
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 1

A Framework to Analyze the Performance
of Load Balancing Schemes

for Ensembles of Stochastic Simulations
Tae-Hyuk Ahn, Student Member, IEEE, Adrian Sandu, Layne T. Watson, Fellow, IEEE,

Clifford A. Shaffer, Senior Member, IEEE, Yang Cao, and William T. Baumann, Senior Member, IEEE

Abstract—Ensembles of simulations are employed to estimate the statistics of possible future states of a system, and are widely
used in important applications such as climate change and biological modeling. Ensembles of runs can naturally be executed
in parallel. However, when the CPU times of individual simulations vary considerably, a simple strategy of assigning an equal
number of tasks per processor can lead to serious work imbalances and low parallel efficiency. This paper presents a new
probabilistic framework to analyze the performance of dynamic load balancing algorithms for ensembles of simulations where
many tasks are mapped onto each processor, and where the individual compute times vary considerably among tasks. Four
load balancing strategies are discussed: most-dividing, all-redistribution, random-polling, and neighbor-redistribution. Simulation
results with a stochastic budding yeast cell cycle model is consistent with the theoretical analysis. It is especially significant that
there is a provable global decrease in load imbalance for the local rebalancing algorithms due to scalability concerns for the
global rebalancing algorithms. The overall simulation time is reduced by up to 25%, and the total processor idle time by 85%.

Index Terms—Dynamic load balancing (DLB), probabilistic framework analysis, ensemble simulations, stochastic simulation
algorithm (SSA), high-performance computing (HPC), budding yeast cell cycle.

F

1 INTRODUCTION

IMPORTANT scientific applications like climate and
biological system modeling incorporate stochastic

effects in order to capture the variability of the real
world. For example, biological systems are frequently
modeled as networks of interacting chemical reac-
tions. At the molecular level, these reactions evolve
stochastically and the stochastic effects typically be-
come important when there are a small number of
molecules for one or more species involved in a
reaction [1]. Systems in which the stochastic effects
are important must be described statistically.

The easiest way to generate statistics for complex
systems is to run ensembles of simulations using
different initial conditions and parameter values; their
results sample the probability density of all possible
future states [2], [3]. Taking advantage of the ideally
parallel nature of ensembles, individual runs can be
easily distributed to different processors. However,
the inherent variability in compute times among indi-
vidual simulations can lead to considerable load im-

• T.-H. Ahn, A. Sandu, L.T. Watson, C.A. Shaffer, and Y. Cao are with
the Department of Computer Science, Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA. E-mail: {thahn, sandu,
ltw, shaffer, ycao}@cs.vt.edu

• L.T. Watson is also with the Department of Mathematics, Virginia
Polytechnic Institute and State University, Blacksburg, VA, USA.

• W.T. Baumann is with the Department of Electrical and Computer
Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, VA, USA. E-mail: baumann@vt.edu

balances. For these simulations, load balancing among
processors is necessary to avoid wasting computing
resources and power.

A large body of research literature is available on
static and dynamic load balancing (DLB) techniques
[4], [5], [6], [7], [8]. Two classes of DLB methods are
widely used: scheduling (work-sharing) schemes [9],
[10], [11] and work-stealing schemes [12], [13], [14].
The factoring approach, one of the classical schedul-
ing algorithms, allocates large chunks of iterations at
the beginning of the computation to reduce schedul-
ing overhead, and dynamically assigns small chunks
towards the end of the computation to achieve good
load balancing [10]. The work-stealing approach iden-
tifies and moves tasks from overloaded processors to
idle processors. A simple yet powerful work-stealing
scheme is random polling [15]. A processor that runs
out of assigned work sends requests to randomly
chosen processors, until a busy one is found. The
requestee then sends part of its work to the requestor.
Scheduling schemes usually take a centralized load
balancing approach where the remaining tasks are
stored in a central work queue [15], [16]. Work-
stealing schemes, on the other hand, can employ
both centralized and decentralized load balancing
approaches [15]. In centralized DLB a master process
distributes tasks to the workers (slave processes). In
decentralized DLB, tasks are moved between peer
processes.

This paper focuses on several work-stealing DLB
methods and their application to stochastic biochem-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 2

ical simulations. In the most-dividing (MD) algo-
rithm, the processor that finishes first receives new
tasks from the most overloaded processor. In the all-
redistribution (AR) algorithm, when one worker be-
comes idle, all remaining jobs are evenly redistributed
among all processors. In the random-polling (RP)
algorithm new tasks are received from a randomly
chosen processor. In the neighbor-redistribution (NR)
algorithm, the idle processor and its neighbors re-
distribute evenly all remaining jobs (on the neighbor
processors). The Dijkstra-Scholten algorithm [17] and
the Shavit-Francez algorithm [18] are adapted for
detecting termination. MD and AR use a centralized
DLB approach, whereas RP and NR employ a decen-
tralized one.

Previous work has applied probabilistic analysis to
investigate the performance of DLB strategies [10],
[19], [20], [21], [22]. For example, the efficiency of
the factoring scheme has been analyzed for the ho-
mogeneous (identical processors) case [10] as well as
for the heterogeneous case [22] using order statistics
[23]. A detailed analysis of random polling has been
presented in [21].

The novelty of the work presented in this paper
consists of a new general framework for analyzing work-
stealing dynamic load balancing algorithms when applied
to large ensembles of stochastic simulations. In this
case the established deterministic analysis approaches
are not appropriate, so a probabilistic analysis is
developed. The times per task are assumed to be
independent identically distributed random variables
with a certain probability distribution. This is a natu-
ral assumption for ensemble computations, where the
same model is run repeatedly with different initial
conditions and parameter values. No assumption is
made, however, about the shape of the underlying
probability density function; the proposed analysis is
very general. The level of load imbalance (defined by
a given metric) is also a random variable. The analysis
focuses on quantifying the decrease in the expected
value of the random load imbalance. The probabilistic
analysis reveals that the four applied DLB methods
are effective for moderate parallelism; scalability is
not investigated here. While the performance analysis
is complex, the four DLB methods described here are
easy to implement. Numerical results show that they
achieve considerable savings in computation time
for a computational biology application. The relative
performance of the four DLB strategies is analyzed
numerically for a biological problem in Section 5.

The proposed DLB analysis framework is relevant
not only for distributed memory clusters, but also for
cloud computing environments. Task scheduling opti-
mization plays a key role in cloud computing systems
to provide stable and elastic on-demand services with
high efficiency [24]. For example, the Hadoop system
— a widely used MapReduce cloud framework —
adapts the centralized scheduler architecture with sev-

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Processor Number

E
la

p
se

d
 T

im
e(

se
c)

Fig. 1. Elapsed compute times for 100 prototype
mutant multistage cell cycle simulations by static distri-
bution across 10 worker processors. Dotted line repre-
sents different CPU times per processor and the solid
line indicates the wall clock time.

eral scheduling policies such as FIFO, fair scheduler,
and capacity scheduler [25]. Our proposed analysis
framework can be applied to study the performance
of these approaches.

The paper is organized as follows. The four load
balancing algorithms are presented in Section 2. Sec-
tion 3 explains the analysis framework, and Section
4 contains the probabilistic analysis of the load bal-
ancing algorithms. Section 5 shows theoretical and
experimental results with a cell cycle model. Section
6 draws some conclusions.

2 LOAD BALANCING ALGORITHMS

This section presents two centralized DLB strate-
gies: most-dividing (MD) and all-redistribution (AR)
and two decentralized DLB strategies: random-polling
(RP) and neighbor-redistribution (NR).

2.1 Motivation

Each run of a stochastic simulation leads to different
results. The goal of running an ensemble of stochastic
simulations is to estimate the probability distribution
of all possible outcomes. This typically requires thou-
sands of simulations run concurrently on many CPUs.
The stochastic nature of the system and the potentially
dramatic differences running time per simulation can
cause a severe load imbalance among processors that
are running many simulations.

Consider, for example, stochastic simulations of
the budding yeast cell. For certain mutants, a cell
might never divide, or it might always divide, with
some probability. Therefore, the CPU time to run the
simulation is quite different from one case to another.
Fig. 1. shows 100 prototype mutant multistage cell
lineage simulations assigned statically to 10 worker
processors. The results reveal a considerable load im-
balance, with the CPUs being idle for approximately
40% of the aggregate compute time. This results in
poor utilization of computer resources, longer time to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 3

1

10 10 10 10 1010
2 3 4 5 6

src

5 3 3 2 33

dest

w[k]
k

Initial

Distribution

Overload

Check

Redistribution

w[k]

5 3 0 2 36w[k]

Most overloaded

(a) MD load balancing idea.

1

10 10 10 10 1010
2 3 4 5 6

w[k]
k

Initial

Distribution

Overload

Check

5 3 0 2 36w[k]

SUM(w[k]) / k 3 3 3 3 34

3 3 3 3 34w[k]

Redistribution

(b) AR load balancing idea.

1

10 10 10 10 1010
2 3 4 5 6

src

2 3 3 2 36

dest

w[k]
k

Initial

Distribution

Overload

Check

Redistribution

w[k]

Random

Polling

5 3 0 2 36w[k]

(c) RP load balancing idea.

1

10 10 10 10 1010
2 3 4 5 6

src

5 2 2 1 36

dest

w[k]
k

w[k]

5 3 0 2 36w[k]

src

Neighbors

(d) NR load balancing idea.

Fig. 2. Adaptive load balancing strategies. Ellipses represent tasks to be done and gray rectangles represent
completed tasks. Right diagonal patterned ellipses indicate tasks to be done on processors whose load has been
adjusted by an adaptive load balancing algorithm.

results, and reduced scientific productivity. Dynamic
load balancing strategies are required to improve the
parallel efficiency. The stochastic simulation algorithm
and budding yeast cell cycle model are explained in
detail in Section 5.

2.2 Most-Dividing (MD) Algorithm

The most-dividing (MD) algorithm is based on the
central redistribution work of Powley [26] and Hillis
[27]. The idea of the MD algorithm is presented
in Fig. 2 (a). First, the tasks (cell simulations) are
evenly distributed to every worker processor in the
system. Workers concurrently execute their jobs. Due
to different CPU times per task, other processors may
be well behind the first processor to finish its tasks.
The processor that finishes its jobs becomes idle. The
processor with the largest number of remaining jobs
is considered to be the most overloaded processor.
At this time the most overloaded processor sends out
half of its remaining jobs to the idle processor. This
sequence of steps is executed repeatedly until there is
no remaining work.

To implement the MD algorithm, the idle processor
has to receive new work from the highest load pro-
cessor. Therefore, the highest load processor stops its
work, and reduces its remaining work when another
processor has completed all of its work. Stopping
the computation when all the tasks are completed
is called termination. The Dijkstra-Scholten algorithm
[17] and the Shavit-Francez algorithm [18] are adapted
for detecting terminations using requests and ac-
knowledgement messages. Initially, each processor
is in one of two states: inactive and active. Upon
receiving a task from the master, slave processors

are active. Slave processors send a message to the
master whenever they finish a job, and receive mes-
sages setting their state to continue activity or become
inactive once the termination condition is satisfied.
When any processor finishes its assigned jobs, the
highest load processor receives a suspend message. It
suspends execution after finishing the currently active
job, reduces its tasks to half of its remaining jobs, and
then resumes execution where it left off.

