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Figure 1: Massive models rendered in our system. Left: Boeing 777 model. Right: Power Plant model.

Abstract

Rendering massive 3D models in real-time has long been recog-
nized as a very challenging problem because of the limited compu-
tational power and memory space available in a workstation. Most
existing rendering techniques, especially level of detail (LOD) pro-
cessing, have suffered from their sequential execution natures, and
does not scale well with the size of the models. We present a GPU-
based progressive mesh simplification approach which enables the
interactive rendering of large 3D models with hundreds of millions
of triangles. Our work contributes to the massive rendering research
in two ways. First, we develop a novel data structure to represent
the progressive LOD mesh, and design a parallel mesh simplifica-
tion algorithm towards GPU architecture. Second, we propose a
GPU-based streaming approach which adopt a frame-to-frame co-
herence scheme in order to minimize the high communication cost
between CPU and GPU. Our results show that the parallel mesh
simplification algorithm and GPU-based streaming approach sig-
nificantly improve the overall rendering performance.

Keywords: Level of detail, Streaming, Massive Model Rendering,
GPGPU, Temporal Coherence.

1 Introduction

Rendering large-scale massive models has become a commonly re-
quested task for scientific simulation, visualization and computer
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graphics. Many research areas generate extremely complex models,
such as industrial CAD models (e.g. airplanes, ships and architec-
tures), composed of more than hundreds of millions of primitives.
However, these complex datasets cannot be rendered interactively
using brute force methods on a desktop workstation. The real chal-
lenge is how to develop a system that increases rendering perfor-
mance without losing the rendering quality of datasets. One of the
most commonly used techniques is mesh simplification, which can
greatly reduced the amount of data stored and processed in the ren-
dering systems.

Mesh simplification algorithms replace tessellated objects with
coarser representations with less primitive count, such as Levels
of Detail (LODs). Computing LOD models has been an very ac-
tive research area in the past. For example, Hoppe [Hoppe 1996]
introduced a well-known LOD mesh simplification approach, Pro-
gressive Meshes, where an original mesh is represented with a base
mesh and a sequence of modifications (e.g. edge splits). At runtime,
an appropriate LOD mesh can be rendered as the alternatives of the
original mesh at a certain distance from the camera. However, given
a large 3D model composed of many objects and massive number
of primitives, constructing the LOD meshes for the model can be
a very expensive process, which makes the online mesh simplifica-
tion and rendering impossible on a desktop workstation.

In recent years, graphics hardware, as a massively parallel architec-
ture and commoditized computing platform, has been praised due to
the significant improvements in performance and the capability for
general-purpose computation. However, most of the mesh simplifi-
cation algorithms, including Progressive Meshes, are not naturally
data parallel algorithms, and do not have trivial GPU-based parallel
implementations. In addition, comparing to the processing power of
GPUs, the maximum of memory on a GPU is insufficient to store a
large number of primitives of really complex models. For example,
the Boeing 777 model in our demonstration, shown in Figure 1 left,
requires approximately 6 GByte of storage space for its vertex and
triangle data, which can not fit into most modern GPUs. Another
limitation of GPU-based implementations is the large overhead for
transferring data from CPU to GPU, which could significantly de-
crease the performance if a large amount of geometry data needs to
be transferred for each rendering frame.



To address these issues, we develop a novel data structure to repre-
sent the progressive LOD mesh, and design a parallel mesh simpli-
fication algorithm which can take advantage of the data parallel pro-
cessing pipeline of GPUs. We also propose a GPU-based streaming
approach which adopt a frame-to-frame coherence scheme in order
to minimize the high transfer overhead between CPU and GPU.

We organize the rest of the paper as follows. In Section 2, we re-
view some of the related works. Section 3 provides a brief overview
for the data pre-process and runtime algorithm. Section 4 describes
the pre-processing approach for mesh simplification and data per-
mutation. In Section 5, we describe the parallel algorithm applied at
runtime for the GPU-based streaming and LOD model generation.
Section 6 describes our implementation and shows our experiment
results. Finally, we conclude our work and discuss the limitations
and future works in Section 7.

2 Related Work

Interactively rendering a massive and complex model is an active
research area. In this section, we review some previous work that
are highly related to our work. We discuss the existing approaches
with respect to mesh simplification and GPU programming.

