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Abstract

Data assimilation obtains improved estimates of the state of a physical system

by combining imperfect model results with sparse and noisy observations of reality.

Not all observations used in data assimilation are equally valuable. The ability to

characterize the usefulness of different data points is important for analyzing the

effectiveness of the assimilation system, for data pruning, and for the design of future

sensor systems.

This paper focuses on the four dimensional variational (4D-Var) data assimilation

framework. Metrics from information theory are used to quantify the contribution

of observations to decreasing the uncertainty with which the system state is known.

We establish an interesting relationship between different information-theoretic met-

rics and the variational cost function/gradient under Gaussian linear assumptions.

Based on this insight we derive an ensemble-based computational procedure to esti-

mate the information content of various observations in the context of 4D-Var. The

approach is illustrated on linear and nonlinear test problems. In the companion paper

[Singh et al.(2011)] the methodology is applied to a global chemical data assimilation

problem.
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1 Introduction

The ability to characterize the usefulness of different data points in data assimilation

is important for analyzing the effectiveness of the assimilation system, for data prun-

ing/data selection, for the design of future sensor systems, and for defining strategies

for targeting observations. In order to quantify the contribution of observations to the

improvements in state estimate obtained through data assimilation we employ metrics

from information theory. Broadly speaking, the information content of a message in

information theory describes the amount of novelty brought in by the message. Informa-

tion theory has started in electrical engineering and has been applied to diverse areas as

complexity theory, networking analysis, financial mathematics and mathematical statis-

tics.

In the context of data assimilation the information content of observations is loosely

defined by their contribution to decreasing the uncertainty in the state estimate [Fisher(1922)].

Several of the information theoretic metrics employed here measure the decrease in the

(co-)variance of the error (the trace of the Fisher information matrix, the Shannon in-

formation, and the degrees of freedom for signal). Others measure the benefit of data

assimilation in terms of adjusting the mean of the distribution (the signal information).

Relative entropy offers a combination of both mean and variance effects.

Information theory has been used in atmospheric sciences for uncertainty studies,

instrument development, and data selection. Majda and co-workers [Abramov(2004),

Majda(2006)] propose the use the relative entropy to quantify the lack of information

in climate systems; their approach is applicable to non-Gaussian distributions and non-

linear models. They demonstrate the methodology with two “toy“ models, Burgers-Hopf

Lorenz ’96 [Lorenz(1996)]; the approach becomes computationally intractable for real

large scale models. Information theoretic metrics like the entropy reduction and the de-

grees of freedom for signal are being used in the development of remote-sounding instru-

ments [Rodgers(1996), Rodgers(1998), Rodgers(2000), Rabier et al.(2002), Worden et al.(2004)].

Data selection strategies were defined using information theory [Rabier et al.(2002)].

The information theory has recently been used in data assimilation to character-

ize the information content of various observations (i.e., the usefulness of these ob-

servations). Fisher [Fisher(2003)] proposes methods to estimate the entropy reduction

and degrees of freedom for signal with large variational analysis systems. Cardinali

et al. [Cardinali et al.(2004)] study the influence-matrix diagnostic of data assimilation

systems. Xu [Xu(2006)] analyses the relative entropy versus Shannon entropy differ-

ence to measure information content from observations for data assimilation. Zupanski

[Zupanski(2009)] discusses the use of information measures in ensemble data assimila-

tion.
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In this paper we discuss a characterization of the information content of observations

in the context of four dimensional variational (4D-Var) data assimilation framework. The

analysis carried out in this paper assumes that errors are normally distributed and that

the model dynamics is linear. It is shown that, under these assumptions, the posterior

statistics of the variational cost function and its gradient can be used to quantify the

information content of observations. This results leads to the following computational

procedure. After data assimilation is complete, an ensemble of simulations is run with

the initial conditions drawn from (an approximation of) the analysis probability distri-

bution. Mean values of the cost function and of adjoint norms are used to estimate the

information content of various observations in the context of 4D-Var. Note that all in-

formation metrics obtained here are with respect to the beginning of each assimilation

window (as 4D-Var provides the analysis in form of the model initial conditions).

The paper is organized as follows. Section 2 reviews the variational approach to data

assimilation from a Bayesian perspective. Various metrics for information content are

discussed in Section 3. Section 4 develops computationally feasible estimation techniques

for the information content of observations in the context of 4D-Var data assimilation; this

is the main contribution of this work. The numerical results are presented and discussed

in Section 5. Section 6 summarizes the findings of this work and points to future research

directions.

2 Variational Data Assimilation

Variational methods solve the data assimilation problem in an optimal control framework

[Courtier and Talagrand(1987), Le Dimet(1986), Lions(1971)]. Specifically, one finds the

control variable values (e.g., initial conditions) which minimize the discrepancy between

model forecast and observations; the minimization is subject to the governing dynamic

equations, which are imposed as strong constraints. In this discussion, for simplicity of

presentation, we focus on discrete models where the initial conditions are the control

variables.

Consider that the true state of the system xtrue ∈ Rn is unknown and needs to be

estimated form the available information. In order to obtain an estimate of xtrue data

assimilation combines three different sources of information, as follows.

The background (prior) probability density PB(x) encapsulates our current knowl-

edge of the true state of the system. Specifically, it describes the uncertainty with which

one knows xtrue at a given moment, before any (new) measurements are taken. The mean

taken with respect to this probability density is denoted by E
B [·]. The current best es-

timate of the true state is called the apriori, or the background state xB. The background
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estimation errors εB = xB − xtrue ∈ N (0, B) are assumed Gaussian and are characterized

by the background error covariance matrix B ∈ Rn×n. With many nonlinear models this as-

sumption is difficult to justify, but is nevertheless widely used because of its convenience.

The model encapsulates our knowledge about physical and chemical laws that govern

the evolution of the system. The model evolves an initial state x0 ∈ Rn at the initial time

t0 to future state values xi ∈ Rn at future times ti,

xi = Mt0→ti
x0. (1)

The size of the state space in realistic chemical transport models is very large. For ex-

ample, a GEOS-Chem simulation at the 2o × 2.5o horizontal resolution has n ∈ O
(
108
)

variables.

Observations represent snapshots of reality available at several discrete time mo-

ments. Specifically, measurements yi ∈ Rm of the true state are taken at times ti,

i = 1, . . . , N

yi = H (xi)− εobs
i , i = 1, . . . , N . (2)

The observation operator H maps the model state space onto the observation space.

The observation error term εobs
i accounts for both the measurement (instrument) errors,

as well as representativeness errors (i.e., errors in the accuracy with which the model

can reproduce reality). Typically observation errors are assumed unbiased and normally

distributed

εobs
i ∈ N (0, Ri) , i = 1, . . . , N . (3)

Moreover, observation errors at different times (εobs
i and εobs

j for i 6= j) are assumed to be

independent.