2.3 All-Redistribution (AR) Algorithm

The all-redistribution (AR) method is also a central-
ized load balancing scheme. The idea of the AR
algorithm is presented in Fig. 2 (b). The initial step
of the AR algorithm is similar to that of the MD
algorithm. The processor that finishes its jobs first
becomes idle, and notifies the master of its idle status.
Then, the master directs all workers to suspend exe-
cution, redistributes all remaining jobs in the workers’
queues evenly among all workers, and finally directs
the workers to resume execution.

2.4 Random-Polling (RP) Algorithm

Centralized schemes are inherently limited in terms
of scalability. Due to finite communications resources,
bottlenecks appear when many worker processors re-
quest jobs simultaneously from the same master. One
approach to solve the scalability issue is to organize
the system into multiple master/worker partitions,
which are supervised by a dedicated supermaster pro-
cess. Another approach, the decentralized scheme, is
to fully distribute and execute tasks on all processors
without any master supervision.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 4

The random-polling (RP) method is a receiver-
initiated decentralized load balancing algorithm [16].
Fig. 2 (c) illustrates the idea. When a worker processor
becomes idle, it randomly polls other processors until
it finds a busy one. The busy worker becomes a donor
and sends out half of its remaining jobs to the idle
processor. Each processor is selected as a donor with
equal probability, ensuring that work requests are
evenly distributed.

The implementation of the RP algorithm associates
with each processor one of the following three states:
available, idle, and locked. A processor with remain-
ing jobs beyond the active one is in the available
state. A processor that finishes its jobs becomes idle.
A processor with one (active) job is locked. An idle
processor randomly polls other processors to request
jobs. Upon receiving the request, an available pro-
cessor agrees to become a donor. The state of the
donor processor(s) changes from available to locked
in order to avoid overlaps (i.e., to become a donor for
multiple idle processors that happened to randomly
poll it). After the RP load balancing step ends, a
locked processor is released and becomes available if
there are remaining jobs besides the currently active
one.

2.5 Neighbor-Redistribution (NR) Algorithm

The idea of the neighbor-distribution (NR) decentral-
ized load balancing scheme is presented in Fig. 2 (d).
A processor that finishes its jobs informs its neighbors
of its idle status. The set of neighbors is predefined
based on the network topology of the system (in this
paper a 2-D torus topology is considered for the nu-
merical experiments). From the algorithmic perspec-
tive, the sets of neighbors can be arbitrarily defined;
assume that each processor has k − 1 neighbors. The
idle processor and its neighbors redistribute evenly all
their remaining jobs (i.e., apply the AR algorithm on
the subset of k processors).

The NR load balancing step performs a local re-
distribution of jobs, and therefore is suitable for par-
allel architectures where groups of nodes are linked
directly. In this case the NR method is related to the
dimension exchange algorithm, where a dimension
corresponds to a fully connected subset [6], [19], [28].
Similar to RP, the NR algorithm uses three states
(available, idle, and locked) to avoid overlaps (i.e.,
participation by the same processor in the balancing
steps performed by two distinct groups of neighbors).

3 THE ANALYSIS FRAMEWORK

This section presents a probabilistic framework for
load balancing analysis. The assumptions needed for
the analysis and the metrics used to measure load
imbalance are considered in detail.

3.1 Assumptions for the Analysis

The computational goal is to run an ensemble of n
stochastic (biochemical) simulations. Each individual
simulation is referred to as a “task”. Due to the
stochastic nature of each simulation, the execution
time t associated with a particular task cannot be
estimated in advance. (The same situation occurs with
deterministic adaptive models where the grid or time
step adaptation depends on the data, and the chosen
grid and step sizes greatly affect the total compute
time.) The task compute times are modeled by ran-
dom variables.

ASSUMPTION 1. The compute times associated with
different tasks are independent identically distributed
(i.i.d.) random variables.

The mean and the standard deviation of the random
variable task compute time T are denoted by µT and
σT , respectively. The exact shape of the probability
density function for T is not relevant for the analysis;
thus, the analysis results are very general.

Assumption 1 naturally covers the case where the
ensemble is obtained by running the same model mul-
tiple times, with different initial conditions, different
parameter values, or different seeds of the pseudo
random number generator. New model runs are inde-
pendent of the results of previous runs. Assumption 1
is also appropriate where multiple models are being
run, and where each model of the batch is chosen with
a specified frequency.

Next, the mapping of the n tasks of the ensemble
onto the p processors is considered. Processor i has
Ri tasks, such that R1 + . . . + Rp = n. Let tij denote
the compute time of the jth task on the ith processor
where i = 1, . . . , p , j = 1, . . . , Ri . Note that all tij
are i.i.d. random variables according to Assumption 1.
The total compute time Xi =

∑Ri

j=1 tij of processor i
is also a random variable. In probability theory, the
central limit theorem (CLT) states that the normalized
sum of a sufficiently large number of independent
identically distributed random variables, each with
finite mean and variance, will be approximately stan-
dard normally distributed [29]. Therefore, using As-
sumption 1, if Ri is large enough, then

Xi −Ri µT√
Ri σT

will be approximately normally distributed with

E [Xi] = Ri · µT , Var [Xi] = Ri · σ2
T .

It is therefore assumed that

ASSUMPTION 2. The number of tasks mapped onto
each processor is sufficiently large such that the probability
density function of the total compute time per processor is
approximately Gaussian.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 5

Assumption 2 allows the analysis to work with
Gaussian distributions of the total compute times per
processor regardless of the underlying distribution of
individual task times. Thus a very general setting for
the analysis is possible. Assumption 2 is invalid dur-
ing the winddown period (when there are only a few
tasks left per processor), but that is a small fraction
of the total ensemble computation time. Even during
winddown load balancing continues to be beneficial,
but the theoretical analysis cannot be directly applied.

3.2 Metrics of Load Imbalance

The algebraic mean of the compute times per proces-
sor is defined as

ηX =
1

p

p∑
i=1

Xi =
1

p

p∑
i=1

Ri∑
j=1

tij .

Note that ηX is itself a random variable with E[ηX] =
(n/p)µT . The algebraic variance of the compute times
among processors is defined by

ξ2X =
1

p− 1

p∑
i=1

(Xi − ηX)
2

and is also a random variable. The square root of
the algebraic variance (RAV),

√
ξ2X , is also considered.

The basic premise of variance is that larger variance
between the compute times on different processors
is a symptom of larger load imbalance. The first
measure of the degree of load imbalance is therefore
the expected value of the algebraic variance,

E
[
ξ2X
]
=

1

p− 1

p∑
i=1

E
[
(Xi − ηX)

2
]
, (1)

or more conveniently the square root
√
E
[
ξ2X
]
.

Consider now the minimum and the maximum
computation times among all processors, Y1 = min
{X1, . . . , Xp} and Yp = max{X1, . . . , Xp}. These are
both random variables. The idle time spent by proces-
sor i is the difference between the maximum time and
the compute time on the processor, Yp −Xi. The sec-
ond measure of load imbalance is the expected value
of the largest idle time, i.e., the difference between
the largest and the smallest compute times across all
processors,

E [Yp − Y1] = E [max{X1, . . . , Xp}]
− E [min{X1, . . . , Xp}] . (2)

Finally, the third measure of load imbalance is the
expected value of the average idle compute time
across all processors,

E

[
1

p

p∑
i=1

(Yp −Xi)

]
= E [Yp − ηX] . (3)

200 300 400 500 600 700 800
0

200

400

600

800

1000

Time (sec)

F
re

qu
en

cy

200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

F
itt

in
g

C
D

F

(a) Wild-type 1,000 simulations.

0 200 400 600 800
0

200

400

600

800

1000

Time (sec)

F
re

qu
en

cy
(b) Prototype mutant 1,000 simulations.

Fig. 3. Discrete cumulative histogram of compute
times per cell (bar) for wild-type and mutant simula-
tions. The solid line represents the best-fit Gaussian
CDF.

3.3 Variability in Compute Times per Cell
The wild-type cell lineage simulation time distribu-
tion from a simulation experiment is plotted in Fig.
3. (a). This distribution is based on 1,000 budding
yeast multistage cell tracking simulations with 25
processors. The best continuous Gaussian CDF ap-
proximation to the discrete cumulative histogram is
also shown; it is clear that the cell cycle simulation
times are not normally distributed [30]. The wild-type
simulation data from Fig. 3. (a) has the mean and
standard deviation

µT = 488.1 sec. and σT = 116.6 sec. (4a)

Fig. 3. (b) shows the cumulative discrete histogram
of 1,000 prototype budding yeast mutant simulations.
Approximately 75% of the cells never divide and the
remaining 25% divide very irregularly. For the mutant
simulation results

µT = 152.0 sec. and σT = 191.1 sec. (4b)

4 ANALYSIS OF THE DYNAMIC LOAD
BALANCING ALGORITHMS

The probabilistic framework proposed here models
compute times per task as i.i.d. random variables.
Level of load imbalance is measured by three well-
defined metrics (1)–(3). The analysis approach quan-
tifies the expected value of the load imbalance metrics

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 6

before and after each work redistribution step, and
assess the reduction in the expected load imbalance.

This analysis framework is useful for a considerably
more general class of problems, beyond stochastic
cell cycle modeling. The proposed analysis approach
is applicable to any parallel ensemble calculations
where the compute times per task follow the same
probability distribution.

4.1 Order Statistics
Let X1, . . . , Xp be p independent identically distribu-
ted random variables with a probability density func-
tion (PDF) fX(x), and cumulative distribution func-
tion (CDF) FX(x). The variables Y1 ≤ Y2 ≤ · · · ≤ Yp,
where the Yi are the Xi arranged in order of increasing
magnitudes, are called order statistics corresponding
to the random sample X1, . . . , Xp. Therefore, Y1 =
min{X1, . . . , Xp} and Yp = max{X1, . . . , Xp}. Some
useful facts about order statistics [23] follow. The CDF
of the largest order statistic Yp is given by

FYp(y) = Pr [Yp ≤ y] = Pr [X1 ≤ y; . . . ;Xp ≤ y]

=

p∏
j=1

Pr [Xj ≤ y] =

p∏
j=1

FXj (y) = [FX(y)]p

because the Xjs are independent. Likewise

FY1
(y) = Pr [Y1 ≤ y] = 1− [1− FX(y)]p.

These are important special cases of the general for-
mula for FYr (y),

FYr (y) = Pr [Yr ≤ y]

=

p∑
i=r

(
p

i

)
[FX(y)]

i
[1− FX(y)]

p−i
.

The probability density function for the rth order
variable Yr from X is

fYr (y) =
[FX(y)]r−1[1− FX(y)]p−r

B(r, p− r + 1)
fX(y),

where B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
is the Euler beta function.

Γ(r) =

∫ ∞

0

xr−1e−x dx is the gamma function. Thus,

the special probability density function for the maxi-
mum Yp and the minimum Y1 are

fYp(y) = p [FX(y)]
p−1

fX(y), (5a)

fY1
(y) = p [1− FX(y)]

p−1
fX(y). (5b)

Numerical evaluation of expected order statistics is
complex. Chen and Tyler [31] show that the expected
value, standard deviation, and complete PDF of the
extreme order distributions can be accurately approx-
imated when the samples Xi are i.i.d. Gaussian. The
formulas use the expression Φ−1

(
0.52641/p

)
, where p

is the sample size and Φ−1(y) =
√
2 erfinv(2y − 1) is

the inverse function of the standard Gaussian CDF

Φ, and erfinv is the inverse of the error function

erf(x) =
2√
π

∫ x

0

e−t2 dt. Specifically, the expected val-

ues of the largest and the smallest order statistics of
i.i.d. Gaussian samples are, respectively,

E[Yp] ≈ µX + σX Φ−1
(
0.52641/p

)
, (6a)

E[Y1] ≈ µX − σX Φ−1
(
0.52641/p

)
. (6b)

Numerical evidence presented in [31] indicates that
the relative approximation errors are of the order
of a few percent for moderately large values of p
(p ≥ 20). Note that the compute times Xi here are not
identically distributed (unless all the Ri are the same),
and thus in general (6) does not apply to the min and
max compute times Y1 and Yp. (6) is used only for
initially equal Ri followed by AR, and in that case
experimental results presented in Section 5 indicate
that the approximations (6a) and (6b) are very close
to the experimentally determined expected values.

