimated as

IRE
y1···yN

≈ const−
〈
J obs(x)

〉A
. (29)

The relative entropy information content is larger when the 4D-Var process decreases more the obser-

vation part of the cost function. In other words, the lower the mismatch between model predictions

and observations after assimilation the higher the relative entropy information content of observations270

is.

The RE information content of the particular observation yi can be quantified as follows. Data assimi-

lation using all observations y1 ···yN results in a posterior probability density PA(x). Data assimilation

using all observations except yi results in another posterior probability density PA
−i(x). The RE infor-

mation contribution of data yi is measured by the relative entropy of the full-data posterior probability

density PA over the partial-data posterior density PA
−i. If the observation errors at different times are

independent it can be shown that

IRE
yi

=
∫Rn

PA(x) · ln PA(x)

PA
−i (x)

dx = consti −E
A
[
J obs

i (x)
]
≈ consti−

〈
J obs

i (x)
〉A

. (30)

The constant comes from the marginal probability of the observation yi and is different for each data

point. Therefore it is difficult to apportion the information gain to individual observations using this

metric.

An alternative, more computationally involved approach would be to repeat the data assimilation with-

out the data point yi, and to build another ensemble drawn from PA
−i(x). For each data assimilation

14



experiment one computes the total RE information content (29). The information gain due to the data

yi is the measured by

IRE
yi

= IRE
y1···yN

−IRE
y1 ···yi−1,yi+1···yN

. (31)

4.3.1 Computational procedure for estimating the RE information275

The computational procedure is similar to the one for the DFS information presented in Section 4.2.4.

An ensemble of models is run with the initial conditions sampled from the analysis distribution (23).

The ensemble average of the observation part J obs of the cost function estimates the RE information

content of all observations (29), modulo a constant. This procedure can be repeated for different data

assimilation scenarios, where individual data points are being withheld; the difference between the280

resulting metrics estimates the RE information content of the withheld data.

4.4 Estimation of the Shannon information content

We have seen that the Shannon information is related to the scaling of the Gaussian probability den-

sities. This information is ignored by the 4D-Var cost function. Therefore, we cannot expect to obtain

accurate estimates of the Shannon information content by mining the cost function information.285

A (very) rough approximation can be obtained using the eigenvalues of the ensemble covariance ma-

trices, as follows. Consider a set of perturbations drawn from the background ensemble, and a set of

perturbations drawn from the analysis ensemble; in matrix notation

∆xB
0 ∈ Rn×Nens ; ∆xA

0 ∈ Rn×Nens ; Nens ≪ n .

The error covariance matrices are approximated by the ensemble covariance

B0 ≈
1

(Nens−1)
·
(

∆xB
0

)T
·∆xB

0 ; A0 ≈
1

(Nens−1)
·
(

∆xA
0

)T
·∆xA

0 . (32)

Denote the nonzero eigenvalues of the two ensemble covariance matrices by λB
i and λA

i respectively,

i = 1,2,. . .,Nens. The nonzero eigenvalues can be efficiently computed by solving small Nens ×Nens

eigenvalue problems since

Λ = eig
(

∆x ·∆xT
)

︸ ︷︷ ︸
n×n

∈ Rn , λ= eig
(

∆xT ·∆x
)

︸ ︷︷ ︸
Nens×Nens

∈ RNens ⇒ Λi = λi , i = 1,··· ,Nens . (33)

An estimate of the Shannon information content (21d) can be given in terms of eigenvalues as follows:

1

2
lndetB0 A−1

0 =
1

2
ln

Nens

∏
i=1

(
λB

i

λA
i

)
=

1

2

Nens

∑
i=1

ln

(
λB

i

λA
i

)
. (34)
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Similarly, the part (21b) of the DFS metric can be estimated by

1

2
trace

(
B−1/2

0 A0 B−1/2
0

)
=

1

2

Nens

∑
i=1

(
λA

i

λB
i

)
. (35)

4.4.1 Computational procedure for estimating the Shannon information

One constructs two ensembles of initial conditions, one from the background distribution, and one

from the analysis distribution. The nonzero eigenvalues of the corresponding ensemble covariances

are computed using (33). These eigenvalues are used to estimate the Shannon information content via

(34) and the DFS information content via (35). The computational procedure is direct - no additional290

model runs are necessary. However, for a small number of ensemble members, the ensemble covariance

eigenvalues may poorly represent the eigenvalues of the true covariances. In this case the resulting

estimates of the Shannon or DFS information content are expected to be inaccurate.