Based on these three sources of information data assimilation computes the analysis

(posterior) probability density PA(x). Specifically, PA(x) describes the uncertainty with

which one knows xtrue after all the information available from measurements has been

accounted for. The mean taken with respect to this probability density is denoted by

E
A [·]. The best estimate xA is called the aposteriori, or the analysis state. The analysis

estimation errors εA = xA − xtrue are characterized by the analysis error covariance matrix

A ∈ Rn×n.

If both the the background and the observation errors are Gaussian, and the error

propagation through the model (1) is linear, then he probability density of the analysis

(estimation) errors εA is also Gaussian,

εA = xA − xtrue ∈ N (0, A) ⇔ PA(x) = N
(

xA, A
)

. (4)

3



2.1 The Bayesian point of view to data assimilation

The estimation problem is posed in a Bayesian framework. The analysis probability

density is the probability density of the state conditioned by all the available observations

y = [y1, · · · , yN ]. Bayes theorem allows to express the analysis probability density as

follows:

PA(x) = P(x|y) = P(y|x) · PB(x)

P(y)
, (5)

The denominator P(y) is the marginal probability density of the observations and plays

the role of a scaling factor. The probability of the observations conditioned by the states

P(y|x) is the probability that the observation errors in (2) assume certain values. If

the observation errors at different times are independent, and the observation errors are

Gaussian (3), we have that

P (y|x) =
1

(2π)mN/2
√

∏
N
i=1 det Ri

exp

(
−1

2

N

∑
i=1

(H (xi)− yi)
T R−1

i (H (xi)− yi)

)
.(6)

In the maximum likelihood approach one looks for the argument that maximizes the

posterior distribution, or, equivalently, minimizes its negative logarithm:

xA = arg max
x

PA(x) = arg min
x

J (x) , J (x) = − ln PA(x) . (7)

In this context the data assimilation problem is formulated as an optimization problem.

Using (5) the minimization cost function can be written as

− ln PA(x)︸ ︷︷ ︸
J (x)

= − lnPB (x)︸ ︷︷ ︸
J B(x)+const

− lnP (y|x)︸ ︷︷ ︸
J obs(x)+const

+ lnP (y)︸ ︷︷ ︸
const

. (8)

The minimization function has two terms: the first one (J B) comes from the negative

logarithm of the background probability density, while the second one (J obs) comes

from the negative logarithm of the observation error probability density. Some scaling

factors of the probability densities are usually left out as they give a constant component

of the cost function and do not affect the minimization. The third term (− lnP(y))

does not depend on x and can also be left out of the minimization function. Under the

assumption that the background errors are normally distributed, and after leaving out

constant terms, we have that

J B(x) =
1

2

(
x − xB

)T
B−1

(
x − xB

)
. (9)
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Similarly, under the assumption that observation errors are normally distributed and

independent (6), and after leaving out the constant terms,

J obs(x) =
N

∑
i=1

J obs
i (x) ; J obs

i (x) =
1

2
(H (xi)− yi)

T Ri (H (xi)− yi) . (10)

Because observation errors are independent each set of observations yi at time ti brings

its own contribution J obs
i to the total cost function.

2.2 Four dimensional variational (4D-Var) data assimilation

In strongly-constrained 4D-Var data assimilation all observations (2) at all times t1, · · · , tN

are simultaneously considered. The control parameters are the initial conditions x0; they

uniquely determine the state of the system at all future times via the model equation (1).

The background state is the prior value of the initial conditions xB
0 .

Given the background value of the initial state xB
0 , the covariance of the initial back-

ground errors B0, the observations yi and the corresponding observation error covari-

ances Ri, i = 1, · · · , N, the 4D-Var problem looks for the maximum likelihood estimate

xA
0 of the true initial conditions by solving the optimization problem (7). Combining (8),

(9), and (10) leads to the 4D-Var cost function:

J (x0) =
1

2

(
x0 − xB

0

)T
B−1

0

(
x0 − xB

0

)
+

1

2

N

∑
i=1

(H(xi)− yi)
T R−1

i (H(xi)− yi) . (11)

Note that the departure of the initial conditions from the background is weighted by the

inverse background covariance matrix, while the differences between the model predic-

tions H(xi) and observations yi are weighted by the inverse observation error covari-

ances. The 4D-Var analysis is computed as the initial condition which minimizes (11)

subject to the model equation constraints (1)

xA
0 = arg minJ (x0) subject to(1). (12)

The model (1) propagates the optimal initial condition (11) forward in time to provide

the analysis at future times, xA
i = Mt0→ti

xA
0 .

The optimization problem (12) is solved numerically using a gradient-based tech-

nique. The gradient of (11) reads

∇J (x0) = B−1
0

(
x0 − xB

0

)
+

N

∑
i=1

(
∂xi

∂x0

)T

HT
i R−1

i (H(xi)− yi) . (13)

The 4D-Var gradient requires not only the linearized observation operator Hi = H′(xi),

but also the transposed derivative of future states with respect to the initial conditions.
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The 4D-Var gradient can be obtained effectively by forcing the adjoint model with ob-

servation increments, and running it backwards in time. The construction of an adjoint

model requires considerable effort.

3 Information Metrics and Gaussian Probabilities

The 4D-Var data assimilation of the observations y changes the distribution of errors (un-

certainty) in the initial conditions from the background probability density PB(x) to the

analysis probability density PA(x). If the data assimilation is beneficial the uncertainty

associated with the new distribution PA is smaller than the uncertainty associated with

the original distribution PB.

Roughly speaking, the information content of the observations y is measured by the

decrease in uncertainty from before data assimilation (PB) to after data assimilation (PA).

The information content depends not only on the data (yi) but also on the data accuracy

(R−1
i ), on the background uncertainty (B−1

0 ), and on the model dynamics M.

We are interested to rigorously quantify the information content of observations in

4D-Var. For this we use several information theoretic metrics, which are reviewed below.

3.1 Fisher information matrix

The Fisher information matrix (FIM) [Fisher(1922)] associated with the probability den-

sity function P(x) is defined as

F (P) =
∫Rn

[
∂ (− lnP(x))

∂x

] [
∂ (− lnP(x))

∂x
)

]T

P(x) dx ∈ Rn×n . (14)

The trace of the FIM offers a measure of the total level of uncertainty associated with the

distribution.

Under the assumption that the background errors are normally distributed the Fisher

information matrix of the background error probability density PB(x) = N (xB
0 , B0) is

just the inverse of the background error covariance:

F
(
PB
)

=
∫Rn

[
∇ J B(x0)

] [
∇ J B(x0)

]T
PB(x0) dx0 = B−1

0 . (15)

Here we have used the relation (8) to link the background error probability densities with

the background part of the 4D-Var cost function.

