
1

User Intention-Based Traffic Dependence Analysis
For Anomaly Detection

Hao Zhang, William Banick, Danfeng (Daphne) Yao, Member, IEEE, Naren Ramakrishnan, Member, IEEE,
Department of Computer Science, Virginia Tech

Abstract—This paper describes an approach for enforcing
dependencies between network traffic and user activities for
anomaly detection. We present a framework and algorithms that
analyze user actions and network events on a host according
to their dependencies. Discovering these relations is useful in
identifying anomalous events on a host that are caused by
software flaws or malicious code. To demonstrate the feasi-
bility of user intention-based traffic dependence analysis, we
implement a prototype called CR-Miner and perform extensive
experimental evaluation of the accuracy, security, and efficiency
of our algorithm. The results show that our algorithm can
identify user intention-based traffic dependence with high ac-
curacy (average 99.6% for 20 users) and low false alarms. Our
prototype can successfully detect several pieces of HTTP-based
real-world spyware. Our dependence analysis is fast with a
minimal storage requirement. We give a thorough analysis on
the security and robustness of the user intention-based traffic
dependence approach.

I. INTRODUCTION

Anomalies or outliers refer to any activities that do not
conform to regular ones. Statistical techniques modeled under
specific domain knowledge have been proposed for anomaly
detection [8], [11], [17], [19]. For example, dynamic Bayesian
networks can be used to detect abnormal data access patterns
by malicious insiders to a sensitive database [1]. However,
realizing general anomaly detection is challenging, especially
for complex and diverse behaviors involving activities span-
ning users, hosts, and networks.

We describe a novel semantics-based approach for detecting
anomalous traffic on a host. Our solution aims at capturing
dependencies between a user’s input activities (e.g., clicking
on a hyperlink of a webpage) and system/network events
(e.g., HTTP GET requests). We explore direct and indirect
dependencies in how a user interacts with applications and
how applications respond to the user’s requests following
the specifications of the applications. By enforcing an appli-
cation’s correct responses to user activities, we are able to
identify vagabond events. Vagabond events refer to outbound
network events that are not generated by any user actions and
may hence be due to anomalies. Our analysis requires the
specifications of an application, based on which we extract and
enforce policies defining dependencies within the application.
We do not require any knowledge or assumption on the
regularities of user behavior patterns.

Our work aims to demonstrate the feasibility of user
intention-based dependence analysis for detecting suspicious
network connections of a host in a concrete web browser

setting. We enforce the correct system behaviors, as op-
posed to anomalous characteristics. Our dependence-based
anomaly detection has advantages over conventional pattern-
based anomaly detection solutions (such as [5], [6], [8],
[22]), because it does not require a priori knowledge or
assumptions about the normal data patterns. Our Contributions
are summarized as follows.

1) We demonstrate the use of dependence analysis for de-
tecting anomalous web traffic in our CR-Miner frame-
work. Specifically, we describe how to construct a con-
crete dependence analysis model for the web browser
and use it for predicting and enforcing allowable web
traffic by specific user actions. We address the underlying
technical challenges by instrumenting the browser and
operating system for monitoring, inferring dependency
patterns, and designing efficient algorithms for analyzing
event hierarchies.
We describe a tree representation of dependencies existed
in outbound traffic in a traffic-dependency graph (TDG).
We design an efficient breadth-first search based algo-
rithm for inferring dependencies of outbound requests.

2) We implement a prototype of CR-Miner in Windows
and extensively evaluate its performance in terms of
its accuracy and feasibility in anomaly detection. We
performed a user study with 20 participants and analyzed
CR-Miner’s false positive rates. We also evaluate the
accuracy of our dependency inference algorithm in noisy
traffic by combining the traffic of multiple users. Ex-
perimental results show that our algorithm substantially
outperforms the temporal-only dependence analysis in
terms of the accuracy of dependence prediction. We
further demonstrate the use of CR-Miner to detect several
pieces of real-world and proof-of-concept spyware.

3) To prevent malware from spoofing legitimate traffic in
order to circumvent our anomaly detection, we further
provide a lightweight cryptographic mechanism in the
Firefox browser to ensure the integrity of HTTP packet
headers. The message authentication code we adopt in
CR-Miner improves the integrity of CR-Miner against
stealthy malware’s tampering.

Our user intention-based traffic dependence analysis pro-
duces structures in network events. These structures across
outbound requests enable the improved context-aware secu-
rity analysis. Dependence analysis on network flows builds
a traffic-dependency graph based on the observed network
events and user actions. This approach of inferring and en-

2

forcing the semantic dependencies among events is a general
anomaly detection technique, which can be also applied to
detect anomaly in file-system events.

Our proposed traffic dependence solution cannot be realized
by the conventional (stateful) firewall, because our inference
of dependencies requires complex algorithmic computation on
system events beyond simple rule-based filtering.

II. TRAFFIC-DEPENDENCY GRAPH

Discovering user intention-based traffic dependency is chal-
lenging, because modern applications such as web browsers
often automatically fetch content and generate requests with-
out explicit user actions. The dependencies of those legitimate
requests should be properly identified without triggering false
alarms. Next, we give definitions used in our model and an
example illustrating the traffic dependence among the events.

A. Dependency in Browser Traffic

We introduce the terminology used in the CR-Miner frame-
work, including traffic-dependency graph, user and traffic
events, subroot traffic, and the parent-child and sibling rela-
tions on the traffic-dependency graph.