4.2 Some Useful Results for Load Balancing
Consider the moment right after one processor (say,
P1) finishes all its jobs. Define Ri to be the num-
ber of remaining jobs outstanding (including the one
currently executing) on the processor Pi. Since the
analysis is carried out at a given moment in time,
the Ri are known and are not random variables. Let
tij be the execution time for the remaining job j on
processor Pi. Let Xi be the execution time of all the
remaining jobs on Pi.

Consider a load balancing step that redistributes
(nonexecuting) jobs among processors. Since the total
number of jobs is not changed, the algebraic mean of
compute times remains the same.

LEMMA 1. Let X = [X1, . . . , Xp] be the remaining
compute times when the first processor finishes its tasks,
and before the load balancing is performed. Let X ′ =
[X ′

1, . . . , X
′
p] be the vector of compute times after the load

balancing step. The algebraic mean of compute times per
processor is the same random variable for all configurations,

ηX =
1

p

p∑
i=1

Xi = ηX′ =
1

p

p∑
i=1

X ′
i,

since X ′ contains the same tasks, therefore the same exe-
cution times tij , as X (just distributed differently). A load
balancing step does not change the expected algebraic mean
time E[ηX] = E[ηX′].

In what follows, the algebraic mean and the alge-
braic variance of the remaining number of jobs per
processor are denoted by

M(R) =
1

p

p∑
ℓ=1

Rℓ, V(R) =
1

p− 1

p∑
i=1

(
Ri−M(R)

)2
. (7)

Lemma 2 estimates the time left to completion.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 7

LEMMA 2. Consider a task that has started but not yet
finished. There is no information about how far along the
computation is. The total execution time t of the task is
a random variable from a distribution with mean µT and
variation σ2

T . Then the total remaining execution time τ is
a random variable with

E[τ] =
1

2
µT , Var[τ] =

σ2
T

3
+

µ2
T

12
.

Proof: Consider that a fraction f ∈ [0, 1] of the task
still needs to run, while a fraction (1− f) of the task
has completed. Since there is no information about the
part that is done, f is a uniformly distributed random
variable, f ∈ U([0, 1]). It is important to notice that t
and f are independent random variables.

The time left to completion τ = f t is a random
variable. Due to the independence of t and f ,

E[τ] = E[f t] = E[f] E[t] =
1

2
µT .

For the variance,

E

[(
f t− 1

2
µT

)2
]
=

σ2
T

3
+

µ2
T

12
.

Define adjusted numbers R̂i of tasks per processor
such that E[Xi] = R̂i µT . The definition must account
for the fact that one task may be running. When
all processors are still working, one task on each
processor is running. The adjusted number of tasks
is defined as

R̂i = Ri −
1

2
for i = 1, . . . , p. (8a)

Assume, without loss of generality, that P1 is the first
processor that finishes its jobs and becomes idle. All
other processors have one running task, and therefore

R̂1 = 0 and R̂i = Ri −
1

2
for i = 2, . . . , p. (8b)

Right after the load balancing step the processor Pi

has R′
i tasks to execute. On processors P2, . . . , Pp the

first task is the one being executed, but all the R′
1

tasks on P1 are newly assigned and queued: none has
started yet. This leads to

R̂1 = R′
1 and R̂i = R′

i −
1

2
for i = 2, . . . , p. (8c)

The following lemma is a useful ingredient in prov-
ing the main results of the paper.

LEMMA 3. The expected value of the algebraic variance
of the compute times (1) depends on both the algebraic
variance of the number of tasks, and the variance of the
individual compute times, and is given by

E
[
ξ2X
]
= V(R̂)µ2

T +M(R̂)σ2
T

+
p− 1

p

(
−1

6
σ2
T +

1

12
µ2
T

)
, (9)

where the R̂i represent the adjusted numbers of tasks per
processor (8). The algebraic mean M(R̂) and the algebraic
variance V(R̂) are defined in (7).

Proof: Redefine tij to be the time remaining for
job j on processor Pi; the (random) compute times
per processor and their average are

Xi =

Ri∑
j=1

tij , ηX =
1

p

p∑
ℓ=1

Rℓ∑
m=1

tℓm.

Each processor Pi, i ≥ 2, has one task in progress
with expected completion time µT /2 when P1 finishes
its tasks. Note that if P1 is idle (right before load
balancing) then R1 = 0. If P1 is not idle (right after
load balancing step) then none of the tasks assigned
to it has started and E[t1j] = µT for j = 1, . . . , R1.
Consequently, the mean compute time of the first job
is different on P1 than it is on other processors;

E[tij] =

µT /2, i = 2, . . . , p and j = 1,
µT , i = 2, . . . , p and 2 ≤ j ≤ Ri,
µT , i = 1 and R1 ≥ 1,
0 , i = 1 and R1 = 0.

Now

Xi − ηX =

Ri∑
j=1

tij −
1

p

p∑
ℓ=1

Rℓ∑
m=1

tℓm

=

(
1− 1

p

) Ri∑
j=1

tij −
1

p

p∑
ℓ=1,ℓ̸=i

Rℓ∑
m=1

tℓm (10)

=

(
1− 1

p

) Ri∑
j=1

(tij − E[tij]) +

(
1− 1

p

) Ri∑
j=1

E[tij]

− 1

p

p∑
ℓ=1
ℓ̸=i

Rℓ∑
m=1

(tℓm − E[tℓm])− 1

p

p∑
ℓ=1
ℓ̸=i

Rℓ∑
m=1

E[tℓm].

Recall R̂i was defined so that
Ri∑
j=1

E[tij] = R̂i µT , and

(
1− 1

p

) Ri∑
j=1

E[tij]−
1

p

p∑
ℓ=1
ℓ ̸=i

Rℓ∑
m=1

E[tℓm] =

(
R̂i −M(R̂)

)
µT .

Note that E

 Ri∑
j=1

(tij − E[tij])

 = 0 . E[(Xi−ηX)2] will

be determined from (10). First apply Lemma 2 to get

E
[
(tij − E[tij])

2
]
=

σ2
T

3 +
µ2
T

12 , i = 2, ..., p and j = 1,
σ2
T , i = 2, ..., p and j ≥ 2,

σ2
T , i = 1 and R1 ≥ 1,

0 , i = 1 and R1 = 0.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 8

In compact notation

Ri∑
j=1

E
[
(tij − E[tij])

2
]
=

R̂i σ
2
T +

(
−1

6
σ2
T +

1

12
µ2
T

)
(1− δi1),

where δi1 is the Kronecker delta. Due to the indepen-
dence of individual compute times,

E [(tij − E[tij]) (tℓm − E[tℓm])] = 0 for j ̸= m or i ̸= ℓ.

Hence E[(Xi − ηX)2] =(
R̂i −M(R̂)

)2
µ2
T +

1

p

(
M(R̂) + (p− 2) R̂i

)
σ2
T

+

(
−1

6
σ2
T +

1

12
µ2
T

)(
p2 − p− 1− (p2 − 2p) δi1

p2

)
.

Finally the expected value of the algebraic variance

E
[
ξ2X
]
=

1

p− 1

p∑
i=1

E[(Xi − ηX)2]

= V(R̂)µ2
T +M(R̂)σ2

T +
p− 1

p

(
−1

6
σ2
T +

1

12
µ2
T

)
.

Lemma 3 provides insight into how the load bal-
ancing algorithms reduce the algebraic variance of
compute times per processor. Any redistribution of
tasks does not change the total number of tasks, and
therefore does not change the algebraic mean M(R̂).
The second and the third terms in (9) are invariant
with any load balancing algorithm. However, a re-
duction in the algebraic variance V(R̂) of the number
of tasks will decrease the expected algebraic variance
of the compute times by reducing the first term in (9).
Therefore the following corollary can be derived.

LEMMA 4. Let R and R′ be the number of tasks per
processor before and after a load redistribution step, respec-
tively. Let X and X ′ be the compute times per processor
before and after a load redistribution step, respectively. The
decrease in the expected value of the algebraic variance of
the compute times (1) is

E
[
ξ2X
]
− E

[
ξ2X′

]
=
(
V(R̂)−V(R̂′)

)
µ2
T , (11)

where the R̂i represent the adjusted numbers of tasks per
processor (8).

4.3 Analysis of Static Distribution

Let Xi be total job execution time for processor i and
tij be the jth job time of Xi in the static (no dynamic
load balancing) approach. Assume the total number
n of jobs is a multiple of the number p of processors.
Processor i is assigned R = ⌈n/p⌉ = n/p jobs, so that

Xi =

R∑
j=1

tij for i = 1, . . . , p. From the analysis in the

previous section, the total times per processor are i.i.d.
approximately Gaussian random variables X1, . . . , Xp

with mean and variance given by

µX = RµT , σ2
X = Rσ2

T . (12)

The expected value of the algebraic variance (1) is
given by Eq. (9) where all R̂i = R,

E
[
ξ2X
]
= Rσ2

T +
p− 1

p

(
−1

6
σ2
T +

1

12
µ2
T

)
. (13)

Let Y be the order distribution of X : Y1 ≤ Y2 ≤ · · · ≤
Yp. From (5a)–(5b),

E[Yp] =

∫ ∞

−∞
y p [FX(y)]p−1fX(y) dy, (14a)

E[Y1] =

∫ ∞

−∞
y p [1− FX(y)]p−1fX(y) dy (14b)

with the Gaussian probability density function

fX(y) =
1

σX

√
2π

e−(y−µX)2/(2σ2
X), (15)

and the Gaussian cumulative distribution function

FX(y) =
1

2

[
1 + erf

(
y − µX

σX

√
2

)]
. (16)

From (14a)–(16) together with the simulation data
(4a), the probabilistic load imbalance measures (2)–(3)
can be evaluated by numerical integration.

Alternatively, the approximations (6) can be used
together with (12) to obtain

E[Yp − Y1] ≈ 2
√
R σT Φ−1

(
0.52641/p

)
,

E[Yp − ηY] ≈
√
R σT Φ−1

(
0.52641/p

)
.

4.4 Analysis of MD Dynamic Load Balancing
Call P1 the first processor that finishes its jobs and
becomes idle. At this time each processor Pi , i > 1,
has Ri outstanding jobs and a total remaining exe-
cution time Xi. By the CLT, each of X2, . . . , Xp is
approximately normally distributed if all Ri are large.
The first (running) job on P2, . . . , Pp has a different
PDF and a negligible effect on compute time statistics,
assuming that Ri ≫ 1 for i ≥ 2.