Similarly, assuming that the analysis error probability density is Gaussian (4) the

analysis Fisher information matrix is

F
(
PA
)

=
∫Rn

[∇ J (x0)] [∇ J (x0)]
T PA(x0) dx0 = A−1

0 . (16)
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The information content of the observations used in data assimilation can be measured

as the trace of the background FIM (total uncertainty in the background) minus the trace

of the analysis FIM (total uncertainty in the analysis) [Rodgers(2000), Rodgers(1998)].

In the Gaussian case this reduces to the trace of difference between the analysis and

background error covariance matrices

IFIM = trace
(
F
(
PA
))

− trace
(
F
(
PB
))

= trace
(

A−1
0 − B−1

0

)
. (17)

3.2 Shannon information

The entropy associated with a probability density is defined as [Shannon and Weaver(1949),

Bartlett(1962)]

H (P) =
∫Rn

P(x) ln (P(x)) dx

and offers a measure of the average uncertainty with which one knows the state x, if the

estimation error has a probability density P .

For example, assume that the background error distribution is Gaussian . The entropy

of the background probability density is given by the relation [Rodgers(2000)]

PB(x) = N
(

xB
0 , B0

)
⇒ H

(
PB
)
= n ln

(√
2πe

)
+

1

2
ln det (B0) .

In this case, the entropy may be interpreted as a measure of the volume in phase space

enclosed by a surface of constant probability.

Using the Bayes rule (5) the entropy of the analysis error probability distribution can

be written as

H
(
PA
)

=
∫ [

lnPB(x) + lnP(y|x) − lnP(y)
]
PA(x) dx .

The Shannon information content of observations y used in 4D-Var data assimila-

tion is defined as the decrease in the average uncertainty with which the initial state is

known. Specifically, the Shannon information content is given by the difference between

the background entropy and the analysis entropy,

IShannon = H
(
PB
)
−H

(
PA
)

. (18)

Under the assumption that both the background and the analysis error probability den-

sities are Gaussian (4), the Shannon information content of the observations used in data

assimilation is

IShannon =
1

2
ln det (B0)−

1

2
ln det (A0) (19)

=
1

2
ln det

(
B0 A−1

0

)
=

1

2
ln det

(
A−1/2

0 B0 A−1/2
0

)
.
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3.3 Degrees of freedom for signal

The Degrees of freedom for signal (DFS) metric for the information content has been

previously employed in meteorological data assimilation [Rodgers(1996), Fisher(2003),

Cardinali et al.(2004), Stewart et al.(2008), Zupanski(2009)].

Consider the symmetric matrix square root B1/2
0 of the background covariance; we

have that

B0 = B1/2
0 B1/2

0 , B−1
0 = B−1/2

0 B−1/2
0 .

Consider also the orthogonal matrix Q whose columns are the eigenvectors of the sym-

metric matrix B−1/2
0 A0 B−1/2

0

QT
(

B−1/2
0 A0 B−1/2

0

)
Q = Σ ,

with Σ a diagonal matrix. The matrix L = B−1/2
0 Q has the property that it trans-

forms simultaneously the background and the analysis covariances to diagonal forms

[Fisher(2003)] when it is symmetrically applied:

LT B0 L = In×n , LT A0 L = Σ .

The diagonal elements of the transformed background error covariance matrix are equal

to unity and each corresponds to an individual degree of freedom. The eigenvalues of

the transformed matrix Σ, on the other hand, can be interpreted as the relative reduction

in variance in each of the n statistically independent directions corresponding to the n

components of error in the state vector. The degrees of freedom for signal measures the

total reduction in variance and is defined as

IDFS = trace (In×n − Σ) = n − trace
(

B−1/2
0 A0 B−1/2

0

)
= n − trace

(
B−1

0 A0

)
. (20)

The relative reduction in variance B−1
0 A0 could also be interpreted as the gradient of the

analysis in observation space with respect to the observations.

3.4 Relative entropy

The information content of the observations used in data assimilation can also be mea-

sured by the relative entropy (RE) of the analysis probability density with respect to the

background probability density:

IRE =
∫Rn

PA(x) ln
PA(x)

PB(x)
dx .
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Under the assumption that both the background and the analysis error probability densi-

ties are Gaussian (4), the relative entropy of the analysis over the background is [Xu(2006)]:

IRE =
1

2

(
xA

0 − xB
0

)T
B−1

0

(
xA

0 − xB
0

)
(21a)

+
1

2
trace

(
B−1/2

0 A0 B−1/2
0

)
(21b)

−n

2
(21c)

+
1

2
ln det

(
B1/2

0 A−1
0 B1/2

0

)
. (21d)

The signal part of the relative entropy

ISignal =
1

2

(
xA

0 − xB
0

)T
B−1

0

(
xA

0 − xB
0

)
(22)

measures the reduction of uncertainty due to the change in the best estimate from the

background state to the analysis state. The terms (21b), (21c), and (21d) together form

the dispersion part of the relative entropy.

Comparing (21a)–(21b)–(21c)–(21d) and (19), (20), (22) reveals that

IRE = ISignal
︸ ︷︷ ︸
(21a)

+ IShannon
︸ ︷︷ ︸

(21d)

− (1/2) IDFS

︸ ︷︷ ︸
(21b)−(21c)

.

Let us have a closer look at the relative entropy between two Gaussian distributions:

IRE =
∫Rn

PA (x) ·
(

lnPA (x)− lnPB (x)
)

dx

=
∫Rn

PA (x) ·
(
−1

2
ln det A0 −

1

2

(
x − xA

0

)T
A−1

0

(
x − xA

0

)

+
1

2
ln det B0 +

1

2

(
x − xB

0

)T
B−1

0

(
x − xB

0

))
dx

=
1

2
ln det A−1

0 B0 −
n

2
+

1

2

∫Rn
PA (x) ·

(
x − xB

0

)T
B−1

0

(
x − xB

0

)
dx

We see that the Shannon part (21d) of the relative entropy comes from the scaling fac-

tors of the Gaussian distributions (the difference between the logarithms of the (2π)−n/2

(det B0)
−1/2 and (2π)−n/2 (det A0)

−1/2 factors). Since 4D-Var cost functions do not ac-

count for this scaling we cannot hope to accurately recover the Shannon part of the

dispersion just by analyzing the cost function.

The constant term (21c) comes from the integration (averaging) of the exponent of

the analysis distribution; this is shown in Appendix A in relation (45). The signal part
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(21a) and the DFS part (21b) come from the integration (averaging) of the exponent of

the background distribution; this is shown in Appendix A in relation (46).

The three terms (21a), (21c), and (21b) are represented in the 4D-Var cost function,

and we could be estimated from statistics of different parts of the 4D-Var cost function.