Definition 1: Traffic-dependency graph (TDG) is a forest of
trees of arbitrary depths with directed edges representing the
dependencies among network events and user actions. The root
of each tree is a user event, and the internal and leaf nodes of
the trees are traffic events. A directed edge from event a to b
represents that event b is caused by a. The trees in the forest
are chronologically ordered, so are the children of a node.

The tree-based TDG enables us to apply breadth-first
traversal when inferring dependencies, which is described in
Section III-A.

User event refers to the user’s inputs to the application
through the input devices such as the keyboard or mouse,
which have attributes such as timestamp and ID of the process
notified by the event, event name, and content (e.g., the
cursor’s coordinate and the keystroke). A user event in TDG
is legitimate if and only if it is not forged by any malicious
software. We give several practical techniques of ensuring the
authenticity and provenance of user events in Section IV. In
the context of browser, we consider two main types of traffic-
inducing user events: mouse clicks on hyperlinks and keyboard
inputs to the textbox or address bar.

Traffic event refers to an outgoing HTTP request from the
host, which includes attributes such as the timestamp, process
ID, source and destination IP addresses, source and desti-
nation port numbers, and referrer. Traffic events are further
categorized into different levels according to their relative
dependencies. We use the phrases traffic event and network
request interchangeably.

Subroot is a special type of traffic events. It refers to the
traffic event that directly corresponds to the user’s request,
e.g., fetching index.html from web server www.example.com
in response to a user’s mouse click on link www.example.com/
index.html. Each user event has at most one subroot on the
traffic-dependency graph. In Figure 1, the traffic events 1, 3,

Fig. 1. An example of a traffic-dependency graph. Solid arrows indicate
dependency relations, and the dotted arrow indicates the breadth-first traversal
in the dependency inference.

and 8 are subroots, which are caused by the user events A, B,
D, respectively.

The subroot traffic may cause the browser to fetch more
objects by generating additional outgoing requests from the
host, e.g., fetching the images or JavaScript referred to by a
HTML page. We define that those requests are the children of
the subroot events or secondary traffic, e.g., events 2, 4, and
6. Secondary traffic may cause the browser to issue further
requests . Thus, tertiary traffic (e.g., events 5 and 7 in Figure 1)
and lower-level traffic can be similarly categorized.

Parent-child relation on TDG is between two traffic events
that are at two adjacent levels and one of them directly triggers
the other. For example, the pairs (1, 2), (3, 4), (3, 6), (4, 5),
(6, 7) in Figure 1 have parent-child relations. Sibling relation
describes the two traffic events that are at the same level
and are generated by the same parent traffic. Events with the
sibling relations share the same parent. Pair (4, 6) in Figure 1
has the sibling relation.

Our definition of security in the CR-Miner is given below.
Definition 2: In the user intention-based traffic dependency

model, a legitimate traffic event belongs to a tree in the traffic-
dependency graph that is rooted at a legitimate user event.
That is, the traffic event p is either a subroot, i.e., the child
node of a root user event, or p’s ancestor node (e.g., parent,
grand-parent) is a subroot. Otherwise, the outbound request is
a vagabond event and considered suspicious.

B. Applications and Threat Model

The traffic dependence analysis can be used to detect
anomalous activities on a host, which may include the de-
tection of two specific types of threats: i) identifying the
network activities of stealthy malware (e.g., spyware on a
user’s computer), and ii) identifying inadvertent software flaws
or intentional software errors (e.g., software behaviors that
deviate from specifications). Our study in this paper is focused
on the first type of anomalies.

• Stealthy malware that behaves as a user-level appli-
cation on the host, certain instances of spyware and
malicious bots perform data exfiltration, spamming, bot-
net command-and-control, or launch denial-of-service
attacks. Specifically, we consider two cases of malware
in this paper as follows.

3

Case I: malware is an extension or add-on component
of an existing legitimate application, e.g., spyware as
a malicious Firefox browser extension or parasitic mal-
ware [20]. Malware runs along with the host program and
has the same process ID as the host program. A specific
example of such a type of spyware is FFsniff, which
secretly sends out victim’s ID along with the password
to the remote host.
Case II: malware is a stand-alone user-level application
and runs with a unique process ID, such as the malware
Trojan.Brojack.A, which we test in Section V-F.

• Software, which comes from unknown or untrusted de-
velopers, may perform undesirable network activities that
are not causally related to the user’s inputs due to errors
or flaws. Identifying these stealthy unwanted traffic is
important, as these packets may leak information of the
user (e.g., [12]), consume bandwidths, and cause fur-
ther security vulnerabilities. Legitimate automated traffic,
such as system updates and RSS feeds, can be whitelisted
(See also Section V-B).

In this paper, we focus on analyzing the dependence in
browser’s HTTP traffic and experimentally demonstrate its ef-
fectiveness in detecting stealthy spyware activities. CR-Miner
performs the dynamic analysis of dependencies in network
traffic, which differs from the static dependence analysis,
such as call graph construction in the programming language
paradigm or the work by Bursztein and Goubault-Larrecq on
dependencies of services [4].

III. CONSTRUCTION OF TDG

The goal of CR-Miner is to identify structured dependencies
(or lack thereof) in network traffic, which are used to detect
anomalous events. A TDG is constructed incrementally by
inserting a new traffic event with unknown dependency to a
well-formed TDG, which is suitable for real-time monitoring
and is utilized by our CR-Miner. The construction of TDG
relies on the attributes of events and dependency rules derived
from the specific application semantics.