2.1 Mesh Simplification

A common representation for mesh simplification is using Progres-
sive Meshes [Hoppe 1996] so that a LOD mesh can be recovered
by applying a prefix of splitting sequence on the base mesh. One
of the simplification methods is collapsing edges or vertex pairs in-
teractively. At each iteration, an edge or vertex pair is selected and
collapsed according to an energy function [Hoppe 1996], region-
merging measurement [Ronfard et al. 1996] or Quadric Error Met-
rics [Garland and Heckbert 1997]. Garland and Zhou [2005] pre-
sented a generalized, Quadric-based simplification method that can
be applied in any dimension. A different simplification method is
presented in [Cohen et al. 1998], which is based on an appearance-
preserving algorithm. The metric employed in the appearance-
based algorithm measures the screen-space deviations in terms of
the parameterized surface attributes in texture maps. [Lindstrom
and Turk 2000] presented a more general image-based approach to
decide which portion of a mesh to simplify.

The approaches for view-dependent rendering (VDR), as described
in [Hoppe 1997] and [Xia et al. 1997], organizes the edge collapses
of mesh simplification into a vertex hierarchy. An approximating
mesh can be retrieved by traversing the hierarchy for possible col-
lapsing/splitting operations. In order to increase the performance
for rendering massive models , many researchers have proposed
various ways in [Pajarola 2001; El-Sana and Bachmat 2002; Yoon
et al. 2003; Wagner et al. 2007]. Meanwhile, several out-of-core
VDR approaches for rendering massive models have proposed in
[Lindstrom 2003; Yoon et al. 2004; Gobbetti and Marton 2008].
Other approaches using multi-resolution hierarchies, e.g, hierarchal
level of details (HLOD). Different from traditional LOD, a HLOD
is constructed by simplifying the separated portions of a scene.
[Hoppe 1998] introduced a block-based algorithm for hierarchical
simplification applicable to terrain rendering. [Erikson et al. 2001]
employed a HLOD approach to interactively display complex static
and dynamic models.

2.2 GPU Programming

Programable GPUs have allowed us to implement the traditional
CPU sequential algorithms in parallel. With GPU parallelism,
many approaches have been developed for efficient 3D data vi-

sualization, including: iso-surface rendering [Kruger and Wester-
mann 2003; Buatois et al. 2006], data partitioning [Zhou et al. 2008;
Lauterbach et al. 2009], and hiden surface removing[Wexler et al.
2005].

In order to efficiently generate LOD meshes, we emphasize on the
techniques for GPU-based mesh simplification. [Ji et al. 2006] gen-
erated a LOD mesh on GPU based on a quad-tree structure con-
structed from poly-cube maps. In their techniques, an adaptive
mesh is finalized in vertex shader. In [DeCoro and Tatarchuk 2007],
the authors used a vertex-clustering method, and designed a GPU-
friendly octree structure for efficient LOD generation. Although
their clustering method reduced the memory storage, the generated
LOD mesh might not be visual fidelity. More recently, Hu et al.
[2009] proposed a parallel algorithm for view-dependent LOD en-
tirely implemented on GPU. The authors introduced a cascaded up-
date method to split vertices without respecting their dependencies.
However, this method is based on the assumption that the foldover
artifacts cannot be observed. Moreover, their approach needs sev-
eral passes to update vertex and triangle stream. When the original
dataset cannot fit into GPU memory, it may lead to significant CPU-
GPU data transfer overhead at runtime. In this paper, we tend to
render large-scale massive model, and we contribute a GPU-based
streaming approach for transferring the minimized amount of data
at runtime.

As mentioned in Section 2.1, there are two major forms for mesh
simplification: progressive meshes stored in a linear structure and
vertex hierarchies for view-dependent rendering. As discussed in
[Erikson et al. 2001], although we can selectively refine an arbi-
trary mesh using vertex hierarchies, the VDR algorithms may re-
quire significant memory and increase runtime cost. In order to
take advantage of GPU linear memory space, we use progressive
meshes instead of vertex hierarchies in our algorithm.

3 Overview

In this section, we present the basic concepts of our rendering sys-
tem and give a brief overview of our approach. We also define some
terminologies which are used in the rest of the paper.

Progressive algorithms are widely used for mesh simplification,
where an original mesh is simplified to a base mesh by collaps-
ing one edge at a time. The original mesh can be represented as
the base mesh and a sequence of vertex splitting operations, which
is the inverse transformation of edge collapsing. However, during
mesh refinement, the vertex splitting operations are executed se-
quentially, which can be a significant performance bottleneck when
processing a large mesh. We present an algorithm that performs
LOD simplification in parallel at triangle level. Taking an original
mesh as the input, our system applies edge collapsing operations in
parallel at runtime and supports real-time rendering.