4.5 Estimation of the Signal information content

In this section we assume a linear system with linear observation operators and Gaussian uncertainties295

as discussed in Appendix B. The analysis state obtained using all the available information is xA
0 .

Consider one particular observation yℓ, remove it from the set of data, and repeat the data assimilation.

Let xC
0 be the analysis state when the data assimilation is carried out without the observation yℓ.

We use the notation of Appendix B. Furthermore, denote the contribution of observation ℓ to the right

hand side and to the 4D-Var system matrix (B4) by

bℓ =MT
ℓ

HT
ℓ

R−1
ℓ

(
yℓ−HℓMℓxB

0

)
, Dℓ =MT

ℓ
HT

ℓ
R−1
ℓ

HℓMℓ .

Following equation (B4) the two 4D-Var problems have the following solutions:

A−1
0 ·

(
xA

0 −xB
0

)
= b ,

(
A−1

0 −Dℓ

)
·
(

xC
0 −xB

0

)
= b−bℓ .

We assume a case where there are many observations such that the contribution of bℓ to the total right

hand side vector is relatively small, b−bℓ≈ b, and the contribution of Dℓ to the total inverse covariance

is relatively small, A−1
0 −Dℓ ≈A−1

0 . The following approximations are obtained:

A−1
0 ·

(
xC

0 −xB
0

)
≈ b−bℓ , A−1

0 ·
(

xA
0 −xC

0

)
≈ bℓ .
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The difference in the signal part due to the assimilation of observation yℓ is

ISignal
yℓ

=
1

2

(
xA

0 −xB
0

)T
B−1

0

(
xA

0 −xB
0

)
− 1

2

(
xC

0 −xB
0

)T
B−1

0

(
xC

0 −xB
0

)
300

=
1

2

(
xA

0 −xB
0

)T
B−1

0

(
xA

0 −xB
0

)
− 1

2

(
xC

0 −xB
0

)T
B−1

0

(
xA

0 −xB
0

)

+
1

2

(
xA

0 −xB
0

)T
B−1

0

(
xC

0 −xB
0

)
− 1

2

(
xC

0 −xB
0

)T
B−1

0

(
xC

0 −xB
0

)

=
1

2

(
xA

0 −xC
0

)T
B−1

0

(
xA

0 −xB
0

)
+

1

2

(
xA

0 −xC
0

)T
B−1

0

(
xC

0 −xB
0

)

=
1

2

(
A−1

0 (xA
0 −xC

0 )
)T

A0 B−1
0 A0

(
A−1

0 (xA
0 −xB

0 )+A−1
0 (xC

0 −xB
0 )
)

≈ 1

2
(bℓ)

T A0B−1
0 A0 (2b−bℓ)305

≈ bT
ℓ

A0 B−1
0 A0 b

=
(

yℓ−HℓMℓx
B
0

)T
R−1
ℓ

HℓMℓA0 B−1
0

(
xA

0 −xB
0

)
.

Let

x̃A
0 =A0 B−1

0 xA
0 , x̃B

0 =A0 B−1
0 xB

0 , (36)

HℓMℓA0 B−1
0

(
xA

0 −xB
0

)
≈Hℓ x̃A

ℓ
−Hℓ x̃B

ℓ
.310

The contribution of measurement yℓ to the signal information can therefore be approximated as:

ISignal
yℓ

≈
(

yℓ−Hℓ

(
xB
ℓ

))T
R−1
ℓ

(
Hℓ

(
x̃A
ℓ

)
−Hℓ

(
x̃B
ℓ

))
(37a)

≈
(

yℓ−Hℓ

(
xB
ℓ

))T
R−1
ℓ

(
Hℓ

(
xA
ℓ

)
−Hℓ

(
xB
ℓ

))
(37b)

where the last approximation is rather coarse.

4.5.1 Computational procedure for estimating the Signal information315

Two modified initial conditions are computed by (36). (If this is not feasible, the background and the

analysis initial conditions can be used, at the price of a larger approximation error). The model is run

from the modified analysis and the “synthetic observations” Hℓ

(
x̃A
ℓ

)
are recorded. The model is run

again from the modified background and the “synthetic observations” Hℓ

(
x̃B
ℓ

)
are also recorded (this

run is not necessary if one uses (37b)). Finally, the model is run from the background state, and the320

estimates (37a) or (37b) are evaluated for each data point yℓ.
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5 Numerical Experiments

In this section we apply the estimation methodology developed in Section 4 to the Lorenz-96 model

(Lorenz, 1996), a highly nonlinear test case.