A. Dependency Inference Procedure

This section describes our breadth-first search (BFS) based
algorithm for the TDG construction. The algorithm utilizes the
building blocks (namely Is Child, Is Sibling, and Is Subroot),
which are presented in the next section.

Given a new request, dependency inference (DI) algorithm
aims to identify its dependence with respect to the known
requests. We construct a forest structure to store the network
requests and organize them according to the definition of TDG.
The requests with known dependencies are chronologically
organized into trees rooted at user events in the existing TDG.
The subroots, thus, are also chronologically ordered.

Our algorithm opts for a breadth-first traversal within a tree
starting from the most recent subroot for the following two
reasons. We observe from our experiments that i) the incoming
new request is typically caused by recent requests, and ii)
the traffic dependency trees that we manually construct are
shallow and wide. Therefore, this BFS approach allows us to

quickly identify the parent node of the new request. As an
example, the sequence of traversal for the TDG in Figure 1 is
8, 3, 6, 4, 7, 5, 1, 2.

We run Is Child to test the parent-child relationship be-
tween this subroot and new request. If no dependence is found,
then it compares the new request with the child nodes of this
subroot starting from the most recent one, as well as their
child nodes if needed. For each comparison, Is Sibling and
Is Child tests are run. If the dependence is not found after all
nodes on the tree are compared, then the next subroot and
its descendant nodes are compared. Intuitively, the process
terminates if either a dependence is found or all existing
requests have been compared. The worst-case complexity of
this basic dependency inference algorithm requires traversing
the entire TDG, and is O(n) where n is the total number of
traffic and user distinct nodes on the current TDG.

We further optimize the algorithm by skipping unneces-
sary comparisons. We achieve the speedup by leveraging the
underlying consistency among attributes (e.g., PID) of nodes
on the same tree in TDG. In the context of our dependence
analysis, our dependency rule for parent-child relation requires
the timestamps of the two events fall within a threshold τ . We
consider the timestamp of the new request (p∗) with respect to
the most recent traffic event (p̂) on a tree. If the time difference
between p∗ and p̂ is greater than τ , then it is not necessary
to compare p∗ with other nodes with older timestamps in
that tree or subtree. This speedup requires keeping track of
the timestamps of the most recent nodes within subtrees. To
realize this optimization, each internal node p on a tree in
TDG has an additional attribute that contains the timestamp
of the most recent traffic event in the subtree rooted at p.
This attribute needs to be updated when the tree expands.
Similarly, the process ID of a subroot is the same as the PIDs
of its descendants. Therefore, if a new request has a different
PID than the subroot, then there is no need to compare other
nodes on the same tree. We use an auxiliary queue to realize
the breadth-first traversal. These optimizations improve the
average-case complexity of the algorithm.

The pseudocode of our dependency inference algorithm is
shown in Algorithm 1. If the algorithm returns true on a new
traffic event p∗, then p∗’s parent exists in the current TDG.
Otherwise, p∗ may be vagabond and thus suspicious.

B. Details of Sub-Procedures

To instantiate the building blocks Is Child, Is Sibling, and
Is Subroot used in Algorithm 1, we describe sets of rules and
procedures to infer dependencies in the following cases.

• The parent-child relation between two traffic events.
• The sibling relation between two traffic events.
• The dependence between a user event and its correspond-

ing subroot traffic event.
Our rules are derived based on patterns of user interaction

and attributes of HTTP traffic from the browser including
their system properties in order to capture the various de-
pendencies. The rules are summarized and categorized by
analyzing browser behaviors together with our experimental
observations. How to automatically extract traffic-dependency

4

Algorithm 1 Dependency Inference Procedure in CR-Miner.
Require: A newly-observed traffic event p∗;

a forest F of chronologically ordered trees of events
rooted at user events, which are parents of subroots
{T1, . . . , Tm}, where subroot Tm is the most recent one;
and a threshold τ .

Ensure: True, if the parent node of request p∗ is found;
False, otherwise.

1: if Is Subroot(p∗) then
2: Tm+1 ← p∗

3: Append Tm+1 to forest F and update
Tm+1.newestT imestamp← p∗.timestamp

4: return True
5: else
6: for i← m to 1 do
7: create Queue Q and enqueue the subroot Ti onto Q
8: for Q is not empty do
9: node n← dequeue(Q)

10: if n.pid 6= p∗.pid or p∗.timestamp −
n.newestT imestamp > τ then

11: go to line 8
12: else if Is Child(n, p∗) then
13: p∗.parent ← n and update the

newestT imestamp for nodes on the path
from p∗ to its subroot node

14: return True
15: else if Is Sibling(n, p∗) and !Is Subroot(n) then
16: p∗.parent ← n.parent and update the

newestT imestamp for nodes on the path from
p∗ to its subroot node

17: return True
18: else
19: for all children of node n do
20: enqueue the child nodes onto Q
21: end for
22: end if
23: end for
24: end for
25: end if
26: return False

features with machine learning techniques is subject to our
future work.

Is Child is given two traffic events pa and pb where pa is
a node on TDG with known dependency and pb’s dependency
is unknown. Event pa may or may not be a subroot node.
Traffic event pa is a parent of pb, if and only if the following
conditions are all satisfied.

1) The interval between timestamps of pa and pb is within
a threshold τ and event pa proceeds pb.

2) The two outbound network requests pa and pb share the
same (non-null) process ID.

3) The domain name in pb’s referrer is identical to that of
pa. Referrer is defined by the HTTP standard as the URL
of the previous request that leads to this request.