3.1 Preprocess

The input to our rendering system is a complex 3D model which
consists of a large number of disconnected meshes. In preprocess
stage, we calculate the edge collapsing information of each mesh
and record it into an array, called ecol, where each element in ecol
corresponds to a source vertex, and its value, ecol[i], is the target
vertex that it collapses to. Moreover, we re-arrange the vertex and
triangle data of original mesh based on the order of those collaps-
ing operation. After the re-arrangement step, the first triangle of
the mesh will the last one to be removed. Thus, at runtime, given
the desired complexity of the mesh (e.g., number of triangles), we
can select a set of successive triangles starting from the first, and
generate the adaptive LOD mesh by reforming those triangles. We



describe how to construct ecol and re-arrange the mesh data in Sec-
tion 4.

3.2 System and Runtime Algorithm

In our system, each mesh in the 3D model is bounded by an Axis-
aligned Bounding Box (AABB). The AABB serves for two pur-
poses in our rendering system. First, we check the visibility of a
mesh by testing its AABB against the view frustum. Second, if
a mesh is visible, we use the projected area of its AABB to com-
pute the desired complexity level of the mesh (refer to Section 5.1).
Thus, the complexity of the 3D model is represented with a list of
mesh complexities, we call it as complexity list.

In order to increase the rendering performance, we generate a sim-
plified version of original model by utilizing GPU parallel architec-
ture. Due to the limit of memory size on GPU, we can not fit the
entire 3D model in GPU memory. However, with the re-arranged
data, only a portion of triangles and a portion of vertices need to
be held on GPU for LOD model generation, and we call them as
active triangles and active vertices, respectively. Therefore, at a
given frame, we first compute the complexity lists according to
our LOD selection criteria. Then, in order to efficiently update
active triangles and active vertices on GPU, we propose a GPU-
based streaming approach that transfers much smaller amount of
data from CPU memory by exploiting frame-to-frame coherence.
In this way, we can re-use most of existing data on GPU from the
previous frame such that the overhead of CPU-GPU data transfer
can be minimized. We call those existing data as existing triangles
and existing vertices.

Our runtime algorithm takes the following four steps to render a
frame:

1. LOD selection. In this step, we need to compute the complex-
ity list of the model. To do this, we test AABBs against view
frustum to check if the meshes are visible or not. If a mesh is
visible, we return its complexity with the desired number of
vertices and triangles.

2. GPU-based Streaming. Based on frame-to-frame coherence,
the process of streaming is to collect the triangles and ver-
tices not existing in the previous frame, and transfer them
from CPU to GPU. We called those triangles and vertices as
streamed triangles and streamed vertices.

3. Triangle reformation. In this step, the active triangles and ac-
tive vertices have been updated on GPU. In order to generate
appropriate LOD meshes, the process of triangle reformation
is to replace the vertices of each triangle with target vertices
by looking up ecol.

4. Rendering . We use OpenGL Vertex Buffer Objects (VBOs)
to render the generated LOD meshes.

We describe our runtime algorithm in detail in Section 5.The
overview of the preprocess and runtime system is illustrated in Fig-
ure 2.

4 Data Preprocess

In this section, we first review the key components of the progres-
sive algorithm for triangulated mesh simplification. Second, using
an example, we describe how to construct the data array ecol, and
re-arrange the original vertex and triangle data based on the order
of edge-collapsing.
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Figure 2: The overview of the preprocess and runtime system.

4.1 Key Algorithm Components

Progressive mesh simplification algorithm, originally proposed in
[Hoppe et al. 1993], then further developed in [Hoppe 1996], [Ron-
fard et al. 1996] and [Garland and Heckbert 1997], is the most com-
mon simplification algorithm. The algorithm collapses edges iter-
atively, where an edge (v1, v2) is collapsed into a single vertex v.
Every edge is assigned a collapsing cost, which is computed based
on a set of defined criteria. At each iteration, the edge with the
lowest cost edge is collapsed, and one or two triangles are removed
from the mesh. The following four steps are performed during el-
dge collapsing: (1) compute the costs of all valid edges; (2) collapse
the lowest-cost edge by merging v1 and v2 to the position of v; (3)
replace v1 and v2 which are included in any triangle with v; (4)
remove v1, v2 and all triangles with both of the two vertices.