4 Estimation of the Data Information Content in the Con-

text of 4D-Var Data Assimilation

We seek to derive a computationally-easy way to estimate the information content of

various observations in the context of 4D-Var. The proposed approach is based on an ap-

proximate sampling from the posterior error distribution in 4D-Var. Thus, our approach

is a hybrid one: ensembles are used to infer the information content of observations used

in variational data assimilation.

Sampling from the posterior probability density at t0 is challenging since this proba-

bility density is not explicitly computed by 4D-Var. Approximate sampling can be per-

formed using second order adjoints, and computing a few eigenvectors corresponding

to the dominant eigenvalues of the inverse Hessian. An alternative approach is based

on a subspace analysis of 4D-Var [Cheng et al.(2010)]. A detailed discussion of sampling

strategies is provided in the companion paper [Singh et al.(2011)].

Therefore, we assume that we have the ability to obtain the following sample of initial

conditions from the posterior distribution:

xr
0 ∈ PA(x0) , r = 1, · · · , Nens . (23)

Based on it we can approximate expected values with respect to the posterior density by

posterior ensemble averages as follows:

E
A [ f (x0)] ≈ 〈 f (x0)〉A =

1

Nens

Nens

∑
r=1

f (xr
0) . (24)

4.1 Estimation of the FIM information content

In the 4D-Var setting a gradient based optimization method is typically employed to

minimize the cost function J (x). The gradients are evaluated by the adjoint model;

specifically, the value of the adjoint variable at the initial time equals the gradient of the

cost function with respect to the initial state

λ0(x0) = ∇x0 J (x0) .
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The adjoint variable depends on the forward model trajectory about which the lineariza-

tion is performed. This is indicated explicitly by making the adjoint variable a function

of the forward initial condition.

The trace of the analysis FIM (16) can be expressed as:

trace
(
F
(
PA
))

=
∫Rn

trace
(

λ0(x0) λT
0 (x0)

)
PA(x0) dx0

= E
A
[
‖λ0(x0)‖2

]
.

The trace of the analysis FIM is the average value of the adjoint variable norm with re-

spect to the analysis distribution. Using the sample of initial conditions (23) the statistical

average can be approximated by the ensemble average.

Under the typical assumption that the background probability is Gaussian and using

(15) and (17) we obtain the following estimate for the FIM information content of all

observations:

IFIM ≈
〈
‖λ0(x0)‖2

〉A
− trace

(
B−1

0

)
. (25)

4.1.1 Computational procedure for estimating the FIM information

After the data assimilation has been performed, one runs the forward and the adjoint

models Nens times starting with forward initial conditions sampled from the analysis

probability density (23). Each run produces an adjoint gradient, whose norm is com-

puted. The ensemble average of these gradient norms estimates the trace of the analysis

FIM.

4.2 Estimation of the DFS information content

In this section we consider the idealized situation detailed in Appendix B. Specifically,

we assume that the model is linear (47), the observation operator is also linear (48), and

both the background errors and the observation errors are normally distributed. The

analysis relies on the properties of random quadratic functionals presented in Appendix

A.

Consider running the model with random initial conditions taken from the distribu-

tion x̂0 ∈ N (µ, C). Each run results in different values of the 4D-Var cost function; we

are interested to understand the information provided by the statistics of the (ensemble

of) cost function values.

Note that x̂0 − xB
0 ∈ N (

µ − xB
0 , C

)
. A direct application of (44a) reveals that the
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background component of the cost function has the following mean:

J B(x̂0) =
1

2

(
x̂0 − xB

0

)T
B−1

0

(
x̂0 − xB

0

)

E

[
J B(x̂0)

]
=

1

2

(
µ − xB

0

)T
B−1

0

(
µ − xB

0

)
+

1

2
trace

(
B−1

0 C
)

= J B(µ) +
1

2
trace

(
C1/2 B−1

0 C1/2
)

.

Since the dynamics is linear, for a given observation data vector yi we have that

Hi Mi x̂0 − yi ∈ N
(

Hi Mi µ − yi , Hi Mi C MT
i HT

i

)
.

Note that the above relation characterizes only the uncertainty in the initial conditions.

The data is given; the same data values yi are used for each initial condition x̂0.

The observation component of the cost function:

J obs (x̂0) =
1

2

N

∑
i=0

(Hi Mi x̂0 − yi)
T R−1

i (Hi Mi x̂0 − yi)

has the following mean:E [J obs (x̂0)
]

=
1

2

N

∑
i=0

E [(Hi Mi x̂0 − yi)
T R−1

i (Hi Mi x̂0 − yi)
]

=
1

2

N

∑
i=0

(Hi Mi µ − yi)
T R−1

i (Hi Mi µ − yi)

+
1

2

N

∑
i=0

trace
(

R−1
i Hi Mi C MT

i HT
i

)

= J obs (µ) +
1

2

N

∑
i=0

trace
(

C1/2 MT
i HT

i R−1
i Hi Mi C1/2

)

= J obs (µ) +
1

2
trace

(
C1/2

(
N

∑
i=0

MT
i HT

i R−1
i Hi Mi

)
C1/2

)

= J obs (µ) +
1

2
trace

(
C1/2

(
A−1

0 − B−1
0

)
C1/2

)

Putting the two formulas together results inE [J (x̂0)]−J (µ) =
1

2
trace

(
C1/2 A−1

0 C1/2
)

. (26)
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4.2.1 Sampling independent variables

Recall that in the Gaussian case the Fisher information matrix (FIM) is just the inverse of

the covariance. Let C = σ2 I. Then the total reduction in uncertainty is given by the trace

of the difference between the analysis and the background FIMs:E [J obs (x̂0)
]
−J obs (µ) =

σ2

2
trace

(
A−1

0 − B−1
0

)
.

Consequently the FIM information content of all observations y1 · · · yN is

IFIM
y1···yN

=
2

σ2

(E [J obs (x̂0)
]
−J obs (µ)

)
.

The contribution of the observations yi taken at time ti to the decrease of the trace of

FIM, i.e., the FIM information content of yi is:

IFIM
yi

=
2

σ2

(E [J obs
i (x̂0)

]
−J obs

i (µ)
)

=
1

σ2
E [(Hi Mix̂0 − yi)

T R−1
i (Hi Mi x̂0 − yi)

]

− 1

σ2
(Hi Mi µ − yi)

T R−1
i (Hi Mi µ − yi) .

While in the linear case this expression does not depend on µ, in the nonlinear case we

can take µ = xA
0 (after the analysis to assess the impact the observation had on the FIM)

and µ = xB
0 (before the analysis to assess the impact the observation will have on the FIM).

4.2.2 Sampling from the analysis distribution

A sample x̂0 ∈ N
(
xA

0 , A0

)
from the posterior distribution leads to

E
A
[
J B (x̂0)

]
= J B(xA

0 ) +
1

2
trace

(
A1/2

0 B−1
0 A1/2

0

)

E
A
[
J obs (x̂0)

]
= J obs

(
xA

0

)
+

1

2
trace

(
A1/2

0

(
A−1

0 − B−1
0

)
A1/2

0

)

= J obs
(

xA
0

)
+

n

2
− 1

2
trace

(
A1/2

0 B−1
0 A1/2

0

)

E
A [J (x̂0)] = J (xA

0 ) +
n

2
.