Is Sibling procedure is used for the nodes whose parent
nodes cannot be directly determined; identifying the sibling
relation of a request helps establish parent-child relation by
the transitivity. We are given two outbound HTTP requests
pa and pb, where pa’s parent node is known, pb’s parent is
unknown, and pa proceeds pb. To determine whether pb is a
sibling node of pa, we define dependency rules as follows.

1) The interval between timestamps of pa and pb is within
a threshold τ and event pa proceeds pb.

2) The two outbound network requests pa and pb share the
same (non-null) process ID.

3) The referrers of both requests are non-null and identical.
Finding sibling relations is useful in identifying new parent-

child relations in our traffic dependence analysis. If requests
pa and pb are siblings, and request pc is the parent of pa, then
pc is also the parent of pb. The Is Sibling check is a necessary
complement to the Is Child check as Is Sibling helps identify
late-arriving child nodes whose intervals of timestamps with
respect to the parent are larger than the specified threshold,
yet whose intervals with respect to the (older) sibling are still
within the threshold.

Is Subroot procedure is to identify the traffic events of the
type subroot through analyzing the user events and the out-
going network requests. In the context of the browser, traffic-
inducing user events may include typing into the address bar
of the browser, clicking on a hyperlink or a bookmark, opening
a new window or tab, and reloading a webpage. Given a user
event, the corresponding subroot traffic event in CR-Miner
is the first immediate outgoing network request that has the
identical process ID and with correlating content. The content
may be the URL of the hyperlink for a mouse click, which
needs to match the URL in the subroot request. More details
on user-event processing are given in Section V-A.

Algorithm 1 shows how the three sub-procedures (namely
Is Child, Is Sibling, and Is Subroot) are used in constructing
the traffic-dependency graph.

CR-Miner is capable of handling complex web scenarios
such as redirection, automatic refreshing and AJAX calls.
Automatic updates do not have explicit user actions that
request for them (e.g., RSS feeds). A mitigation is to recognize
the periodic automatic update traffic with pre-defined or au-
tomatically learned whitelisting rules. HTTPS traffic contains
encrypted HTTPS headers which can be investigated by the
known SSL proxying technique [15]. The technique allows
to generate a certificate for the server and signs it with its
own root certificate, so that the client’s outbound traffic is
relied by the man-in-the-middle and can be sniffed inside
the HTTPS packets. Compared to the traditional approach
of analyzing network packets independently in isolation, our
semantic-based approach provides more structural and contex-
tual information for anomaly detection on network activities.

IV. SECURITY ANALYSIS

In this section, we answer the question “Can CR-Miner be
tricked?”. CR-Miner is consisted of data collection and data
analysis phases. Once the data is collected, the dependence
analysis may be conducted off on a separate trusted machine.

5

Thus, the main security threats come during the data collection
phase. Our threat model (in Section II) considers application-
level malware. Therefore, we analyze the security and defense
of CR-Miner against two types of attacks: i) forgery attack
where an adversary modifies attributes of his network activities
to make them appear legitimate, and ii) piggybacking attack
where an adversary strategically determines when to send
outbound requests and exploits CR-Miner’s temporal rules.
We then summarize the effectiveness of CR-Miner in realizing
our security goal of identifying anomalous network activities.
Our dependence analysis relies on the integrity of the data
collected and analyzed, specifically the outbound HTTP header
and the user event information, which we discuss in the next
two sections respectively.

A. Integrity of Traffic Information

Malware may attempt to spoof the header fields in its
outgoing request, e.g., forging its referrer field in the HTTP
header so that it appears to be referred by a valid subroot.
To prevent this problem, we equip the browser with a signer,
which implements a lightweight message authentication code
to ensure the integrity of the HTTP header created. Then,
the signed headers are verified by a trusted program called
verifier on the same host. The signer and the verifier share
secret keys that are used for signing and verification. Our
cryptography-based verification method effectively prevents
this type of forgery, because the headers are tamper-resistant
once the browser creates them.

The signer resides in the browser and we implement it
in Mozilla Firefox 4.0. We modify the Firefox browser to
add a message authentication code (MAC) field to the HTTP
header. The MAC prevents the header from being tampered
by malware on the host.

The verifier is implemented as a stand-alone program on the
host outside the browser. HTTP packets that fail the integrity
verification are logged. When collecting the outbound traffic
packets, the verifier obtains the HTTP headers and peels off
the MAC fields to recover the original headers. The verifier
recomputes the keyed hash of the original header. If the
computed MD5 value is identical to the MAC value found
in the HTTP header, the verifier delivers the packet to the
traffic module for further processing. Otherwise, the verifier
regards the packets as suspicious.

Case I malware spoofing is prevented as spoofed or tam-
pered packets can be detected due to missing valid MAC.
Although Case II stand-alone malware is still capable of
forging referrers, as it operates independently from the browser
and is not subject to the cryptographic verification. Case
II malware can be detected based on the rules in previous
sections specifying the correlation between the process infor-
mation.

B. Integrity of System Data

Because user input events are used for deriving traffic
dependencies in particular for identifying subroot traffic, the
integrity of user events obtained is important. Our threat
model considers user-space application-level stealthy malware.

Therefore, the kernel-level system data – including the process
ID, keyboard and mouse events – is trusted (provided the data
is collected properly).

In practice, advanced keystroke-integrity solutions such as
the provenance verification in [9], [10], [21] may be incorpo-
rated in CR-Miner to further improve system-data assurance,
which can be a useful fail-safe mechanism to guard against
potential operational errors.