In (Singh et al., 2012b) we report results with a linear test case with Gaussian uncertainties, where the325

numerical results confirm the accuracy of theoretical estimates. In the companion paper (Singh et al.,

2012a) we consider a 4D-Var data assimilation study with a global chemical transport model. The data

assimilation experiment focuses on ozone. Ozone is an important constituent of stratosphere which

absorbs the high energy UV-B and UV-C rays, thus preventing the disintegration of DNA molecules

and supporting the existence of life. However, ozone present in mid to low troposphere is a pollutant,330

a powerful oxidizing agent leading to destruction of tissues, damaging fibers and creating breathing

problems. We estimate the DFS information content of satellite ozone column retrievals at different

times.

The Lorenz 96 system (Lorenz, 1996) is described by the following set of equations:

dxj

dt
=−xj−1(xj−2−xj+1−xj)+F , j= 1,. . .n , (38)

with n= 40 and periodic boundary conditions (xi = xn+i for any i). The forcing term is F = 8.0.

We start with the state xi(t−10) = 1+0.1mod(i,5), i = 1,··· ,n, and integrate it forward for 10 time units335

to obtain the reference (“true”) state at t0, xref
0 .

A static background covariance matrix Bt0 is constructed as follows. First define the covariance matrix

B̂0 using
(

B̂0

)
ij
= σi ·σj ·exp

(
− d2

L2

)
, i, j= 1, . . .,n , (39)

where the standard deviation for the state variable i is σi = 0.03xref
i (t0), and the correlation distance is

set to L = 4. We account for the periodic boundary conditions in that d = min{|i− j|,n−|i− j|}. The

covariance matrix is obtained via

B0 = αIn×n+(1−α)B̂0 , α = 0.1 .

This construction ensures a nonsingular B0, as required by the 4D-Var algorithm.

The background initial state is obtained from the reference solution, plus a random perturbation con-

sistent with the background error statistics:

xB
0 = xref

0 +B1/2
0 ·ξ , ξ ∈N (0,1)n . (40)

The simulation time interval is [0, 0.3] time units. The reference trajectory is generated using Matlab’s

ode45 integrator with tight tolerances (relative error tolerance RelTol=1.e-9 and absolute error tolerance
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AbsTol=1.e-9). The model consists of a numerical integration using “the original” fourth order Runge-340

Kutta method with a time step ∆t = 0.015 time units. The model error is truncation error associated

with the numerical integration using a relatively large step size.

The vector of observations has m = 34 components at each time. The observation operator H∈R34×40

is linear and captures a subset of 30 model states plus 4 linear combinations of model states as follows

H·x =




x1,x3,··· ,x19︸ ︷︷ ︸
odd−numbered

, x21,x22 ···x39,x40︸ ︷︷ ︸
all states

,
10

∑
i=1

xi,
20

∑
i=1

xi,
40

∑
i=21

xi,
40

∑
i=31

xi

︸ ︷︷ ︸
linear combinations




T

. (41)

The odd-numbered states among the first 20 ({1,3,5,···,19}) and all of the last 20 states ({21,22,··· ,39,40})

are directly observed. Also observed are the sum of the first 10 states, the sum of the first 20 states, the

sum of the last 20 states, and the sum of the last 10 states. The sums of the last 10 and 20 states are345

redundant observations which can be recovered from the observations of individual states {21,··· ,40}.

The sums of the first 10 and 20 states bring additional information about the even-numbered states

{2,4,··· ,16,18} which are not directly observed.

Observations are taken every 0.03 time units, i.e., there are Nobs = 10 uniformly spaced observation

times: tk = 0.03k (time units) for k = 1,··· ,Nobs. Synthetic observation values are generated as follows.350

First, the reference trajectory is used to obtain perfect observations yref
k =H· xref

k . The vector of stan-

dard deviations of observation errors is taken to be 0.5% of the time-averaged reference observations,

σobs = 0.005(∑
Nobs
k=1 yref

k )/Nobs. The observation errors are assumed to be uncorrelated. The observation

covariance is the diagonal matrix R =diagi=1···n
{
(σobs

i )−2
}

and is constant for all observations times.

Synthetic observations are generated by adding Gaussian noise to the reference observations:

yk = yref
k +R1/2 ·ηk , ηk ∈N (0,1)m , k = 1,··· ,Nobs . (42)

Our implementation of 4D-Var makes use of the matlab implementation of L-BFGS algorithm provided355

in Heinkenschloss (2008). L-BFGS (Zhu et al., 1997) is the de facto “gold standard” of gradient-based

optimizers used in data assimilation studies.