The signal part of the relative entropy (21a) is given by J B(xA
0 ). Attributing the contri-

bution of each observation to the signal part of the entropy is more involved.

We have the following estimate of the DFS information content (21b) of all observa-

tions y1 · · · yN :

IDFS
y1···yN

= n − trace
(

A1/2
0 B−1 A1/2

0

)
= 2 E

A
[
J obs (x̂0)

]
− 2J obs

(
xA

0

)
. (27)
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This method allows to account for the contribution of each observation yi to the DFS

information as follows:

IDFS
yi

= 2 E
A
[
J obs

i (x̂0)
]
− 2J obs

i

(
xA

0

)

= E
A
[
(Hi (x̂i)− yi)

T R−1
i (Hi (x̂i)− yi)

]

−
(
Hi

(
xA

0

)
− yi

)T
R−1

i

(
Hi

(
xA

0

)
− yi

)

For nonlinear models this relation holds within some approximation margin.

In practice the posterior expected value is replaced by the ensemble expected value

IDFS
yi

≈ 2
〈
J obs

i (x̂0)
〉A

− 2J obs
i

(
xA

0

)
. (28)

4.2.3 Sampling from the background distribution

A sample x̂0 ∈ N
(
xB

0 , B0

)
from the background distribution leads to

E
B
[
J B (x̂0)

]
= J B(xB

0 ) +
n

2

E
B
[
J obs (x̂0)

]
= J obs

(
xB

0

)
+

1

2
trace

(
B1/2

0

(
A−1

0 − B−1
0

)
B1/2

0

)

E
B [J (x̂0)] = J

(
xB

0

)
+

1

2
trace

(
B1/2

0 A−1
0 B1/2

0

)
.

4.2.4 Computational procedure for estimating the DFS information

After the data assimilation has been performed, one runs the forward model Nens times.

The initial conditions are sampled from the analysis distribution (23) (or from another

distribution, e.g., diagonal, to obtain different statistics). An additional run is performed

starting from the analysis initial conditions. During each run one records all individual

contributions J obs
i of all observations yi to the cost function. This data is post-processed

according to (28). The ensemble average of the contributions J obs
i , minus the contribu-

tion obtained from the analysis run, estimates (half of) the DFS information content of

the data yi.

4.3 Estimation of the RE information content

The relative entropy (RE) information content of all observations y1 · · · yN is measured

by the relative entropy of the posterior probability density PA over the background prob-
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ability density PB

IRE
y1···yN

=
∫Rn

PA (x) · ln
PA (x)

PB (x)
dx

=
∫Rn

PA (x) · ln
P (y|x)
P (y)

dx

=
∫Rn

PA (x) ·
(

lnP (y|x)− lnP(y)
)

dx

= E
A [lnP (y|x)]− lnP(y)

= const − E
A
[
J obs(x)

]

where we have made use of Bayes rule (5) to derive the second relation, and of (8) to

derive the last equation. The marginal distribution of observations y does not depend on

x and its expected value is a constant.

Assuming we can sample the posterior distribution this expected value can be ap-

proximated by the ensemble mean. The RE information content of all observations is

estimated as

IRE
y1···yN

≈ const −
〈
J obs(x)

〉A
. (29)

The relative entropy information content is larger when the 4D-Var process decreases

more the observation part of the cost function. In other words, the lower the mismatch

between model predictions and observations after assimilation the higher the relative

entropy information content of observations is.

The RE information content of the particular observation yi can be quantified as fol-

lows. Data assimilation using all observations y1 · · · yN results in a posterior probability

density PA(x). Data assimilation using all observations except yi results in another pos-

terior probability density PA
−i(x). The RE information contribution of data yi is measured

by the relative entropy of the full-data posterior probability density PA over the partial-

data posterior density PA
−i. If the observation errors at different times are independent it

can be shown that

IRE
yi

=
∫Rn

PA (x) · ln
PA (x)

PA
−i (x)

dx (30)

= consti − E
A
[
J obs

i (x)
]
≈ consti −

〈
J obs

i (x)
〉A

.

The constant comes from the marginal probability of the observation yi and is differ-

ent for each data point. Therefore it is difficult to apportion the information gain to

individual observations using this metric.

An alternative, more computationally involved approach would be to repeat the data

assimilation without the data point yi, and to build another ensemble drawn from PA
−i(x).
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For each data assimilation experiment one computes the total RE information content

(29). The information gain due to the data yi is the measured by

IRE
yi

= IRE
y1···yN

− IRE
y1···yi−1,yi+1···yN

. (31)

4.3.1 Computational procedure for estimating the RE information

The computational procedure is similar to the one for the DFS information presented in

Section 4.2.4. An ensemble of models is run with the initial conditions sampled from

the analysis distribution (23). The ensemble average of the observation part J obs of the

cost function estimates the RE information content of all observations (29), modulo a

constant. This procedure can be repeated for different data assimilation scenarios, where

individual data points are being withheld; the difference between the resulting metrics

estimates the RE information content of the withheld data.

4.4 Estimation of the Shannon information content

We have seen that the Shannon information is related to the scaling of the Gaussian

probability densities. This information is ignored by the 4D-Var cost function. Therefore,

we cannot expect to obtain accurate estimates of the Shannon information content by

mining the cost function information.

A (very) rough approximation can be obtained using the eigenvalues of the ensemble

covariance matrices, as follows. Consider a set of perturbations drawn from the back-

ground ensemble, and a set of perturbations drawn from the analysis ensemble; in matrix

notation

∆xB
0 ∈ Rn×Nens ; ∆xA

0 ∈ Rn×Nens ; Nens ≪ n .

The error covariance matrices are approximated by the ensemble covariance

B0 ≈ 1

(Nens − 1)
·
(

∆xB
0

)T
· ∆xB

0 ; A0 ≈ 1

(Nens − 1)
·
(

∆xA
0

)T
· ∆xA

0 . (32)

Denote the nonzero eigenvalues of the two ensemble covariance matrices by λB
i and λA

i

respectively, i = 1, 2, . . . , Nens. The nonzero eigenvalues can be efficiently computed by

solving small Nens × Nens eigenvalue problems since

Λ = eig
(

∆x · ∆xT
)

︸ ︷︷ ︸
n×n

∈ Rn , λ = eig
(

∆xT · ∆x
)

︸ ︷︷ ︸
Nens×Nens

∈ RNens ⇒ Λi = λi , i = 1, · · · , Nens .