C. Defense Against Piggybacking Attack

In a piggybacking attack during the data collection, the
adversary sends outbound network requests (to the attacker’s
server) immediately after a legitimate traffic event. Such an
attack would be effective in a naive temporal-only analysis.
However, our dependency rules inspect the semantic of traffic
such as domain names, referrers, and PIDs. Therefore, piggy-
backing requests can be easily detected as vagabond events,
as malware traffic lacks the required attributes. We compare
our detection accuracy with the temporal-only analysis in
Section V-D. Similar piggybacking attacks are discussed by
Xu et al in [24] in the context of detecting drive-by-download
attacks.

V. IMPLEMENTATION AND EVALUATION

We describe the prototype implementation of CR-Miner in
Section V-A. Several experiments are performed to extensively
evaluate the accuracy of CR-Miner.

A. Prototype Implementation

We develop a CR-Miner prototype in Windows 7 operating
system. The detailed architecture of our prototype is shown in
Figure 2. CR-Miner prototype is easy to adopt and does not
require any modification to the browser in order to taint or
track the dependencies. We build our CR-Miner (the darker
parts) between the applications and the kernel level.

There are three sensors deployed to collect data on the host.
The causal relation analyzer computes the dependencies based
on the rules and algorithms in Section III. The Windows APIs
(namely hook API, IPHelper API and libpcap API) are used
in the implementation. Signer and verifier are a pair of tools
in order to guarantee the integrity of the HTTP headers. Our
implementation details are described next, including process
identification, i.e. identifying the process ID associated with
an observed network flow, traffic monitoring, and user-action
collection.

The traffic module implemented with the SharpPcap
library filters the network packets to record outbound HTTP
GET requests. We store the packet information in the quadru-
ple 〈source IP, source port, destination IP, destination port〉.
The process module obtains network and system (namely
process) information about active connections. We obtain
the IP table, a kernel data structure in Windows, by using
GetExtendedTcpTable method in IPHelperAPI.dll and
associate the TCP connections with the corresponding process
IDs. However, GetExtendedTcpTable, which is similar
to netstat command, does not provide the real-time in-
formation about the process and its TCP table. To mitigate

6

Fig. 2. Architecture of CR-Miner prototype.

this problem, we set up a timer to periodically retrieve the
list of TCP connections and process information. Based on
analyzing browser behaviors together with our experimental
observations, we find that the request packets that are captured
by SharpPcap may contain null attributes (e.g., PID or
referrer). Therefore, we adjust the conditions of Is Sibling in
Section III-B so that the null attributes can be updated when
needed. For two outbound HTTP request pa and pb, suppose
pa comes earlier than pb (the time interval is less than the
threshold τ) and pb has null attribute(s). For the attributes
of PID, host and referrer, if pa and pb have two identical
attributes and pb has the missing attribute on the third one,
then we regard pa and pb has sibling relation and pb’s missing
field can be revised by pa’s value. This update is important, as
the fixed one may be used to infer the dependency of future
requests.

The hook module sets up system hooks in order to col-
lect kernel-level user events to the application. Our module,
using the existing Windows Hook API, installs the hooks
to log keyboard and mouse events. Furthermore, we obtain
the process ID of the current foreground window by using
GetWindowThreadProcessId() method, so that we find
out the corresponding process for each user event. Repetitive
user events that do not generate traffic such as mouse move-
ments are ignored.

We record user events at the application level through the
use of Tlogger. It is a Firefox extension for capturing the
information of mouse clicks during web browsing, including
the navigation and tab events. The information gathered by the
Tlogger is complementary to the data recorded by the kernel
hook module.

B. Accuracy of Dependency Inference

We conducted a user study with 20 participants to collect
samples of HTTP traces. All participants were graduate stu-
dents in a university. Each participant was asked to actively
browse the Internet for 30 minutes on a laptop pre-install
with CR-Miner. Since the outbound HTTP traffic and user
inputs can be collected, we asked the users not to reveal any
sensitive personal data such as passwords. The means and
standard deviations of the number of events that we collected
are shown in Table I. We notice that the number of traffic-
generating user events is far less than the total user events
observed. Because our Is Subroot analysis is based on traffic-
generating user events, it is quite efficient. Since SQL Server

database is employed in all experiments, we measure the size
of the database BAK file for each user. The BAK file contains
only data pages so that it is counted as the real disk space
allocated for storing the records.

TABLE I
MEAN AND STANDARD DEVIATIONS (SD) OF STATISTICS OF DATA

COLLECTED IN THE USER STUDY.

User Events Traffic
Events

Process
Record

DB File
Size (KB)Traffic- Totalgenerating

Mean 61 2761 2357 1178 3221
SD 28 1768 1204 686 608

We analyze the dependence in the data collected by our CR-
Miner framework. A legitimate HTTP GET request needs to
belong to a valid tree in the traffic-dependency graph rooted
by a user event. We define hit rate as the ratio of the number
of legitimate requests identified by CR-Miner to the total
number of HTTP GET requests per user. We have manually
inspected the dependencies found to ensure they are correct.
The distribution of hit rates in our user studies is shown in
the Table II. For 85% of the users, their hit rates are above
99.0%, which indicates the high accuracy of our prediction.
The average hit rate of the user studies is 99.6%.

TABLE II
THE DISTRIBUTION OF HIT RATES ACROSS 20 USER CASES.