In the MD algorithm the highest loaded processor
sends half of its unfinished jobs to the idle processor.
Assume, without loss of generality, that and Pp has
the highest load of Rp unfinished jobs. The MD load
balancing step moves ⌊Rp/2⌋ jobs from the processor
Pp to P1. The loads for P2, . . . , Pp−1 are not changed.
Therefore, the number of jobs per processor after
redistribution is

R′
1 =

⌊
Rp

2

⌋
, R′

2 = R2 , . . . , R
′
p−1 =

Rp−1, R
′
p =

⌈
Rp

2

⌉
.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 9

Let X ′
i be the remaining compute time for processor

Pi after the MD load balancing step. From the above
X ′

i = Xi for i = 2, . . . , p − 1. For the first and last
processors the expected values of the compute times
are

E[X ′
1] = R′

1 µT =

⌊
Rp

2

⌋
µT ,

E[X ′
p] =

(
R′

p −
1

2

)
µT =

(⌈
Rp

2

⌉
− 1

2

)
µT .

The above expression accounts for the fact that Pp has
one task in progress. Furthermore,

E[X ′
p]− E[X ′

1] =

(
Rp mod 2− 1

2

)
µT .

The following propositions prove that each MD re-
distribution step decreases the level of load imbalance
as measured by the metrics (1)–(3).

PROPOSITION 1. The expected value of the algebraic
variance of the compute times per processor (1) decreases
after a MD DLB step by

E[ξ2X]− E[ξ2X′] =
Rp (Rp − 1)

2 (p− 1)
µ2
T .

Proof: The average adjusted number of tasks per
processor is the same before and after MD load bal-
ancing, M(R̂) = M(R̂′). The decrease in the algebraic
variance of the adjusted number of tasks is

V(R̂)−V(R̂′) =
1

p− 1

(
(R̂1 −M(R̂))2 − (R̂′

1 −M(R̂))2

+ (R̂p −M(R̂))2 − (R̂′
p −M(R̂))2

)
=

Rp (Rp − 1)

2 (p− 1)
.

Lemma 4 provides the difference between the ex-
pected variances of compute times across processors
before and after a MD load balancing step,

E[ξ2X]− E[ξ2X′] =
Rp (Rp − 1)

2 (p− 1)
µ2
T . (17)

The MD algorithm can be meaningfully applied
only when the number of tasks on the most over-
loaded processor is Rp ≥ 2. The relation (17) then
provides a strict decrease in the expected value of the
algebraic variance of compute times.

PROPOSITION 2. The expected value of the largest idle
time (2) is monotonically decreased after a MD DLB step,
that is, E

[
Y ′
p − Y ′

1

]
≤ E [Yp − Y1] .

Proof: Before the MD load balancing step, the
expected maximum imbalance is

E[Yp]− E[Y1] = E[Yp] ≥ E[Xp] = R̂p µT .

After the MD load balancing step, the new expected
maximum imbalance time is E[Y ′

p]− E[Y ′
1].

Consider the random variables

Zmin = min{X2, · · · , Xp−1},
Zmax = max{X2, · · · , Xp−1} ≤ Yp .

The smallest and the largest order statistics after MD
balancing are Y ′

1 = min{X ′
1, X

′
p, Zmin} and Y ′

p =
max{X ′

1, X
′
p, Zmax}. There are nine possible combi-

nations of Y ′
1 and Y ′

p values. Two of them lead to
Y ′
1 = Y ′

p , i.e., the maximum idle time is zero after
the MD load balancing step. The remaining seven
combinations are as follows:

(1) Y ′
1 = Zmin and Y ′

p = Zmax ;
(2) Y ′

1 = Zmin and Y ′
p = X ′

p ;
(3) Y ′

1 = Zmin and Y ′
p = X ′

1 ;
(4) Y ′

1 = X ′
p and Y ′

p = Zmax ;
(5) Y ′

1 = X ′
p and Y ′

p = X ′
1 ;

(6) Y ′
1 = X ′

1 and Y ′
p = Zmax ;

(7) Y ′
1 = X ′

1 and Y ′
p = X ′

p .
In Case (1) the balanced times fall between Zmin and
Zmax. The expected maximum idle time reduction is

{E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= {E[Yp]− E[Y1]} − {E[Zmax]− E[Zmin]}
= {E[Yp]− E[Zmax]}+ {E[Zmin]} ≥ E[Zmin] ≥ 0.

The reductions of expected maximum idle times for
Cases (2) to (7) are straightforward verification.

Case (2) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

p]− E[Zmin]} ≥ E[Yp]− E[X ′
p]

≥ R̂p µT − (⌈Rp/2⌉ − 0.5)µT > 0.

Case (3) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

1]− E[Zmin]} ≥ E[Yp]− E[X ′
1]

≥ (Rp − 0.5− ⌊Rp/2⌋) µT > 0.

Case (4) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[Zmax]− E[X ′

p]} ≥ E[X ′
p]

= (⌈Rp/2⌉ − 0.5) µT > 0.

Case (5) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

1]− E[X ′
p]}

≥
(
R̂p − ⌊Rp/2⌋+ ⌈Rp/2⌉ − 0.5

)
µT > 0.

Case (6) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[Zmax]− E[X ′

1]} ≥ E[X ′
1] > 0.

Case (7) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

p]− E[X ′
1]}

≥
(
R̂p + 0.5 + ⌊Rp/2⌋ − ⌈Rp/2⌉

)
µT > 0.

Therefore, after a MD load balancing step, the ex-
pected maximum time imbalance is always the same
or reduced. If R2 ≥ 1 and Rp−1 ≥ 1, then E[Zmin] > 0.
Then expected maximum time is always decreased
after a MD load balancing step.

The third measure of load imbalance is the expected
value of the average idle compute time across all

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 10

processors

E

[
1

p

p∑
i=1

(Yp −Xi)

]
= E [Yp − ηX] .

PROPOSITION 3. The expected value of the average idle
time (3) does not increase after a MD DLB step, that is,
E
[
Y ′
p − ηX′

]
≤ E [Yp − ηX] .

Proof: The decrease in the expected average idle
time is (since ηX′ = ηX)

E [Yp − ηX]− E
[
Y ′
p − ηX′

]
= E [Yp]− E

[
Y ′
p

]
.

Consider each of the possible values of Y ′
p separately.

(1) Y ′
p = Zmax :

E [Yp]− E
[
Y ′
p

]
= E [Yp − Zmax] ≥ 0;

(2) Y ′
p = X ′

1 :

E [Yp]− E
[
Y ′
p

]
≥
(
R̂p − ⌊Rp/2⌋

)
µT > 0;

(3) Y ′
p = X ′

p :

E [Yp]− E
[
Y ′
p

]
≥ (Rp − ⌈Rp/2⌉ − 0.5)µT > 0;

by assuming that Rp > 1.

4.5 Analysis of AR Dynamic Load Balancing

In the AR algorithm, all remaining jobs on all proces-
sors are equitably redistributed among all processors
right after P1 finishes its jobs and becomes idle. At this
time each processor Pi, i = 2, · · · , p, has Ri remaining
jobs and a remaining execution time Xi. One job is
in progress with an expected completion time µT /2
and Ri − 1 jobs are queued. Ri is known and not a
random variable because the analysis is carried out at
a given time. The total number of remaining jobs is
p∑

i=1

Ri. Let b =

(
p∑

i=1

Ri

)
mod p , and

r = ⌊M(R)⌋ = M(R)− b

p
, r̂ = r − 1

2
.

The new number of jobs that the AR algorithm assigns
to processor Pi is

R′
i =

 r , if b = 0 and i = 1, . . . , p ,
r , if b ̸= 0 and i = 1, . . . , p− b ,
r + 1 , if b ̸= 0 andi = p− b+ 1, . . . , p .

Let X ′
i denote the execution time of the jobs on Pi

after the AR step. The expected value of X ′
i is

E[X ′
i] =

 r µT , if i = 1 ,
r̂ µT , if i = 2, . . . , p− b ,
(r̂ + 1)µT , if i = p− b+ 1, . . . , p .

(18)

PROPOSITION 4. The expected algebraic variance (1) of
X ′ is smaller than the expected algebraic variance of X
after an AR DLB step, that is, E[ξ2X′] < E[ξ2X], assuming
V(R̂) > 1/4.

Proof: According to Lemma 4 the expected de-
crease in the algebraic variance of the execution
times is proportional to the decrease in the algebraic
variance of the modified number of jobs. The AR
algorithm redistributes the number of jobs equitably,
such that after the load balancing step the algebraic
variance of the number of tasks is the smallest among
all possible distributions. Therefore the AR load bal-
ancing algorithm decreases the expected variability of
execution times across processors by the maximum
possible amount, and E[ξ2X′] < E[ξ2X].

The algebraic variance after AR load balancing is

V(R̂′) =
1

p− 1

p∑
i=1

(
R̂′

i −M(R̂′)
)2

=
p (4b+ 1)− (2b+ 1)2

4 p (p− 1)
≤ 1

4

for 0 ≤ b ≤ p− 1. The decrease in the expected value
of the algebraic variance of the compute times is

E
[
ξ2X
]
− E

[
ξ2X′

]
≥
(
V(R̂)− 1

4

)
µ2
T .

For the remaining part of the analysis consider
the case where the mean number of jobs is large,
M(R) ≫ 1. In this case r + 1 ≈ r ≈ r̂, i.e., the jobs
are nearly equally distributed to processors by the AR
step. Moreover, the fact that one job has started on
each of P2 to Pp but not on P1 has a negligible effect
on the statistics of compute times (which are domi-
nated by the large number of queued tasks). Therefore
assume that M(R) is large, b = 0, and no jobs have
started on any of the processors. The AR algorithm
recursively returns to the initial circumstances of the
previous AR step, but with a smaller number of jobs.
The equal distribution of work and the CLT permit
approximation of the compute times per processor
X ′

1, . . . , X
′
p with i.i.d. Gaussian random variables.

PROPOSITION 5. If Rp is sufficiently large, the ex-
pected value of the largest idle time (2) is decreased after
an AR DLB step, that is, E

[
Y ′
p − Y ′

1

]
< E [Yp − Y1] .

Proof: The maximum compute time before bal-
ancing is at least equal to the compute time on the
processor with the largest number of remaining jobs
(assumed to be Pp without loss of generality). This
implies that E[Yp] ≥ E[Xp] = Rp µT . Similarly, the
minimum compute time is at most equal to the com-
pute time on the processor with the smallest number
of remaining jobs. Therefore

E[Y1] ≤ E[X1] = R1 µT = 0 , Rp µT ≤ E[Yp − Y1],

and
(
Rp −M(R)

)
µT ≤ E[Yp − ηY].

The expected values of the greatest and the least
order statistics in Gaussian samples can be accurately
approximated using (6a)–(6b). Under the above sim-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 11

plifying assumptions (b = 0 and no processes have
started) all the Xi are (approximately) i.i.d. normal
random variables. From (6a), (6b), and (18),

E[Y ′
p] = r µT +

√
r σT Φ−1(0.52641/p) + errp(p),

E[Y ′
1] = r µT −

√
r σT Φ−1(0.52641/p) + err1(p).

Assume that the relative approximation errors have
an upper bound ϵ < 0.5 for all p ≥ 20:

|errp(p)| ≤ ϵ ·
∣∣∣r µT +

√
r σT Φ−1(0.52641/p)

∣∣∣ ,
|err1(p)| ≤ ϵ ·

∣∣∣r µT −
√
r σT Φ−1(0.52641/p)

∣∣∣ ,
taking the relative errors with respect to the approxi-
mate values for convenience. Note that the results in
[31] estimate ϵ ≤ 0.04. Consequently,

E[Y ′
p]− E[Y ′

1] =

2
√
r σT Φ−1(0.52641/p) + errp(p)− err1(p).