An ensemble of 1,000 4D-Var optimization runs is performed. Each run uses a different background

state generated according to (40), and a different set of observations generated according to (42). The

ensemble of optimized initial states samples the analysis distribution (of initial conditions). Ensembles360

of runs started from these initial states are used to estimate various information content metrics.

From the ensemble of initial conditions we derive the ensemble covariance matrices Be ≈ B0 and Ae ≈
A0. These are used to compute directly estimates of the information metrics. The information content

metrics obtained directly, and via the approximation formulas proposed here, are shown in Table 1.

The two computational approaches give very close estimates.365
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Table 1. Information content metrics for the 4D-Var experiment with the Lorenz-96 system. The values obtained

by the estimation formulas are close to those obtained by direct calculations.

Direct Estimate

Equation Value Equation Value

DFS n− trace
(

A1/2
e ·B−1

e ·A1/2
e

)
3.995e+01 (28) 3.978e+01

Fisher trace
(
A−1

e −B−1
e

)
2.269e+06 (25) 2.207e+06

Signal 0.5 ·
(
xA

0 −xB
0

)T ·B−1
e ·

(
xA

0 −xB
0

)
1.785e+01 (37a) 1.723e+01

Shannon 0.5 · (lndetBe − lndetAe) 1.637e+02 (34) 1.631e+02
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Fig. 1. Estimated Fisher information gain per state variable for the Lorenz-96 model.

The Fisher information is estimated using equation (25). Figure 1 shows each component of the gradi-

ent squared IFIM
i ≈

〈
(λ0)

2
i

〉A
. This quantifies the informational benefit that each state xi(t0) receives

due to data assimilation, as measured by the Fisher information matrix. Among the first twenty states

the odd numbered ones (x1,x3,··· ,x19) benefit more than the even numbered ones (x2,x4,··· ,x18). This

correlates well with the structure of the operator (41) which observes directly only the odd numbered370

states. The last twenty states show about the same information benefit, and this is expected since all of

them are directly observed. The end states x1 and x40 show the largest information gain; this cannot

be explained based solely on the structure of the observation operator (41).

The DFS information is estimated using equation (28). The formula allows to split the DFS information

into contributions brought by each observation at each time. Figure 2(a) presents the DFS contributions375

of each observations (summed up for all observation times). Each of the first 10 observations (of states

x1,x3,··· ,x19) contributes about two degrees of freedom for signal. We can infer that direct observation

of an odd numbered state brings information about its un-observed even numbered neighbors. Each of

the next 20 observations (of states x21,··· ,x40) contributes a single degree of freedom for signal. This is
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expected as each observation in this group measures a single state variable, and all neighboring states380

are directly observed. Each of the observations 31 (sum of the first 10 states) and 32 (sum of the first 20

states) brings in about half a degree of freedom for signal. Finally, the last two observations (sums of

the last 10 and of the last 20 states) bring in almost zero degrees of freedom for signal. This is expected

as the information is redundant.

Figure 2(b) presents the DFS contribution of each observation time (summed up for all observations).385

The time points near the beginning and near the end of the assimilation window bring larger contribu-

tions of over 5 degrees of freedom for signal. The points near the middle of the assimilation window

have smaller contributions of under 3 degrees of freedom for signal.

0 10 20 30 40
0

0.5

1

1.5

2

Observation number

D
F

S

(a) DFS per observation

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6

7

Time

D
F

S

(b) DFS per time point

Fig. 2. Estimated degrees-of-freedom-for-signal information metrics for the Lorenz-96 model.
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The signal information is estimated using equation (37a). Figure 3 shows the signal contribution of

all observations at different times. The observations near the beginning of the assimilation window390

contribute the most, while those near the middle of the assimilation window contribute the least.
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Fig. 3. Estimated signal information contribution per observation time for the Lorenz-96 model.

The estimates of the signal contribution of each observation are not producing relevant results. They

are shown in Figure 4. The approximation formula that separates the signal contributions for each

observation seems to be too inaccurate.
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Fig. 4. Estimated signal information contribution per observation for the Lorenz-96 model.
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6 Conclusions395

This paper discusses a characterization of the information content of observations in the context of four

dimensional variational (4D-Var) data assimilation framework. The ability to characterize the useful-

ness of different data points is important for analyzing the effectiveness of the assimilation system, for

data pruning, and for the design of future sensor systems.