Hit Rate Frequency Percentage
0.98 ≤ r < 0.985 1 5%
0.985 ≤ r < 0.99 2 10%
0.99 ≤ r < 0.995 4 20%
0.995 ≤ r < 1.00 10 50%

r = 1.00 3 15%

We analyze the hit rate by calculating the percentages of
how many requests are inferred by which one of the three
subroutines Is Subroot, Is Child, and Is Sibling. The result
in Table III shows that most requests (about 87.4%) are
inferred by Is Child and a few can be inferred by Is Sibling.
The whitelist in our experiment is constructed based on four
categories: software-update traffic, requests for traffic ana-
lytics, trustworthy web portals, and legitimate advertisement
websites. Details are not shown due to space limit. The
construction of the whitelist reduces false alarms, as it allows
the dependence identification of outbound requests that may
have incomplete attributes. However, our algorithm cannot be
replaced by a pure whitelist approach because of the diversity
nature of the Internet traffic.

We further investigate the outbound requests with missing
dependencies, which account for 0.4% of the total traffic
as shown in Table III. The major reason of having these
vagabond requests is missing referrer, which may be due to
either the use of dereferrer by a website for privacy purpose
or an HTTP connection being referred by an HTTPS site.
Some of the vagabonds are legitimate requests, i.e., false
positives. Whereas, others are requests to known malicious
websites, i.e., true positives, e.g., atwola.com, adadvisor.net,
and pixel.quantserve.com.

7

TABLE III
PERCENTAGES OF REQUESTS INFERRED BY DIFFERENT SUBROUTINES FOR

20 USER CASES.

Category Percentage

Inferred
Dependency

Is Subroot 1.9%
Is Child 87.4%
Is Sibling 8.6%
Whitelisting 1.7%
Total 99.6%

Missing Dependency 0.4%

To experimentally confirm the well-formed property of
HTTP requests, we further evaluate the hit rates for top 20
websites from Alexa.com. We find that 0.28% of requests are
missing their dependencies, suggesting that CR-Miner works
well with legitimate websites.

C. Time Efficiency Comparison

In order to compare the run-time efficiency of our BFS
based dependency inference (DI) algorithm, we implement a
sequential traversal DI algorithm. The sequential algorithm
stores the outbound requests with known dependencies as a
list, and infers the new request’s dependency by scanning the
list. This sequential traversal algorithm serves as a baseline in
our efficiency comparison.

We evaluate the BFS based and sequential traversal algo-
rithms on a machine equipped with Intel Core 2 Quad 2.40
GHz and 2GB system memory. Both algorithms are used to
analyze the traffic of 20 users.

Through the observation of 20 user cases, the BFS based
algorithm takes 2.7 second to process a thousand records,
while the sequential scanning algorithm processes a thousand
records in 7.6 seconds. Therefore, the result shows that the
sequential algorithm takes about 2.8 times as long as the
BFS based one in terms of the running time. Thus, our BFS
based DI algorithm runs significantly faster. The advantage
in run-time efficiency of our BFS based algorithm comes
from its optimization for the data structure and the order of
comparison. We also confirm that for each user case both
algorithms yield the exact same hit rates.

D. Accuracy Comparison With Temporal-Only Analysis

We compare CR-Miner with a temporal-only dependence
analysis algorithm that infers dependencies based solely on
the intervals and PIDs of requests. Such a temporal-only
dependence analysis is used in BINDER [7]. We filter non-
subroot requests by an interval threshold τ , instead of using
Is Child and Is Sibling. The ratio of the number of legitimate
requests identified in the temporal-only algorithm to those of
our CR-Miner is defined as precision.

A participant frequently visited Google maps and Google
search pages; therefore the case yields a low precision
(24.7%), which shows that the temporal-only analysis is lim-
ited in predicting traffic dependencies. Due to heavily using
AJAX technique, the actual delay between a request and its
subroot is longer than the threshold. Therefore, the temporal-
only prediction suffers.

With considering the semantic information in network re-
quests, we have the pre-set threshold in CR-Miner as 15 sec-
onds and achieve the average hit rate as high as 99.6%. Hence,
our algorithm substantially outperforms non-semantic analysis
in terms of the accuracy of identifying traffic dependencies.

E. Prediction Accuracy Under Multi-user Data

Cross-user validation is to measure the accuracy of our anal-
ysis under the noisy traffic. We arbitrarily introduce noise by
merging two users’ records, and to infer traffic dependencies
in merged datasets.

We choose five independent user datasets, and create 10
cross-user data sets by randomly choosing independent ones
and merging them (C2

5 = 10). Rather than shuffling two user
studies and combining them, we merge the two user studies
without losing their internal orders. The merging algorithm is
along the same lines as Merge Sort, but we add a component to
merge two list without breaking their orderings. We then run
the BFS based DI algorithm on the mixed data. To evaluate
the algorithm, we define the error rate as the percentage of
traffic events whose parent nodes in the cross-user study are
different from those found in the regular analysis.

In order to check the consistency of subroot in the user study
and cross-user test, we have recursive functions to locate the
subroot for each packet, as we find the root of arbitrary node
in a tree. We run ten cross-user tests which are composed of
five independent user studies by BFS based DI algorithms. The
average error rate is 0.8%. Therefore, the cross-user validation
shows a high prediction accuracy under multiuser dataset.
These results indicate our DI algorithm is noise-resistant and
robust to complex cases.