For bounded numbers of processors p ≤ pmax the
inverse function Φ−1(0.52641/p) is bounded by
Φ−1(0.52641/pmax) = Cmax ≈ 4.4 for pmax = 1, 000, 000.
Therefore,

E[Y ′
p]− E[Y ′

1] ≤ 2Cmax

√
r σT + |errp(p)|+ |err1(p)|

≤ 2 (1 + ϵ)Cmax

√
r σT + 2 ϵ r µT .

The decrease in expected maximum idle time is at
least

E [Yp − Y1]− E
[
Y ′
p − Y ′

1

]
≥ (Rp − 2 ϵ r) µT − 2 (1 + ϵ)Cmax

√
r σT

> (1− 2 ϵ) Rp µT − 2 (1 + ϵ)Cmax

√
Rp σT ≥ 0

for r < Rp and

Rp ≥ 4 (1 + ϵ)2 C2
max

(1− 2 ϵ)2

(
σT

µT

)2

.

This lower bound for Rp does not depend on p (20 ≤
p ≤ pmax), but depends only on σT and µT .

PROPOSITION 6. If Rp > (1 + ϵ+ g) r for some g > 0
and r is sufficiently large, the expected value of the average
idle time (3) is decreased after an AR DLB step, that is,
E
[
Y ′
p − ηX

]
< E [Yp − ηX].

Proof: Before an AR load balancing step, since
E[Yp] ≥ E[Xp] = Rp µT as before, the mean load
imbalance is E [Yp − ηX] ≥ (Rp − r)µT . After the AR
step, and using ϵ from the proof of Proposition 5, the
mean load imbalance becomes

E
[
Y ′
p − ηX

]
= r µT +

√
r σT Φ−1(0.52641/p) + errp(p)− rµT

≤ (1 + ϵ)
(
r µT +

√
r σT Φ−1(0.52641/p)

)
− rµT

≤ ϵ rµT + (1 + ϵ)Cmax

√
r σT .

Therefore, the difference after the AR step is

E [Yp − ηX]− E
[
Y ′
p − ηX

]
≥ (Rp − r − ϵ r) µT − (1 + ϵ)Cmax

√
r σT

> g r µT − (1 + ϵ)Cmax

√
r σT .

The expected mean idle time decreases if Rp is suffi-
ciently large, when

Rp > (1 + ϵ+ g) r ≥ (1 + ϵ+ g)

(
(1 + ϵ)Cmax σT

g µT

)2

.

4.6 Analysis of RP Dynamic Load Balancing

Recall that P1 is the first processor that finishes its
tasks and becomes idle. In the RP algorithm, the idle
processor sends requests to randomly chosen proces-
sors until a busy one is found. Assume, without loss
of generality, that Pk is the busy processor that was
chosen randomly. Pk has the load of Rk unfinished
jobs. The RP load balancing step moves ⌊Rk/2⌋ jobs
from the busy processor Pk to P1. The loads of the
processors other than P1 and Pk are not changed. Pp

has the highest load of Rp unfinished jobs as before.
Let X ′

i be the remaining compute time for processor
Pi after the RP DLB step. From the above, X ′

i = Xi

for i = 2, . . . , p and i ̸= k. For the processors P1 and
Pk, the expected values of the compute times are

E[X ′
1] = R′

1 µT =

⌊
Rk

2

⌋
µT ,

E[X ′
k] =

(
R′

k − 1

2

)
µT =

(⌈
Rk

2

⌉
− 1

2

)
µT .

The above expression accounts for the fact that Pk has
one task in progress. Furthermore,

E[X ′
k]− E[X ′

1] =

(
Rk mod 2− 1

2

)
µT .

The following propositions prove that each RP re-
distribution step decreases the level of load imbalance
as measured by the metrics (1)–(3).

PROPOSITION 7. The expected value of the algebraic
variance of the compute times per processor (1) decreases
after a RP DLB step by

E[ξ2X]− E[ξ2X′] =
(M(R))

2 −M(R) + V(R)

2(p− 1)
µ2
T .

Proof: Assume the probability that the Pk is ran-
domly chosen as a donor processor is 1/(p − 1). The
average adjusted number of tasks per processor is the
same before and after RP load balancing, M(R̂) =

M(R̂′). The decrease in the algebraic variance of the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 12

adjusted number of tasks is

V(R̂)−V(R̂′) =
1

p− 1

(
(R̂1 −M(R̂))2 − (R̂′

1 −M(R̂))2

+ (R̂k −M(R̂))2 − (R̂′
k −M(R̂))2

)
=

Rk (Rk − 1)

2 (p− 1)
.

Lemma 4 and the probability that Pk is randomly
chosen as a donor processor provide the difference
between the expected variances of compute times
across processors before and after a RP DLB step

E[ξ2X]− E[ξ2X′] =

p∑
k=2

1

p− 1

(
Rk (Rk − 1)

2 (p− 1)

)
µ2
T

=
µ2
T

2(p− 1)2

p∑
k=2

(
R2

k −Rk

)
=

µ2
T

2(p− 1)2

p∑
k=2

{
(Rk −M(R))

2

+ (2M(R)− 1)Rk − (M(R))
2 }

=
µ2
T

2(p− 1)2

{
(p− 1)V(R)

+ (p− 1)
(
(M(R))

2 −M(R)
)}

=
(M(R)− 1)

2
+ (M(R)− 1) + V(R)

2(p− 1)
µ2
T > 0

for M(R) > 1.

PROPOSITION 8. The expected value of the largest idle
time (2) is not increased after a RP DLB step, that is,
E
[
Y ′
p − Y ′

1

]
≤ E [Yp − Y1].

Proof: Before the RP load balancing step, the
expected maximum imbalance is

E[Yp]− E[Y1] = E[Yp] ≥ E[Xp] = R̂p µT .

After the RP load balancing step, the new expected
maximum imbalance time is E[Y ′

p]−E[Y ′
1]. If Pk = Pp

has the highest load of Rp, the proof is the same as
that for Proposition 2. Otherwise 1 < k < p. Consider
the random variables

Zmin = min{X2, · · · , Xk−1, Xk+1, · · · , Xp},
Zmax = max{X2, · · · , Xk−1, Xk+1, · · · , Xp} ≤ Yp.

The smallest and the largest order statistics after the
RP load balancing step are Y ′

1 = min{X ′
1, X

′
k, Zmin}

and Y ′
p = max{X ′

1, X
′
k, Zmax}. Seven possible combi-

nations of Y ′
1 and Y ′

p values are considered as in the
proof of Proposition 2.

(1) Y ′
1 = Zmin and Y ′

p = Zmax ;
(2) Y ′

1 = Zmin and Y ′
p = X ′

k ;
(3) Y ′

1 = Zmin and Y ′
p = X ′

1 ;
(4) Y ′

1 = X ′
k and Y ′

p = Zmax ;
(5) Y ′

1 = X ′
k and Y ′

p = X ′
1 ;

(6) Y ′
1 = X ′

1 and Y ′
p = Zmax ;

(7) Y ′
1 = X ′

1 and Y ′
p = X ′

k .
In Case (1) the balanced times fall between Zmin and

Zmax. That the expected maximum idle time reduc-
tion is greater than or equals to zero is proved the
same as for Case (1) in Proposition 2. The reductions
of expected maximum idle times for Cases (2) to (7)
are shown by straightforward verification.

Case (2) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

k]− E[Zmin]} ≥ E[Yp]− E[X ′
k]

≥ (Rp − ⌈Rk/2⌉)µT > 0,

Case (3) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

1]− E[Zmin]} ≥ E[Yp]− E[X ′
1]

≥ (Rp − 0.5− ⌊Rk/2⌋) µT > 0,

Case (4) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[Zmax]− E[X ′

k]} ≥ E[X ′
k]

= (⌈Rk/2⌉ − 0.5) µT > 0,

Case (5) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

1]− E[X ′
k]}

≥ (Rp − ⌊Rk/2⌋+ ⌈Rk/2⌉ − 1) µT > 0,

Case (6) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[Zmax]− E[X ′

1]} ≥ E[X ′
1] ≥ 0,

Case (7) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

k]− E[X ′
1]}

≥ (Rp + ⌊Rk/2⌋ − ⌈Rk/2⌉)µT ≥ 0.

Therefore, after a RP load balancing step, the expected
maximum time imbalance is always the same or re-
duced. Note that if Rp ≥ 2 and r ≥ 1, then the ex-
pected maximum time imbalance is always reduced.
This condition is general in load balancing steps.

PROPOSITION 9. The expected value of the average idle
time (3) is not increased after a RP DLB step, that is,
E
[
Y ′
p − ηX′

]
≤ E [Yp − ηX].

Proof: The decrease in the expected average idle
time is (since ηX′ = ηX)

E [Yp − ηX]− E
[
Y ′
p − ηX′

]
= E [Yp]− E

[
Y ′
p

]
.

Consider each of the possible values of Y ′
p separately.

(1) Y ′
p = Zmax :

E [Yp]− E
[
Y ′
p

]
= E [Yp − Zmax] ≥ 0;

(2) Y ′
p = X ′

1 :

E [Yp]− E
[
Y ′
p

]
≥
[
Rp −

⌊
Rk

2

⌋
− 1

2

]
µT > 0;

(3) Y ′
p = X ′

k :

E [Yp]− E
[
Y ′
p

]
≥
[
Rp −

⌈
Rk

2

⌉]
µT ≥ 0.

In the first case Y ′
p = Zmax, Zmax is the same as

Yp except when the donor processor Pk is randomly
selected to be the most overloaded processor Pp.
Therefore the expected value of the reduction in the
average idle time is zero for most RP load balancing
steps.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 13

4.7 Analysis of NR Dynamic Load Balancing

In the NR algorithm, the idle processor sends requests
to neighbor processors to redistribute the remaining
jobs on the neighbor processors and itself. Assume
that the number of neighbor processors of the idle
processor is k−1 and changes with different network
topologies. Let P1 be the idle processor that finishes
its jobs with its neighbor processors P2, . . . , Pk.

Before the NR load balancing step, each processor
Pi, i = 2, . . . , k, has Ri remaining jobs and a remaining
execution time Xi. One job is in progress with an
expected completion time µT /2 and Ri − 1 jobs are

queued. Let b =

(
k∑

i=1

Ri

)
mod k , M̃(R) =

1

k

k∑
i=1

Ri

and

r =
⌊
M̃(R)

⌋
= M̃(R)− b

k
, r̂ = r − 1

2
.

The new number of jobs that the NR algorithm assigns
to processor Pi is

R′
i =

 r , i = 1, . . . , k − b ,
r + 1 , i = k − b+ 1, . . . , k ,
Ri , i = k + 1, . . . , p .

Let X ′
i denote the execution time of the jobs on Pi

after the NR step. The expected value of X ′
i is

E[X ′
i] =

r µT , if i = 1 ,
r̂ µT , if i = 2, . . . , k − b ,
(r̂ + 1)µT , if i = k − b+ 1, . . . , k .
R̂i µT , if i = k + 1, . . . , p .

Define

M̃(R̂) =
1

k

k∑
i=1

R̂i, Ṽ(R̂) =
1

k − 1

k∑
i=1

(
R̂i − M̃(R̂)

)2
.

PROPOSITION 10. The expected algebraic variance (1)
of X ′ is smaller than the expected algebraic variance of X
after an NR DLB step, that is, E[ξ2X′] < E[ξ2X], assuming
Ṽ(R̂) > 1/4.

Proof: Since R′
i = Ri for i = k + 1, . . . , p,

V(R̂)−V(R̂′) =
1

p− 1

{
p∑

i=1

(
R̂i

)2
−

p∑
i=1

(
R̂′

i

)2}

=
1

p− 1

{
k∑

i=1

(
R̂i

)2
−

k∑
i=1

(
R̂′

i

)2}
=

k − 1

p− 1

(
Ṽ(R̂)− Ṽ(R̂′)

)
.