(33)
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An estimate of the Shannon information content (21d) can be given in terms of eigen-

values as follows:

1

2
ln det B0 A−1

0 =
1

2
ln

Nens

∏
i=1

(
λB

i

λA
i

)
=

1

2

Nens

∑
i=1

ln

(
λB

i

λA
i

)
. (34)

Similarly, the part (21b) of the DFS metric can be estimated by

1

2
trace

(
B−1/2

0 A0 B−1/2
0

)
=

1

2

Nens

∑
i=1

(
λA

i

λB
i

)
. (35)

4.4.1 Computational procedure for estimating the Shannon information

One constructs two ensembles of initial conditions, one from the background distribu-

tion, and one from the analysis distribution. The nonzero eigenvalues of the correspond-

ing ensemble covariances are computed using (33). These eigenvalues are used to esti-

mate the Shannon information content via (34) and the DFS information content via (35).

The computational procedure is direct - no additional model runs are necessary. How-

ever, for a small number of ensemble members, the ensemble covariance eigenvalues

may poorly represent the eigenvalues of the true covariances. In this case the resulting

estimates of the Shannon or DFS information content are expected to be inaccurate.

4.5 Estimation of the Signal information content

In this section we assume a linear system with linear observation operators and Gaus-

sian uncertainties as discussed in Appendix B. The analysis state obtained using all the

available information is xA
0 , Consider one particular observation yℓ, remove it from the

set of data, and repeat the data assimilation. Let xC
0 be the analysis state when the data

assimilation is carried out without the observation yℓ.

We use the notation of Appendix B. Furthermore, denote the contribution of obser-

vation ℓ to the right hand side and to the 4D-Var system matrix (50) by

bℓ = MT
ℓ

HT
ℓ

R−1
ℓ

(
yℓ − Hℓ Mℓ xB

0

)
, Dℓ = MT

ℓ
HT

ℓ
R−1
ℓ

Hℓ Mℓ .

Following equation (50) the two 4D-Var problems have the following solutions:

A−1
0 ·

(
xA

0 − xB
0

)
= b ,

(
A−1

0 − Dℓ

)
·
(

xC
0 − xB

0

)
= b − bℓ .

We assume a case where there are many observations such that the contribution of bℓ to

the total right hand side vector is relatively small, b − bℓ ≈ b, and the contribution of
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Dℓ to the total inverse covariance is relatively small, A−1
0 − Dℓ ≈ A−1

0 . The following

approximations are obtained:

A−1
0 ·

(
xC

0 − xB
0

)
≈ b − bℓ , A−1

0 ·
(

xA
0 − xC

0

)
≈ bℓ .

The difference in the signal part due to the assimilation of observation yℓ is

ISignal
yℓ

=
1

2

(
xA

0 − xB
0

)T
B−1

0

(
xA

0 − xB
0

)
− 1

2

(
xC

0 − xB
0

)T
B−1

0

(
xC

0 − xB
0

)

=
1

2

(
xA

0 − xB
0

)T
B−1

0

(
xA

0 − xB
0

)
− 1

2

(
xC

0 − xB
0

)T
B−1

0

(
xA

0 − xB
0

)

+
1

2

(
xA

0 − xB
0

)T
B−1

0

(
xC

0 − xB
0

)
− 1

2

(
xC

0 − xB
0

)T
B−1

0

(
xC

0 − xB
0

)

=
1

2

(
xA

0 − xC
0

)T
B−1

0

(
xA

0 − xB
0

)
+

1

2

(
xA

0 − xC
0

)T
B−1

0

(
xC

0 − xB
0

)

=
1

2

(
A−1

0 (xA
0 − xC

0 )
)T

A0 B−1
0 A0

(
A−1

0 (xA
0 − xB

0 ) + A−1
0 (xC

0 − xB
0 )
)

≈ 1

2
(bℓ)

T A0 B−1
0 A0 (2b − bℓ)

≈ bT
ℓ

A0 B−1
0 A0 b

=
(

yℓ − Hℓ Mℓx
B
0

)T
R−1
ℓ

Hℓ Mℓ A0 B−1
0

(
xA

0 − xB
0

)
.

Let

x̃A
0 = A0 B−1

0 xA
0 , x̃B

0 = A0 B−1
0 xB

0 , (36)

Hℓ Mℓ A0 B−1
0

(
xA

0 − xB
0

)
≈ Hℓ x̃A

ℓ
− Hℓ x̃B

ℓ
.

The contribution of measurement yℓ to the signal information can therefore be approxi-

mated as:

ISignal
yℓ

≈
(

yℓ −Hℓ

(
xB
ℓ

))T
R−1
ℓ

(
Hℓ

(
x̃A
ℓ

)
−Hℓ

(
x̃B
ℓ

))
(37a)

≈
(

yℓ −Hℓ

(
xB
ℓ

))T
R−1
ℓ

(
Hℓ

(
xA
ℓ

)
−Hℓ

(
xB
ℓ

))
(37b)

where the last approximation is rather coarse.

4.5.1 Computational procedure for estimating the Signal information

Two modified initial conditions are computed by (36). (If this is not feasible, the back-

ground and the analysis initial conditions can be used, at the price of a larger approxima-

tion error). The model is run from the modified analysis and the “synthetic observations”

Hℓ

(
x̃A
ℓ

)
are recorded. The model is run again from the modified background and the

“synthetic observations” Hℓ

(
x̃B
ℓ

)
are also recorded (this run is not necessary if one uses

(37b)). Finally, the model is run from the background state, and the estimates (37a) or

(37b) are evaluated for each data point yℓ.
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5 Numerical Experiments

We first illustrate the estimation methodology developed in Section 4 with a linear test

case with Gaussian uncertainties. Next, we apply the estimation methodology to a 4D-

Var data assimilation study with a global chemical transport model. The data assimi-

lation experiment focuses on ozone. Ozone is an important constituent of stratosphere

which absorbs the high energy UV-B and UV-C rays, thus preventing the disintegration

of DNA molecules and supporting the existence of life. However, ozone present in mid

to low troposphere is a pollutant, a powerful oxidizing agent leading to destruction of

tissues, damaging fibers and creating breathing problems.

The data are satellite ozone column retrievals. We estimate the information content

of satellite observations taken at different times using different information theoretic

metrics.

5.1 A linear test case

In order to illustrate the estimates of various information metrics described in section 4

we first consider a linear test case. The model is

xk = M · xk−1 , k = 1, · · · , 4 , xk ∈ R10 . (38)

The model matrix M has eigenvalues log-equally distributed in the interval [10−2, 102].

There are 5 eigenvalues greater than 1 (with the errors growing along the corresponding

eigendirections) and 5 eigenvalues smaller than 1 (with the errors decreasing along the

corresponding eigendirections). Observations of odd numbered states (1,3,5,7, and 9) are

taken at each step. The background errors are normal and characterized by a diagonal

background covariance matrix; the standard deviation of the error in each component

is 10% of the background mean value. The observation errors are assumed normal and

independent of each other; the standard deviation of each observation error is 1% of the

reference observation value.