F. Real-World Spyware Detection

We use our CR-Miner to detect two pieces of real-world
malwares. The malware Infostealer.Maximus sends out two
requests at the same time to one host (www.scieki.com.pl)
to retrieve two executable files (/css/k2pac.exe and /css/
w2pac.exe) when it is active. The requested files are tro-
jan downloaders, which can be installed without user’s full
knowledge and consent once they are downloaded. Therefore,
Infostealer.Maximus is a kind of case I malware as defined
in Section II. Trojan.Brojack.A not only modifies the registry
entries, captures all links that are browsed by the user, but also
sends out outbound traffic to a host (watson.microsoft.com).
According to the observation of the HTTP GET request, we
can infer that the trojan tends to get a specific version of
a piece of malware. Since it runs with an independent PID
and sends out outbound HTTP requests to a malicious host,
Trojan.Brojack.A belongs to case II malware. A common
feature is that neither pieces of malware carries appropriate
referrers. CR-Miner successfully flags the malware traffic as
vagabond, because these requests are not rooted by any user
events in TDG.

We also wrote and evaluated a proof-of-concept malicious
Firefox extension, which is a piece of password-stealing
spyware. When a user clicks on the Submit button of any

8

TABLE IV
SPYWARE TRAFFIC (WITH WITH ID 23) IS IDENTIFIED AS IT HAS -1 IN ITS PARENT ID FIELD, INDICATING NO DEPENDENCE WITH EXISTING EVENTS.

ID Timestamp PID Parent ID Host Referrer Http Request

...
15 0:0:51.447 5668 0 mail.yahoo.com /
...
21 0:0:52.843 5668 15 view.atdmt.com http://www.yahoo.com/ /M0N/view/307963403/direct...
22 0:0:54.843 5668 15 mail.yahoo.com http://www.yahoo.com/ /; ylt=AsDjYtx1zxEscRUUSbl...
23 0:1:03.313 5668 -1 www.attacker.net /query?id=user&ps=password
...

web form in the browser, the extension finds the non-blank
password filled in the form and sends out an outbound HTTP
request with the password as a parameter to the attacker’s
server. Our spyware is similar to the existing spyware such as
FormSpy, FireSpyFox, and FFsniff.

An example of traffic-dependency graph, which is created
by the CR-Miner framework, is shown in Table IV.

• The user types mail.yahoo.com (corresponding to record
15) into the browser’s address bar and the browser
issues the request. The Parent ID, which is 0, indicates
it as a subroot.

• The requests for other objects from Yahoo and other
providers (e.g., # 21 and # 22), which are legitimate
requests issued by browser, have 15 in Parent ID fields.

• The user intends to log in the Yahoo Mail account by
entering the user ID and password. Due to the spyware,
upon the user clicking on the submit button, a single out-
bound HTTP GET request with the stolen login credential
is sent to the attacker’s server, www.attacker.net in our
example. The CR-Miner detects the spyware activity and
identifies it (# 23) as vagabond, which has -1 in its Parent
ID field, namely not being associated with a valid tree in
the TDG.

This detection is possible, because i) the spyware activity
is not qualified to be a subroot as its domain name does
not match any valid user event, and ii) its domain name
is not referred by any proceeding requests. Therefore, by
finding dependencies in traffic, we show that our solution
renders spyware and keyloggers useless, as their outbound
communication channels are blocked.

VI. RELATED WORK

Not-A-Bot (NAB) is a system for authenticating traffic-
generating user inputs such as mouse clicks on hyperlinks [9].
It can be used for defeating attacks such as click fraud.
However, it does not analyze the relationship among network
packets for anomaly detection as in CR-Miner. As explained
in Section IV, CR-Miner can use NAB and similar techniques,
such as [23], to ensure the integrity of user inputs collected.

Shirley and Evans [18] proposed to collect the complete
history of user and program actions to improve the precision
and expressiveness of access control policies, thus, detect the
malware. To achieve the similar goal on the network security
field, our work focuses on the user intention-based outbound
requests, instead of the program actions.

BINDER [7] is an elegant host-based solution that detects
break-ins on personal computers by correlating the timestamps
of user events and traffic, including control traffic at the lower
level of the network stack (such as TCP control packets).
BINDER analyzes the outgoing traffic and identifies their
temporal relations. The authors focus on the delay between
user input and data arrival event in the detection algorithm,
but they do not concern the semantics among traffic packets.
Our CR-Miner aims to provide application-specific anomaly
detection as opposed to kernel-level extrusion detection in [7].
Thus, our rules and system architecture enforce the fine-
grained traffic dependence characteristics regarding the user
interactions with an application.

Shieh and Gligor [17] presented a model that tracks both
data and privilege flows within secure systems to detect
context-dependent intrusions caused by operational security
problems. The model may not be suitable for detecting new,
unanticipated intrusion patterns. Enforcing Dependencies is
also well known in the field of policy management. Kagal
et al. [13] proposed to apply dependency tracking to provide
explanations for policy management, understand how the
results were obtained, and therefore improve the trust in the
policy decision and enforcement. In our work, we adopt the
idea of enforcing policies within the application to infer the
dependency among network requests.

Patnaik et al. [14] proposed to use Dynamic Bayesian
Network (DBN) for dependency mining. Their work shows
that frequent episodes help identify nodes with high mutual
information relationships and that such relationships can be
captured by a DBN. We plan to investigate the feasibility of
such techniques for automatic learning and enforcement of
user intention-based traffic dependence in the future.

WebTap, developed by Borders and Prakash [2], is a tool to
anomaly patterns in outbound HTTP traffic. WebTap identifies
anomalies in outbound HTTP traffic by monitoring the metrics
such as request regularity, bandwidth usage, inter-request delay
time, and transaction size. The authors improved the detection
accuracy by pruning repetitive information (e.g., header fields)
in [3]. Our user intention-based traffic dependence analysis
is different – we do not require any knowledge of behavior
patterns of any user groups. Our rules are derived from the
properties of applications.