Proposition 4 provides the algebraic variance of the
modified number of jobs after the NR load balancing
step, since it is the same as the AR load balancing step

for Pi where i = 1, . . . , k.

Ṽ(R̂′) =
1

k − 1

k∑
i=1

(
R̂′

i − M̃(R̂′)
)2

=
k (4b+ 1)− (2b+ 1)2

4 k (k − 1)
≤ 1

4
.

for 0 ≤ b ≤ k− 1. Finally the decrease in the expected
value of the algebraic variance of the compute times
is

E
[
ξ2X
]
− E

[
ξ2X′

]
≥ k − 1

p− 1

(
Ṽ(R̂)− 1

4

)
µ2
T .

PROPOSITION 11. The expected value of the largest idle
time (2) is monotonically decreased after a NR DLB step,
that is, E

[
Y ′
p − Y ′

1

]
≤ E [Yp − Y1].

Proof: Before the NR load balancing step the
expected maximum imbalance is

E[Yp]− E[Y1] = E[Yp] ≥ E[Xp] = R̂p µT .

After the NR load balancing step, the new expected
maximum imbalance time is E[Y ′

p]− E[Y ′
1].

Consider the random variables

Zmin = min{X ′
1, · · · , X ′

k} ,
Zmax = max{X ′

1, · · · , X ′
k} ≤ max{X1, · · · , Xk} ≤ Yp ,

Wmin = min{X ′
k+1, · · · , X ′

p} ≥ Y1 = 0 ,

Wmax = max{X ′
k+1, · · · , X ′

p} ≤ Yp .

The smallest and the largest order statistics after
NR balancing are Y ′

1 = min{Zmin,Wmin} and Y ′
p =

max{Zmax,Wmax}. There are four possible combina-
tions of Y ′

1 and Y ′
p values:

(1) Y ′
1 = Zmin and Y ′

p = Wmax;
(2) Y ′

1 = Wmin and Y ′
p = Wmax;

(3) Y ′
1 = Zmin and Y ′

p = Zmax;
(4) Y ′

1 = Wmin and Y ′
p = Zmax.

Case (1) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= {E[Yp]− E[Wmax]}+ E[Zmin] ≥ E[Zmin] ≥ 0.

Case (2) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= {E[Yp]− E[Wmax]}+ E[Wmin] ≥ 0.

Case (3) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= {E[Yp]− E[Zmax]}+ E[Zmin] ≥ 0.

Case (4) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= {E[Yp]− E[Zmax]}+ E[Wmin] ≥ 0.

PROPOSITION 12. The expected value of the average
idle time (3) does not increase after a NR load balancing
step, that is, E

[
Y ′
p − ηX′

]
≤ E [Yp − ηX].

Proof: The decrease in the expected average idle

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 14

time is (since ηX′ = ηX by Lemma 1)

E [Yp − ηX]− E
[
Y ′
p − ηX′

]
= E [Yp]− E

[
Y ′
p

]
.

From the proof of Proposition 11,

Y ′
p = max{Zmax,Wmax} ≤ Yp.

Therefore,
E [Yp]− E

[
Y ′
p

]
≥ 0.

5 THEORETICAL AND EXPERIMENTAL
RESULTS

This section provides theoretical and experimental
load balancing results with the budding yeast cell
cycle model. To evaluate the proposed load balancing
algorithms, the ensemble of simulations is executed
on Virginia Tech’s System X supercomputer [32]. The
supercomputer has 1,100 Apple PowerMac G5 nodes,
with dual 2.3 GHz PowerPC 970FX processors and
4GB memory.

5.1 Cell Cycle Simulations

5.1.1 The Stochastic Simulation Algorithm (SSA)

Consider a biochemical system or pathway that in-
volves N molecular species S1, . . ., SN . Xi(t) denotes
the number of molecules of species Si at time t.
Stochastic simulations generate the evolution of the
state vector X(t) = (X1(t), ..., XN (t)) given that the
system was initially in the state vector X(t0). Suppose
the system is composed of M reaction channels R1,
. . ., RM . In a constant volume Ω, assume that the
system is well-stirred and in thermal equilibrium at
some constant temperature. There are two important
entities in reaction channel Rj : the state change vector
ν·j = (ν1j , ..., νNj), and the propensity function aj .
νij is defined as the change in the Si molecules’
population caused by one Rj reaction. aj(x)dt gives
the probability that one Rj reaction will occur in the
next infinitesimal time interval [t, t+ dt).

The SSA simulates every reaction event [33]. X(t) =
x, p(τ, j|x, t)dτ is defined as the probability that the
next reaction in the system will occur in the infinites-
imal time interval [t+ τ, t+ τ +dτ), and will be an Rj

reaction. By letting a0(x) ≡
∑M

j=1 aj(x), the equation

p(τ, j|x, t) = aj(x) exp(−a0(x)τ)

can be obtained. A Monte Carlo method is used to
generate τ and j. On each step of the SSA, random
numbers r1 and r2 are generated from the uniform
(0,1) distribution. From probability theory, the time
for the next reaction to occur is given by t+ τ , where

τ = (1/a0(x)) ln (1/r1) .

Cell Number 1 2 3 4 5 8

Time

(min)

0

ID=1 ID=2

ID=3

ID=4

ID=5

ID=6

ID=7

91 175 600

?

Fig. 4. Multistage cell cycle tracking diagram. ID is the
cell identification tag. Cell modeling simulations should
be executed beginning at each cell emergence time.

The next reaction index j is given by the smallest
integer satisfying

j∑
j′=1

aj′(x) > r2a0(x).

After τ and j are obtained, the system states are
updated by X(t+τ) := x+νj , and the time is updated
by t := t+τ . This simulation proceeds iteratively until
the time t reaches its termination value.

It is clear from the stochastic nature of the system
that a different simulation of the same cell over the
same interval (using a different seed for the pseudo-
random number generator) will involve a different
number of reactions, and therefore will require a
different compute time.

5.1.2 The Budding Yeast Cell Cycle Model
The cycle of cell growth, DNA synthesis, mitosis, and
cell division is the fundamental process by which
cells grow, develop, and reproduce. The molecular
machinery of eukaryotic cell cycle control is known in
more detail for budding yeast, Saccharomyces cerevisiae,
than for any other organism. Therefore, the unicellular
budding yeast is an excellent organism for which to
study cell cycle regulation.

We have implemented a stochastic model for the
budding yeast cell cycle [34], [35] based on the original
model of Chen et al. [36]. Gillespie’s SSA [33] is
executed on the cell cycle model. To accurately mimic
the experimental protocol, we choose cells from a
specific distribution of initial conditions, and simulate
all of their progeny. Existing stochastic simulators
based on the Gillespie’s SSA treat one system with
one initial molecular state vector. To simulate all of the
progeny, whose initial states are different, multicycle
cell lineage tracking is needed, as illustrated in Fig.
4. Biologists are interested in the number of cells in
existence at a specific final time. The algorithm for
the multistage cell cycle implementation is described
in detail in [37].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 15

0 2 4 6
100

200

300

400

500

600

700

800

Steps

T
im

e
(s

ec
)

Experimental
√

[ξ2

X
]

Theoretical
√

E[ξ2

X
]

(a) MD load balancing

0 1 2
100

200

300

400

500

600

700

800

Steps

T
im

e
(s

ec
)

Experimental
√

[ξ2

X
]

Theoretical
√

E[ξ2

X
]

(b) AR load balancing

0 5 10 15 20
100

200

300

400

500

600

700

800

Steps

T
im

e
(s

ec
)

Experimental
√

[ξ2

X
]

Theoretical
√

E[ξ2

X
]

(c) RP load balancing

0 5 10 15
100

200

300

400

500

600

700

800

Steps

T
im

e
(s

ec
)

Experimental
√

[ξ2

X
]

Theoretical
√

E[ξ2

X
]

(d) NR load balancing

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400

Experimental
√

[ξ2

X
]

T
h
eo

re
ti

ca
l
√

E
[ξ

2 X
]

Exp. vs. The. Time
Ideal
+/− 10% Ideal

(e) MD load balancing

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400

Experimental
√

[ξ2

X
]

T
h
eo

re
ti

ca
l
√

E
[ξ

2 X
]

Exp. vs. The. Time
Ideal
+/− 10% Ideal

(f) AR load balancing

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400

Experimental
√

[ξ2

X
]

T
h
eo

re
ti

ca
l
√

E
[ξ

2 X
]

Exp. vs. The. Time
Ideal
+/− 10% Ideal

(g) RP load balancing

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400

Experimental
√

[ξ2

X
]

T
h
eo

re
ti

ca
l
√

E
[ξ

2 X
]

Exp. vs. The. Time
Ideal
+/− 10% Ideal

(h) NR load balancing

Fig. 5. Numerical comparison of the experimental RAV to the theoretical root expected algebraic variance of
compute times across the processors for the four load balancing algorithms. 1,000 runs with 25 processors for
(a)–(d) and 10,000 runs with 100 processors for (e)–(h).

5.2 Numerical Evaluation of Static Distribution

To assess how well the theoretical estimates of load
imbalance metrics agree with the simulation results,
consider the case with n = 1, 000 cell cycle simulations
distributed evenly across p = 25 processors, which re-
sults in R = 40 tasks per processor. To evaluate prob-
abilistic measures the expected maximum CPU time
E[Yp] and minimum CPU time E[Y1] can be calculated
in two ways: the integral method (14a)–(14b) and the
approximation method (6a)–(6b). E[Yp] = 20, 973 and
E[Y1] = 18, 075 calculated from the integral method
are similar to the approximation method results of
E[Yp] = 20, 965 and E[Y1] = 18, 083. Results from both
methods match the experimental results in Table 2.

Probabilistic measures (1)–(3) of load imbalance are
the root expected algebraic variance of times across
the processors,√

E
[
ξ2X
]
=

√
p

p− 1
·R · σ2

T ≈ 752.65 seconds,

the expected worst case load imbalance,

E[Yp]− E[Y1] ≈ 2, 898 seconds,

and the expected idle time per processor,

E [Yp − ηX] ≈ 1, 449 seconds.

In the simulation experiment based on 1,000 simu-
lations with fa static distribution over 25 processors,
the root algebraic variance of CPU times is 679.83
seconds, the maximum load imbalance Yp − Y1 is
2, 740.42 seconds, and the average CPU idle time

(1/p)

p∑
i=1

(Yp−Xi) = 1, 270.75 seconds. The theoretical

probabilistic measures of load imbalance are consis-

tent with the simulation experiment values.

5.3 Numerical Evaluation of Theoretical Analysis
for the Dynamic Load Balancing Algorithms

In this section, the approximations employed in the
theoretical analysis of the four different dynamic load
balancing algorithms are compared to the experi-
mental results numerically. Figures 5 (a)–(d) compare
the theoretical root expected algebraic variance of
compute times across the processors for each load
balancing step to the experimental square root of
the algebraic variance (RAV) with n = 1, 000 tasks
on p = 25 processors. To investigate in the case of
many tasks on many processors, the theoretical and
experimental results of n = 10, 000 tasks on p = 100
processors are considered in Figures 5 (e)–(h).