For this problem analytical solutions are available for the analysis state xA
0 and for

the analysis covariance matrix A0. Based on them a direct evaluation of the different

information metrics is possible. The results are summarized in Table 1 and show that the

ensemble estimates of information metrics are accurate.
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Table 1: Results with the linear test problem (38). The Fisher information is estimated

using equation (25), DFS using (28), Shannon using (34), and the signal using (37a) .

Direct Nens = 10 Nens = 102 Nens = 103 Nens = 104

Fisher 2.001e+05 1.923e+05 2.138e+05 1.977e+05 1.979e+05

DFS 4.999e+00 4.802e+00 5.336e+00 4.934e+00 4.942e+00

Shannon 2.234e+01 1.998e+01+1.571i 2.222e+01 2.245e+01 2.232e+01

Signal 3.347e+00 3.347e+00 3.347e+00 3.347e+00 3.347e+00

5.2 A nonlinear test case

We consider the Lorenz 96 model [Lorenz(1996)] which is described by the following set

of equations:
dxj

dt
= −xj−1(xj−2 − xj+1 − xj) + F , j = 1, . . . n , (39)

with n = 40 and periodic boundary conditions (xi = xn+i for any i). The forcing term is

F = 8.0.

We start with the state xi(t−10) = 1 + 0.1 mod(i, 5), i = 1, · · · , n, and integrate it

forward for 10 time units to obtain the reference (“true”) state at t0, xref
0 .

A static background covariance matrix Bt0 is constructed as follows. First define the

covariance matrix B̂0 using

(
B̂0

)
ij
= σi · σj · exp

(
− d2

L2

)
, i, j = 1, . . . , n , (40)

where the standard deviation for the state variable i is σi = 0.03 xref
i (t0), and the corre-

lation distance is set to L = 4. We account for the periodic boundary conditions in that

d = min{|i − j|, n − |i − j|}. The covariance matrix is obtained via

B0 = α In×n + (1 − α) B̂0 , α = 0.1 .

This construction ensures a nonsingular B0, as required by the 4D-Var algorithm.

The background initial state is obtained from the reference solution, plus a random

perturbation consistent with the background error statistics:

xB
0 = xref

0 + B1/2
0 · ξ , ξ ∈ N (0, 1)n . (41)

The simulation time interval is [0, 0.3] time units. The reference trajectory is gen-

erated using Matlab’s ode45 integrator with tight tolerances (relative error tolerance

RelTol=1.e-9 and absolute error tolerance AbsTol=1.e-9). The model consists of a nu-

merical integration using “the original” fourth order Runge-Kutta method with a time
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step ∆t = 0.015 time units. The model error is truncation error associated with the

numerical integration using a relatively large step size.

The vector of observations has m = 34 components at each time. The observation

operator H ∈ R34×40 is linear and captures a subset of 30 model states plus 4 linear

combinations of model states as follows

H · x =


 x1, x3, · · · , x19︸ ︷︷ ︸

odd−numbered

, x21, x22 · · · x39, x40︸ ︷︷ ︸
all states

,
10

∑
i=1

xi,
20

∑
i=1

xi,
40

∑
i=21

xi,
40

∑
i=31

xi

︸ ︷︷ ︸
linear combinations




T

. (42)

The odd-numbered states among the first 20 ({1, 3, 5, · · · , 19}) and all of the last 20 states

({21, 22, · · · , 39, 40}) are directly observed. Also observed are the sum of the first 10

states, the sum of the first 20 states, the sum of the last 20 states, and the sum of the

last 10 states. The sums of the last 10 and 20 states are redundant observations which

can be recovered from the observations of individual states {21, · · · , 40}. The sums of

the first 10 and 20 states bring additional information about the even-numbered states

{2, 4, · · · , 16, 18} which are not directly observed.

Observations are taken every 0.03 time units, i.e., there are Nobs = 10 uniformly

spaced observation times: tk = 0.03 k (time units) for k = 1, · · · , Nobs. Synthetic ob-

servation values are generated as follows. First, the reference trajectory is used to ob-

tain perfect observations yref
k = H · xref

k . The vector of standard deviations of obser-

vation errors is taken to be 0.5% of the time-averaged reference observations, σobs =

0.005 (∑
Nobs
k=1 yref

k )/Nobs. The observation errors are assumed to be uncorrelated. The ob-

servation covariance is the diagonal matrix R = diagi=1···n
{
(σobs

i )−2
}

and is constant for

all observations times. Synthetic observations are generated by adding Gaussian noise to

the reference observations:

yk = yref
k + R1/2 · ηk , ηk ∈ N (0, 1)m , k = 1, · · · , Nobs . (43)

Our implementation of 4D-Var makes use of the matlab implementation of L-BFGS algo-

rithm provided in [Heinkenschloss(2008)]. L-BFGS [Zhu et al.(1997)] is the de facto “gold

standard” of gradient-based optimizers used in data assimilation studies.

An ensemble of 1,000 4D-Var optimization runs is performed. Each run uses a dif-

ferent background state generated according to (41), and a different set of observations

generated according to (43). The ensemble of optimized initial states samples the analy-

sis distribution (of initial conditions). Ensembles of runs started from these initial states

are used to estimate various information content metrics.

From the ensemble of initial conditions we derive the ensemble covariance matrices

Be ≈ B0 and Ae ≈ A0. These are used to compute directly estimates of the information
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metrics. The information content metrics obtained directly, and via the approximation

formulas proposed here, are shown in Table 2. The two computational approaches give

very close estimates.

Table 2: Information content metrics for the 4D-Var experiment with the Lorenz96 sys-

tem. The values obtained by the estimation formulas are close to those obtained by direct

calculations.
Direct Estimate

Equation Value Equation Value

DFS n − trace
(

A1/2
e · B−1

e · A1/2
e

)
3.995e+01 (28) 3.978e+01

Fisher trace
(
A−1

e − B−1
e

)
2.269e+06 (25) 2.207e+06

Signal 0.5 ·
(
xA

0 − xB
0

)T · B−1
e ·

(
xA

0 − xB
0

)
1.785e+01 (37a) 1.723e+01

Shannon 0.5 · (ln det Be − ln det Ae) 1.637e+02 (34) 1.631e+02

The Fisher information is estimated using equation (25). Figure 1 shows each compo-

nent of the gradient squared IFIM
i ≈

〈
(λ0)

2
i

〉A
. This quantifies the informational benefit

that each state xi(t0) receives due to data assimilation, as measured by the Fisher infor-

mation matrix. Among the first twenty states the odd numbered ones (x1, x3, · · · , x19)

benefit more than the even numbered ones (x2, x4, · · · , x18). This correlates well with the

structure of the operator (42) which observes directly only the odd numbered states. The

last twenty states show about the same information benefit, and this is expected since all

of them are directly observed. The end states x1 and x40 show the largest information

gain; this cannot be explained based solely on the structure of the observation operator

(42).