Srivastava and Giffin [20] presented a technique for dis-
covering the origin of parasitic malware on a host through
sophisticated OS-level diagnostic. Their solution can be used
to pinpoint the origin of the malware, after CR-Miner has
identified its stealthy traffic.

9

VII. CONCLUSIONS AND FUTURE WORK

Analyzing the dependencies between network traffic and
user activities has not been systematically investigated as
a general approach for anomaly detection. Our traffic-
dependency graph captures the semantic causal relations of
user actions and network events for improving host integrity.
We performed extensive experimental evaluation on CR-
Miner. Our results indicate the feasibility of enforcing HTTP
traffic dependencies.

For future work, we will formalize the traffic-dependency
model based on the finite-state automaton and its constraints.
Such a formal dependency model allows one to derive fine-
grained requirements of legitimate event sequences, and is a
specialized Schneider’s execution monitor [16].

REFERENCES

[1] X. An, D. N. Jutla, and N. Cercone. Privacy intrusion detection using
dynamic bayesian networks. In International Conference on Electronic
Commerce (ICEC), pages 208–215, 2006.

[2] K. Borders and A. Prakash. Web Tap: Detecting covert web traffic. In
Proceedings of the 11th ACM Conference on Computer and Communi-
cation Security, pages 110–120, 2004.

[3] K. Borders and A. Prakash. Quantifying information leaks in outbound
web traffic. In Proceedings of the IEEE Symposium on Security and
Privacy, May 2009.

[4] E. Bursztein and J. Goubault-Larrecq. A logical framework for eval-
uating network resilience against faults and attacks. In Computer and
Network Security, 12th Asian Computing Science Conference (ASIAN),
pages 212–227, 2007.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41:15:1–15:58, July 2009.

[6] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of
malicious behavior. In G. Shroff, P. Jalote, and S. K. Rajamani, editors,
ISEC, pages 5–14. ACM, 2008.

[7] W. Cui, Y. H. Katz, and W. tian Tan. Binder: An extrusionbased break-
in detector for personal computers. In In Proceedings: USENIX Annual
Technical Conference, page 4, 2005.

[8] D. E. Denning. An intrusion-detection model. IEEE Transactions on
Software Engineering, SE-13(2), February 1987.

[9] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy. Not-a-
Bot: Improving service availability in the face of botnet attacks. In
Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation (NDSI), 2009.

[10] R. Hasan, R. Sion, and M. Winslett. Preventing history forgery with
secure provenance. TOS, 5(4), 2009.

[11] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and
D. Wolber. A network security monitor. In Proceedings of the 1990
IEEE Symposium on Research in Security and Privacy, pages 296–304,
May 1990.

[12] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and
T. Kohno. Privacy oracle: a system for finding application leaks
with black box differential testing. In Proceedings of Computer and
Communications Security (CCS), 2008.

[13] L. Kagal, C. Hanson, D. J. Weitzner, and D. J. Weitzner. Using
dependency tracking to provide explanations for policy management.
In POLICY, pages 54–61, 2008.

[14] D. Patnaik, S. Laxman, and N. Ramakrishnan. Discovering excitatory
relationships using dynamic bayesian networks. Knowledge and Infor-
mation Systems, pages 1–31, 2010. 10.1007/s10115-010-0344-6.

[15] An SSL proxying technique to sniff HTTPs packets. http://www.
charlesproxy.com/documentation/proxying/ssl-proxying/.

[16] F. B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security (TISSEC), 3(1):30–50, 2000.

[17] S.-P. Shieh and V. D. Gligor. On a pattern-oriented model for intrusion
detection. IEEE Transactions on Knowledge and Data Engineering,
9(4), July/August 1997.

[18] J. Shirley and D. Evans. The user is not the enemy: Fighting malware
by tracking user intentions. In NSPW ’08: Proceedings of the 2008
workshop on New security paradigms, pages 33–45, September 2008.

[19] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, T. Grance, L. T.
Heberlein, C.-L. Ho, K. N. Levitt, B. Mukherjee, D. L. Mansur,
K. L. Pon, and S. E. Smaha. A system for distributed intrusion
detection. COMPCOM Spring ’91 Digest of Papers, pages 170–176,
February/March 1991.

[20] A. Srivastava and J. T. Giffin. Automatic discovery of parasitic malware.
In Recent Advances in Intrusion Detection (RAID), pages 97–117, 2010.

[21] D. Stefan, C. Wu, D. Yao, and G. Xu. Cryptographic provenance
verification for the integrity of keystrokes and outbound network traffic.
In Proceedings of the 8th International Conference on Applied Cryptog-
raphy and Network Security (ACNS), June 2010.

[22] H. S. Teng, K. Chen, and S. C.-Y. Lu. Adaptive real-time anomaly
detection using inductively generated sequential patterns. Security and
Privacy, IEEE Symposium on, 0:278, 1990.

[23] K. Xu, H. Xiong, C. Wu, D. Stefan, and D. Yao. Data-provenance
verification for secure hosts. IEEE Transactions on Dependable and
Secure Computing, (PrePrints), 2011.

[24] K. Xu, D. Yao, Q. Ma, and A. Crowell. Detecting infection onset
with behavior-based policies. In Proceedings of the Fifth International
Conference on Network and System Security (NSS), September 2011.