The numerical reduction of the expected algebraic
variance of the compute times across the processors
before and after a load balancing step is quantified
in Propositions 1, 4, 7, and 10 for each load balancing
algorithm. In the MD analysis, Proposition 1 provides
that the numerical root expected algebraic variance of
the compute times across the processors after a load
balancing step that is√

E[ξ2X′] =

√
E[ξ2X]− Rp (Rp − 1)

2 (p− 1)
µ2
T .

In the AR analysis, Proposition 4 provides that√
E[ξ2X′] =

√
E[ξ2X]−

(
V(R̂)−V(R̂′)

)
µ2
T

where
V(R̂′) =

p (4b+ 1)− (2b+ 1)2

4 p (p− 1)
.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 16

TABLE 1
Experimental and theoretical RAV (square root of the algebraic variance) of compute times across the

processors for the four load balancing algorithms. Units are seconds.

1,000 Runs (25 processors) 10,000 Runs (100 processors)
Metrics MD AR RP NR MD AR RP NR

Experimental RAV of compute times 195.14 172.22 150.32 209.96 195.85 153.77 187.45 226.68
Theoretical

√
ξ2X of compute times 239.98 198.32 220.53 241.37 229.01 198.24 297.26 378.27

In the RP analysis, Proposition 7 provides that√
E[ξ2X′] =

√
E[ξ2X]− (M(R))

2 −M(R) + V(R)

2(p− 1)
µ2
T .

In the NR analysis, Proposition 10 provides that√
E[ξ2X′] =

√
E[ξ2X]− k − 1

p− 1

(
Ṽ(R̂)− Ṽ(R̂′)

)
µ2
T

where
Ṽ(R̂′) =

k (4b+ 1)− (2b+ 1)2

4 k (k − 1)
.

Figure 5 shows that the variance decreases consis-
tently on each iteration as predicted by the theory
for all load balancing cases. Table 1 shows the final
root expected algebraic variance of the compute times
versus experimental root of the algebraic variance
across the processors. As expected, the theoretical
values are larger than experimental results since the
theory provides upper bounds for the metric (1).

5.4 Load Balancing Results for Wild-Type Yeast

This section describes load balancing results for the
wild-type budding yeast cell cycle model. Fig. 6
compares the processor CPU times and wall clock
time using the no DLB, MD, AR, RP, and NR DLB
algorithms. 1,000 simulations with 25 processors and
10,000 simulations with 100 processors are executed
for this experiment. With the static distribution (no
load balancing), the variance of the CPU times is not
huge because wild-type cells divide in a relatively
regular fashion. The simulation time is just affected
by the stochastic nature of the SSA. Nevertheless,
the four dynamic load balancing methods reduce
the wall clock time compared to the static method;
the differences are approximately 1,000 seconds (4.9%
of static distribution wall clock time) for 1,000 runs
with 25 processors, and 2,800 seconds (5.4% of static
distribution wall clock time) for 10,000 runs with 100
processors.

Table 2 demonstrates the efficiency of the four dy-
namic load balancing algorithms clearly. The average
idle CPU times (3) for the no-balancing simulation
are 1271 seconds for 1,000 runs with 25 processors
and 3170 seconds for 10,000 runs with 100 processors.
Therefore, the average idle CPU time has increased a
lot with the increasing number of jobs per processor.

The average idle CPU times for the load balancing
algorithms, however, increases little with the number
of jobs per processor. For the MD load balancing
simulation, the average idle times are 419 seconds
for 1,000 runs with 25 processors and 511 seconds
for 10,000 runs with 100 processors. For the AR load
balancing simulation, the average idle times are 432
seconds for 1,000 runs with 25 processors and 374
seconds for 10,000 runs with 100 processors. For the
RP load balancing simulation, the average idle times
are 321 seconds for 1,000 runs with 25 processors
and 421 seconds for 10,000 runs with 100 processors.
For the NR load balancing simulation, the average
idle times are 352 seconds for 1,000 runs with 25
processors and 536 seconds for 10,000 runs with 100
processors. Fig. 7 compares the average idle CPU
times for the static and four DLB algorithms. For wild-
type yeast simulations, the dynamic load balancing
algorithms have eliminated approximately two thirds
of the idle time for 25 processors (from 6.5% of the
total CPU time down to 2% of the total CPU time), and
roughly 85% for the 100 processor experiment (from
7% of the total CPU time down to 1% of the total CPU
time).

The communication time for the load balancing
methods should be considered. The total commu-
nication times for the four dynamic load balancing
algorithms are approximately 0.2 seconds for 1,000
runs with 25 processors and 1.0 second for 10,000
runs with 100 processors. Therefore, the total com-
munication time for the load balancing is negligible
compared to elapsed wall clock time. The centralized
and decentralized DLB algorithms have similar per-
formance for these simulations without considering
scalability. Both of the load balancing strategies reduce
system resource demands for the wild-type cell cycle
simulation.

5.5 Load Balancing Results for Mutant Yeast
This section presents experimental results for a pro-
totype budding yeast mutant cell cycle model. For
the mutant strain considered, the initial cell might
never divide at all or it might divide several times
and then cease division [36]. Therefore, the CPU time
to simulate such a mutant cell varies, even if the end
time of the simulation is fixed. For these simulations,
the four dynamic load balancing algorithms show
huge advantages in CPU utilization.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 17

5 10 15 20 25
1

1.5

2

2.5
x 10

4

Processor Number

E
la

ps
ed

 T
im

e(
se

c)

(a) Static distribution.

5 10 15 20 25
Processor Number

(b) MD load balancing.

5 10 15 20 25
Processor Number

(c) AR load balancing.

5 10 15 20 25
Processor Number

(d) RP load balancing.

5 10 15 20 25
Processor Number

(e) NR load balancing.

20 40 60 80 100
3

4

5

6
x 10

4

Processor Number

E
la

ps
ed

 T
im

e(
se

c)

(f) Static distribution.

20 40 60 80 100
Processor Number

(g) MD load balancing.

20 40 60 80 100
Processor Number

(h) AR load balancing.

20 40 60 80 100
Processor Number

(i) RP load balancing.

20 40 60 80 100
Processor Number

(j) NR load balancing.

Fig. 6. Elapsed compute times per processor (diamond marker) and wall clock time (solid line) for wild-type
multistage cell cycle simulations. 1,000 runs with 25 processors for (a)–(e) and 10,000 runs with 100 processors
for (f)–(j). Small grey rectangular height represents each job time for the processor.

TABLE 2
Average, maximum, minimum, RAV (square root of the algebraic variance) of compute times, maximum idle
time, and average (percentage) idle time for wild-type cell simulations. The static and the four proposed load
balancing approaches are compared by results from both a small and a large ensemble. Units are seconds.

1,000 Runs (25 processors) 10,000 Runs (100 processors)
Metrics Static MD AR RP NR Static MD AR RP NR

Avg compute time 19524 19362 19277 19515 19578 47880 47778 48039 47991 48020
Max compute time 20795 19781 19709 19836 19931 51050 48289 48413 48412 48556
Min compute time 18055 19084 19033 19254 19175 44431 47354 47802 47725 47643

RAV of compute times 680 195 172 150 210 1272 196 154 187 227
Max idle time 2740 697 676 582 756 6619 935 611 687 914
Avg idle time 1271 419 432 321 352 3170 511 374 421 536

Percentage idle time 6.5% 2.2% 2.2% 1.7% 1.8% 6.6% 1.1% 0.8% 0.9% 1.1%

Fig. 7. The average idle CPU times comparison for
the static distribution and the final step of the load
balancing methods.

Figure 8 shows the overall wall clock times per
processor. Figures 8 (a)–(e) show results for 1,000 runs
with 25 processors and Figures 8 (f)–(j) show results
for 10,000 runs with 100 processors. For the static load
balancing case, the variance of compute times is huge
because of the characteristics of mutant simulations.
The DLB algorithms reduce the wall clock times by

approximately 26% for 1,000 runs with 25 processors,
and by approximately 21% for 10,000 runs with 100
processors. The four DLB algorithms lead to greater
improvements for the mutant than for the wild-type
simulation.

Table 3 also shows the improved efficiency of the
four DLB algorithms compared to a static method.
Statements similar to those for Table 2 can be made
about Table 3, but the differences for mutant sim-
ulation are considerably more pronounced than for
wild-type simulation. Average processor idle time was
reduced by 85% or more for each dynamic algorithm
and on each ensemble (from 30% of the total CPU
time down to only 4% of the total CPU time).

6 CONCLUSIONS AND FUTURE WORK

This paper introduces a new probabilistic framework
to analyze the effectiveness of load balancing strate-
gies in the context of large ensembles of stochastic

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 18

5 10 15 20 25
0

2000

4000

6000

8000

Processor Number

E
la

ps
ed

 T
im

e(
se

c)

(a) Static distribution.

5 10 15 20 25
Processor Number

(b) MD load balancing.

5 10 15 20 25
Processor Number

(c) AR load balancing.

5 10 15 20 25
Processor Number

(d) RP load balancing.

5 10 15 20 25
Processor Number

(e) NR load balancing.

20 40 60 80 100
0

0.5

1

1.5

2
x 10

4

Processor Number

E
la

ps
ed

 T
im

e(
se

c)

(f) Static distribution.

20 40 60 80 100
Processor Number

(g) MD load balancing.

20 40 60 80 100
Processor Number

(h) AR load balancing.

20 40 60 80 100
Processor Number

(i) RP load balancing.

20 40 60 80 100
Processor Number

(j) NR load balancing.

Fig. 8. Elapsed compute times per processor (diamond marker) and wall clock time (solid line) of prototype
mutant multistage cell cycle simulations. 1,000 runs with 25 processors for (a)–(e) and 10,000 runs with 100
processors for (f)–(j). Small grey rectangular height represents each job time for the processor.

TABLE 3
Average, maximum, minimum, RAV (square root of the algebraic variance) of compute times, maximum idle
time, and average (percentage) idle time for mutant cell simulations. The static and the four proposed load

balancing approaches are compared by results from both a small and a large ensemble. Units are seconds.

1,000 Runs (25 processors) 10,000 Runs (100 processors)
Metrics Static MD AR RP NR Static MD AR RP NR

Avg compute time 6079 5612 5740 6090 6044 13921 14042 13990 13911 13927
Max compute time 8054 5922 5965 6387 6333 18038 14617 14606 14371 14466
Min compute time 3995 5417 5554 5921 5865 8950 13801 13815 13767 13545

RAV of compute times 943 165 118 125 150 1695 193 164 137 229
Max idle compute time 4059 505 411 466 468 9088 815 791 604 921

Avg idle time 1975 310 225 297 289 4117 575 616 460 539
Percentage idle time 32.5% 5.5% 3.9% 4.9% 4.8% 29.6% 4.1% 4.4% 3.3% 3.9%

simulations. Ensemble simulations are employed to
estimate the statistics of possible future states of the
system, and are widely used in important applications
such as climate change and biological modeling. The
present work is motivated by stochastic cell cycle
modeling, but the proposed analysis framework can
be directly applied to any ensemble simulation where
many tasks are mapped onto each processor, and
where the task compute times vary considerably.

The analysis assumes only that the compute times
of individual tasks can be modeled as independent
identically distributed random variables. This is a nat-
ural assumption for an ensemble computation, where
the same model is run repeatedly with different initial
conditions and parameter values. No assumption is
made about the shape of the underlying probability
density; therefore the analysis is widely applicable.
The level of load imbalance, as given by well defined
metrics, is also a random variable. The analysis fo-

cuses on determining the decrease in the expected
value of load imbalance after each work redistribu-
tion step. The analysis is applied to the proposed
four dynamic load balancing strategies. The analysis
reveals that the expected level of load imbalance is
monotonically decreased after one step of each of the
algorithms.