The DFS information is estimated using equation (28). The formula allows to split

the DFS information into contributions brought by each observation at each time. Figure

2(a) presents the DFS contributions of each observations (summed up for all observation

times). Each of the first 10 observations (of states x1, x3, · · · , x19) contributes about two

degrees of freedom for signal. We can infer that direct observation of an odd numbered

state brings information about its un-observed even numbered neighbors. Each of the

next 20 observations (of states x21, · · · , x40) contributes a single degree of freedom for

signal. This is expected as each observation in this group measures a single state variable,

and all neighboring states are directly observed. Each of the observations 31 (sum of the

first 10 states) and 32 (sum of the first 20 states) brings in about half a degree of freedom

for signal. Finally, the last two observations (sums of the last 10 and of the last 20 states)

bring in almost zero degrees of freedom for signal. This is expected as the information

is redundant.
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Figure 1: Estimated Fisher information gain per state variable for the Lorenz96 model.

Figure 2(b) presents the DFS contribution of each observation time (summed up for

all observations). The time points near the beginning and near the end of the assimi-

lation window bring larger contributions of over 5 degrees of freedom for signal. The

points near the middle of the assimilation window have smaller contributions of under

3 degrees of freedom for signal.
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Figure 2: Estimated degrees-of-freedom-for-signal information metrics for the Lorenz96

model.

The signal information is estimated using equation (37a). Figure 3 shows the signal

contribution of all observations at different times. The observations near the beginning

of the assimilation window contribute the most, while those near the middle of the
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assimilation window contribute the least.
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Figure 3: Estimated signal information contribution per observation time for the

Lorenz96 model.

The estimates of the signal contribution of each observation are not producing rele-

vant results. They are shown in Figure 4. The approximation formula that separates the

signal contributions for each observation seems to be too inaccurate.
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Figure 4: Estimated signal information contribution per observation for the Lorenz96

model.
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6 Conclusions and Future Work

This paper discusses a characterization of the information content of observations in

the context of four dimensional variational (4D-Var) data assimilation framework. The

ability to characterize the usefulness of different data points is important for analyzing

the effectiveness of the assimilation system, for data pruning, and for the design of future

sensor systems.

Several metrics from information theory are used to quantify the information content

of data, including the trace of the Fisher information matrix, the Shannon information,

the relative entropy, the signal information, and the degrees of freedom for signal. In the

Gaussian case the signal information measures the benefit of data assimilation in terms

of adjusting the mean of the distribution. Fisher, Shannon, and DFS all measure the

benefit of data assimilation in terms of decreasing the (co-)variance of the error. Relative

entropy offers a combination of metrics.

The analysis is carried out under the assumptions that errors have Gaussian distribu-

tions and that the model dynamics is linear. The analysis reveals that the information

content of observations is intimately related to the statistics of the variational cost func-

tion and its gradient. These statistics are obtained with respect to the analysis probability

distribution. The theoretical results lead to a new computational procedure to estimate

the information content of various observations in the context of 4D-Var. After data as-

similation is complete, and ensemble of simulations is run with the initial conditions

drawn from the posterior probability distribution. Mean values of the adjoint norms are

used to estimate the trace of the Fisher information matrix. The mean value of the obser-

vation part of the cost function, minus its value for the analysis, is used to estimate the

DFS information content. Scaled dot products between the background innovation and

the difference between the background and the analysis innovations provide estimates

of the signal information content. The estimates require expected values with respect to

the posterior distribution. A detailed discussion on how these can be obtained is given

in the companion paper [Singh et al.(2011)].

The information content estimation approach is illustrated on a linear and on a non-

linear test problems.

The assumptions and approximations made during the analysis and computations

impact the accuracy of the information content estimates. While the analysis assumes

normal error distributions and a linear dynamics, it is desirable to apply the methodology

to nonlinear systems and arbitrary uncertainty distributions. The analysis distribution is

not explicitly available, samples are taken from distributions that only approximate the

analysis under certain assumptions. Finally, relatively small ensembles lead to relatively

large sampling errors. Future effort will focus on quantifying the impact that each of
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these issues (nonlinearity, non-normality, approximate posterior distributions, and small

samples) has on the accuracy of the information content estimates.
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A Properties of random quadratic functions

In the paper we use the following useful property of random quadratic functions (cite

appropriately).

Let Q = QT be a symmetric positive semidefinite matrix and ζ a random vector withE [ζ] = µ and cov[ζ] = C. Then the quadratic function ζT Q ζ has the following statistics:E [ζT · Q · ζ
]

= trace (QC) + µT · Q · µ , (44a)

var
[
ζT · Q · ζ

]
= trace (QCQC) + 4µT · QCQ · µ . (44b)

If x ∈ N
(
xA

0 , A0

)
then x − xA

0 ∈ N (0, A0) and

E
A

[
1

2

(
x − xA

0

)T
A−1

0

(
x − xA

0

)]
= 0 +

1

2
trace

(
A−1

0 A0

)
=

n

2
. (45)

Similarly, x − xB
0 ∈ N

(
xA

0 − xB
0 , A0

)
and

E
A

[
1

2

(
x − xB

0

)T
B−1

0

(
x − xB

0

)]
=

1

2

(
xA

0 − xB
0

)T
B−1

0

(
xA

0 − xB
0

)
+

1

2
trace

(
B−1

0 A0

)
.

(46)

B 4D-Var data assimilation with linear models, linear ob-

servation operators, and Gaussian errors

In this section we consider the case where the model dynamics is linear

Mt0→ti
(x0) = Mi x0 , (47)

and the observation operator is also linear,

H (xi) = Hi xi . (48)
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In addition, we assume that the background errors and the observation errors are both

normally distributed. In this case the 4D-Var cost function is:

J B(x0) =
1

2

(
x0 − xB

0

)T
B−1

(
x0 − xB

0

)

J obs(x0) =
N

∑
i=0

J obs
i (x0)

J obs
i (x0) =

1

2
(Hi xi − yi)

T R−1
i (Hi xi − yi)

=
1

2
(Hi Mi x0 − yi)

T R−1
i (Hi Mi x0 − yi)

The posterior distribution is Gaussian PA(x0) = N
(
xA

0 , A0

)
. The posterior covariance

matrix A0 satisfies

A−1
0 = B−1

0 +
N

∑
i=0

MT
i HT

i R−1
i Hi Mi (49)

and the analysis initial condition xA
0 obtained by solving the linear system

A−1
0 ·

(
xA

0 − xB
0

)
=

N

∑
i=0

MT
i HT

i R−1
i

(
yi − Hi Mi xB

0

)
. (50)
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