Several metrics from information theory are used to quantify the information content of data, including400

the trace of the Fisher information matrix, the Shannon information, the relative entropy, the signal in-

formation, and the degrees of freedom for signal. In the Gaussian case the signal information measures

the benefit of data assimilation in terms of adjusting the mean of the distribution. Fisher, Shannon, and

DFS all measure the benefit of data assimilation in terms of decreasing the (co-)variance of the error.

Relative entropy offers a combination of metrics.405

The analysis is carried out under the assumptions that errors have Gaussian distributions and that

the model dynamics is linear. The analysis reveals that the information content of observations is

intimately related to the statistics of the variational cost function and its gradient. These statistics are

obtained with respect to the analysis probability distribution. The theoretical results lead to a new

computational procedure to estimate the information content of various observations in the context410

of 4D-Var. After data assimilation is complete, and ensemble of simulations is run with the initial

conditions drawn from the posterior probability distribution. Mean values of the adjoint norms are

used to estimate the trace of the Fisher information matrix. The mean value of the observation part

of the cost function, minus its value for the analysis, is used to estimate the DFS information content.

Scaled dot products between the background innovation and the difference between the background415

and the analysis innovations provide estimates of the signal information content. The estimates require

expected values with respect to the posterior distribution. A detailed discussion on how these can be

obtained is given in the companion paper (Singh et al., 2012a).

The information content estimation approach is illustrated on a nonlinear test problem. In the com-

panion paper (Singh et al., 2012a) we report results with a 4D-Var ozone data assimilation study with420

a global chemical transport model, where we estimate the DFS information content of satellite ozone

column retrievals.

The assumptions and approximations made during the analysis and computations impact the accuracy

of the information content estimates. While the analysis assumes normal error distributions and a lin-

ear dynamics, it is desirable to apply the methodology to nonlinear systems and arbitrary uncertainty425

distributions. The analysis distribution is not explicitly available, samples are taken from distributions

that only approximate the analysis under certain assumptions. Finally, relatively small ensembles lead

to relatively large sampling errors. Future effort will focus on quantifying the impact that each of these
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issues (nonlinearity, non-normality, approximate posterior distributions, and small samples) has on the

accuracy of the information content estimates.430
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Appendix A Properties of random quadratic functions435

In the paper we use the following useful property of random quadratic functions.

Let Q = QT be a symmetric positive semidefinite matrix and ζ a random vector with E[ζ] = µ and

cov[ζ] =C. Then the quadratic function ζT Qζ has the following statistics:E[ζT ·Q ·ζ
]
= trace(QC)+µT ·Q ·µ , (A1a)

var
[
ζT ·Q ·ζ

]
= trace(QCQC)+4µT ·QCQ ·µ . (A1b)440

If x ∈N (xA
0 ,A0

)
then x−xA

0 ∈N (0,A0) and

E
A

[
1

2

(
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0

)T
A−1

0

(
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0
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= 0+

1

2
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0 A0
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n
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Similarly, x−xB
0 ∈N (xA
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0 ,A0
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and

E
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(
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(
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=

1

2

(
xA

0 −xB
0

)T
B−1

0

(
xA

0 −xB
0

)
+
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trace

(
B−1

0 A0

)
. (A3)

Appendix B 4D-Var data assimilation with linear models, linear observation operators, and Gaus-

sian errors

In this section we consider the case where the model dynamics is linear

Mt0→ti (x0) =Mi x0 , (B1)

and the observation operator is also linear,

H(xi) =Hi xi . (B2)
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In addition, we assume that the background errors and the observation errors are both normally dis-

tributed. In this case the 4D-Var cost function is:

J B(x0) =
1

2

(
x0−xB

0

)T
B−1

(
x0−xB

0

)
445

J obs(x0) =
N

∑
i=0

J obs
i (x0)

J obs
i (x0) =

1

2
(Hi xi−yi)

T R−1
i (Hi xi−yi)

=
1

2
(Hi Mi x0−yi)

T R−1
i (Hi Mi x0−yi)

The posterior distribution is Gaussian PA(x0) =N (xA
0 ,A0

)
. The posterior covariance matrix A0 satis-

fies

A−1
0 =B−1

0 +
N

∑
i=0

MT
i HT

i R−1
i Hi Mi , (B3)

and the analysis initial condition xA
0 obtained by solving the linear system

A−1
0 ·

(
xA

0 −xB
0

)
=

N

∑
i=0

MT
i HT

i R−1
i

(
yi −Hi Mi x

B
0

)
. (B4)
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