Numerical results support the theoretical analysis.
On an ensemble of budding yeast cell cycle sim-
ulations, compute times required to simulate each
cell cycle progression using Gillespie’s algorithm are
inherently variable due to the stochastic nature of
the model. Dynamic load balancing reduces the total
compute (wall clock) times by about 5% for ensembles
of wild type cells, and by about 25% for ensembles of
mutant cells. Average processor idle time is reduced
by 85% or more for ensembles of mutant cells, which
have widely varying running times.

Future work will apply the theoretical analysis pro-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 19

posed here to dynamic load balancing algorithms for a
cloud environment. Scalability, not investigated here,
will also be analyzed in the future. Since the central-
ized load balancing algorithms are not expected to
scale well, the results of our analysis showing global
improvements by the local load balancing algorithms
in especially significant. Finally, a challenging prob-
lem is to analyze load balancing for large ensemble
runs with different models, where the i.i.d. assump-
tion does not hold.

ACKNOWLEDGMENTS

This work is supported in part by awards NIGMS
/NIH 5 R01 GM078989, AFOSR FA9550–09–1–0153,
NSF DMS–0540675, NSF CCF–0916493, and NSF OCI–
0904397.

REFERENCES

[1] H. McAdams and A. Arkin, “Stochastic mechanisms in gene
expression,” Proc. Natl. Acad. Sci., vol. 94, pp. 814–819, 1997.

[2] J. Murphy, D. Sexton, D. Barnett, G. Jones, M. Webb,
M. Collins, and D. Stainforth, “Quantification of modelling un-
certainties in a large ensemble of climate change simulations,”
Nature, vol. 430, pp. 768–772, 2004.

[3] V. Nefedova, R. Jacob, I. Foster, Z. Liu, Y. Liu, E. Deelman,
G. Mehta, M.-H. Su, and K. Vahi, “Automating climate science:
large ensemble simulations on the teragrid with the GriPhyN
virtual data system,” in Proc. of the Second IEEE Int. Conf. on
e-Science and Grid Computing (E-SCIENCE ’06). Washington,
DC, USA: IEEE Computer Society, 2006, pp. 32–37.

[4] W. Chu, L. Holloway, M.-T. Lan, and K. Efe, “Task allocation
in distributed data processing,” Computer, vol. 13, no. 11, pp.
57–69, 1980.

[5] M. Iqbal, J. Saltz, and S. Bokhari, “A comparative analysis of
static and dynamic load balancing strategies,” ACM Perfor-
mance Evaluation Revision, vol. 11, no. 1, pp. 1040–1047, 1985.

[6] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1989.

[7] B. Lester, The Art of Parallel Programming. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1993.

[8] J. Jacob and S.-Y. Lee, “Task spreading and shrinking on a
network of workstations with various edge classes,” in Proc.
1996 Int’l Conf. Parallel Processing, vol. 3, 1996, pp. 174–181.

[9] C. Polychronopoulos and D. Kuck, “Guided self-scheduling:
A practical scheduling scheme for parallel supercomputers,”
IEEE Trans. on Computers, vol. 36, pp. 1425–1439, December
1987.

[10] L. Flynn and S. Hummel, “The mathematical foundations
of the factoring scheduling method,” IBM Research Report
RC18462, Tech. Rep., Oct 1992.

[11] S. Hummel, E. Schonberg, and L. Flynn, “Factoring: a practical
and robust method for scheduling parallel loops,” Comm. of the
ACM, vol. 35, no. 8, pp. 90–101, 1992.

[12] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal, “A simple load
balancing scheme for task allocation in parallel machines,” in
Proc. of Sym. on Parallel Algorithms and Architectures, ser. SPAA
’91. New York, NY, USA: ACM, 1991, pp. 237–245.

[13] R. Karp and Y. Zhang, “Randomized parallel algorithms for
backtrack search and branch-and-bound computation,” Journal
of the ACM, vol. 40, pp. 765–789, July 1993.

[14] R. Blumofe and C. Leiserson, “Scheduling multithreaded com-
putations by work stealing,” in Proc. of Ann. Symp. on Founda-
tions of Computer Science, Nov 1994, pp. 356–368.

[15] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction
to Parallel Computing, 2nd ed. Boston, MA, USA: Addison-
Wesley, 2002.

[16] B. Wilkinson and M. Allen, Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Comput-
ers, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
2004.

[17] E. Dijkstra and C. Scholten, “Termination detection for diffus-
ing computations,” Information Processing Letters, vol. 11, no. 1,
pp. 1–4, 1980.

[18] N. Shavit and N. Francez, “A new approach to
detection of locally indicative stability,” in Proceedings
of the 13th International Colloquium on Automata,
Languages and Programming, ICALP ’86. London, UK:
Springer-Verlag, 1986, pp. 344–358. [Online]. Available:
http://portal.acm.org/citation.cfm?id=646240.683532

[19] C. Z. Xu and F. C. M. Lau, “Analysis of the generalized
dimension exchange method for dynamic load balancing,”
Journal of Parallel and Distributed Computing, vol. 16, no. 4, pp.
385–393, 1992.

[20] K. Mehrotra, S. Ranka, and J.-C. Wang, “A probabilistic analy-
sis of a locality maintaining load balancing algorithm,” in Proc.
7th International Parallel Processing Symposium. IEEE Computer
Society Press, 1993, pp. 369–373.

[21] P. Sanders, “A detailed analysis of random polling dynamic
load balancing,” in Proc. Int. Symposium on Parallel Architec-
tures, Algorithms and Networks, dec 1994, pp. 382–389.

[22] S. Hummel, J. Schmidt, R. Uma, and J. Wein, “Load-sharing in
heterogeneous systems via weighted factoring,” in Proc. ACM
symposium on Parallel Algorithms and Architectures. New York,
NY, USA: ACM, 1996, pp. 318–328.

[23] H. David and H. Nagaraja, Order Statistics, 2nd ed. Hoboken,
NJ, USA: Wiley-Interscience, 2003.

[24] S. Tayal, “Tasks scheduling optimization for the cloud com-
puting system,” Int. J. of Advanced Engineering Sciences and
Technologies, vol. 5, pp. 111–115, 2011.

[25] Apache Hadoop. [Online]. Available: {http://hadoop.apache.
org/}

[26] C. Powley, C. Ferguson, and R. Korf, “Depth-first heuristic
search on a SIMD machine,” Artif. Intell., vol. 60, no. 2, pp.
199–242, 1993.

[27] W. Hillis, The Connection Machine. Cambridge, MA, USA: MIT
Press, 1986.

[28] G. Cybenko, “Dynamic load balancing for distributed memory
multiprocessors,” J. Parallel Distrib. Comput., vol. 7, pp. 279–
301, October 1989. [Online]. Available: http://dl.acm.org/
citation.cfm?id=67279.67283

[29] J. Rice, Mathematical Statistics and Data Analysis, 3rd ed. Bel-
mont, CA, USA: Duxbury Press, 2001.

[30] K. Trivedi, Probability and Statistics with Reliability, Queueing,
and Computer Science Applications, 2nd ed. Hoboken, NJ, USA:
Wiley-Interscience, 2001.

[31] C.-C. Chen and C. Tyler, “Accurate approximation to the
extreme order statistics of gaussian samples,” Communications
in Statistics - Simulation and Computation, vol. 28, no. 1, pp.
177–188, 1999.

[32] System X Supercomputer. [Online]. Available: {http://www.
arc.vt.edu/arc/SystemX/}

[33] D. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” Journal of Physical Chemistry, vol. 81, no. 25, pp.
2340–2361, 1977.

[34] P. Wang, R. Randhawa, C. Shaffer, Y. Cao, and W. Baumann,
“Converting macromolecular regulatory models from deter-
ministic to stochastic formulation,” in Proceedings of the 2008
Spring Simulation Multiconference (SpringSim’08), High Perfor-
mance Computing Symposium (HPC-2008). San Diego, CA,
USA: Society for Computer Simulation International, 2008, pp.
385–392.

[35] T.-H. Ahn, L. Watson, Y. Cao, C. Shaffer, and W. Baumann,
“Cell cycle modeling for budding yeast with stochastic simu-
lation algorithms,” Computer Modeling Engrg. Sci., vol. 51, no. 1,
pp. 27–52, 2009.

[36] K. Chen, L. Calzone, A. Csikasz-Nagy, F. Cross, B. Novak, and
J. Tyson, “Integrative analysis of cell cycle control in budding
yeast,” Mol. Biol. Cell, vol. 15, no. 8, pp. 3841–3862, 2004.

[37] D. Ball, T.-H. Ahn, P. Wang, K. Chen, Y. Cao, J. Tyson,
J. Peccoud, and W. Baumann, “Stochastic exit from mitosis
in budding yeast: Model predictions and experimental obser-
vations,” Cell Cycle, vol. 10, pp. 999–1099, March 2011.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, JANUARY 2012 20

Tae-Hyuk Ahn is a Ph.D. student in the
Department of Computer Science at Virginia
Tech. After he received a B.S. in Electrical
Engineering from Yonsei University in S. Ko-
rea, he worked for Samsung SDS for 4 years.
He received his M.S. in Electrical and Com-
puter Engineering from Northwestern Univer-
sity. His current research interests are com-
putational biology, numerical analysis, and
parallel computing.

Adrian Sandu obtained the Diploma in Elec-
trical Engineering – Control Systems from
the Technical University Bucharest, Roma-
nia, M.S. in Computer Science and Ph.D.
in Applied Mathematical and Computational
Sciences from the University of Iowa. Be-
tween 1998–2003 he served as a faculty
in the Department of Computer Science at
Michigan Tech. In 2003 he joined Virginia
Tech’s Department of Computer Science.
Sandu’s research interests are in the area of

computational science and engineering.

Layne T. Watson received the B.A. degree
(magna cum laude) in psychology and math-
ematics from the University of Evansville,
Indiana, in 1969, and the Ph.D. degree in
mathematics from the University of Michigan,
Ann Arbor, in 1974. He is a professor of
computer science and mathematics at Vir-
ginia Tech. His research interests include
fluid dynamics, solid mechanics, numerical
analysis, optimization, parallel computation,
mathematical software, image processing,

and bioinformatics. He is a fellow of the IEEE, the National Institute
of Aerospace, and the International Society of Intelligent Biological
Medicine.

Clifford A. Shaffer received the PhD de-
gree from the University of Maryland. He
is a professor in the Department of Com-
puter Science at Virginia Tech. His current re-
search interests include problem-solving en-
vironments, bioinformatics, component archi-
tectures, visualization, algorithm design and
analysis, and data structures. He is a senior
member of the IEEE.

Yang Cao received his Ph.D. degree in com-
puter science from the University of Califor-
nia, Santa Barbara in 2003. He is an As-
sistant Professor in the Computer Science
Department at Virginia Tech. His research
focuses on the development of multiscale,
multiphysics stochastic modeling and simu-
lation methods and tools that help biologists
build, simulate and analyze complex biolog-
ical systems. He has published around 40
refereed journal articles.

William T. Baumann received the B.S, M.S,
and Ph.D. degrees in electrical engineering
from Lehigh University, the Massachusetts
Institute of Technology, and the Johns Hop-
kins University, respectively. He joined the
Bradley Department of Electrical and Com-
puter Engineering at Virginia Tech in 1985
where he is currently an associate profes-
sor. His research interests include active
structural acoustic control, control of thermo-
acoustic instabilities, and, most recently, sys-

tems biology.