Position of target vertex. Obviously, the position of target vertex v
can be either the endpoints of edges, v1, v2, or a new position (e.g.,
v = (v1+v2)/2). The choice of v depends on the intended applica-
tions. Normally, the new position is determined by forcing a close
fit of the original mesh before edge collapsing. However, if the
application tends to create adaptive representation of the simplifi-
cation, using the endpoints for v is desirable [Garland and Heckbert
1998].

Error function. In order to achieve the best quality of simplifi-
cation, error functions are selected to determine the order of edge
collapsing operations (in other words. which edge to collapse first).
[Hoppe 1996] presented an optimization scheme involving an error
function with four energy terms. Although it helps to generate good
results, calculating the cost for a given edge is an very costly oper-
ation, especially for large 3D models. To avoid this performance
issue for real-time rendering, we choose an error function used
by [Garland and Heckbert 1997]. It presents an efficient, quality-
preserved method using Quadric Error Metrics (QEM). Original
QEM method considers to collapse any pair of vertices (edge and
non-edge). However, in our method, we only consider edge pairs
are valid for collapsing.

Boundary vertices. In many 3D models, such as polygonal meshes
created by CAD softwares, there are disconnected faces separated
by borders and holes, which are important visual features [Gar-
land and Heckbert 1998]. Preserving such features is crucial for
an accurate simplification of the meshes. To do this, we restrict
that the Boundary Vertices are not collapsible, which means that
an edge cannot be collapsed by moving a boundary vertex to an-
other. We define the term of Boundary Vertex as follows: if an
edge (v1, v2) only existing in a single triangle, v1 and v2 are the
boundary vertices; the edge (v1, v2) is a Boundary Edge. With the
non-collapsible constraint, the simplest LOD mesh will be the one
only constructed by boundary vertices, instead of a single triangle.



4.2 Data structure and processing

A 3D model visualized in our system is represented with a set of tri-
angle meshes. A mesh M can be denoted as a tuple (V, T ), where
V is the vertex list. We denote V = {v1, v2, . . . , vm}, where m is
the number of vertices inM . T is the triangle list defining the shape
and topology of M . We denote T = {t1, t2, . . . , tn}, where n is
the number of triangles. ti(i ∈ [1, n]) is defined by a triple of ver-
tex indices, ti = {idx1, idx2, idx3}(idx1, idx2, idx3 ∈ [1,m]),
which means that the shape of triangle ti is formed by three vertices
appearing in the order of vidx1 , vidx2 , vidx3 .

We record edge collapsing information into an array, ecol. In order
to assist the simplification process, two other data arraies are used
for registering their new indices. One is for vertices, permuteV ;
the other is for triangles, permuteT . After each collapsing oper-
ation, we also want to know the number of vertices and triangles
remaining in the mesh. We use another array , map, to record the
remaining triangles. If the number of remaining vertices is i, the
number of remaining triangles will be stored in map[i]. In order to
explain our approach clearly, we will describe the process of sim-
plification by providing a example (shown in Figure 3 and Figure
4).

4.2.1 Simplification process

Figure 3(a) shows a mesh composed of 7 vertices and 8 trian-
gles so that we can initially set map[7] to 8. The set of vertices
{v3, v4, v5, v7} are classified as boundary vertices, denoted as Q.
In this example, we assume the the error function only considers
the length of edge. Thus, the shorter an edge is, the smaller the
cost is assigned to it. The costs on boundary edges are set to be
infinitely large. Giving an Edge = (va, vb), where a < b, the edge
collapsing operation can be formularized as follows:

Collapse(Edge) =

8><>:
va → vb, (va, vb /∈ Q)

vb → va, (va ∈ Q, vb /∈ Q)

noncollapsible, (va, vb ∈ Q)

Figure 3(a-d) illustraste the steps reducing the original mesh to the
simplest mesh. At each step, there are five operations:

1. Choosing and collapsing the lowest-cost edge. The index of
target vertex, vtar , which the source vertex, vsrc, is collapsed
to, is stored in ecol. The operation can be formularized as
ecol[src] = tar;

2. Recording the information for vertex re-arrangement. The
new index of vsrc will be the number of vertices of the cur-
rent mesh, denoted as vn, is recorded in permuteV . The
operation is written as permuteV [src] = vn;

3. Recording the information for triangle re-arrangement. The
new indices of the removed triangles depend on the number of
triangles of the current mesh, tn. Assuming that two triangles,
trm1 , trm2(rm1 < rm2), are removed, we record their new
indices in permuteT . The operation is permuteT [rm1] =
tn, permuteT [rm2] = tn− 1.

4. Recording the information for vertex-triangle number map-
ping. If k triangles are removed, map[vn− 1] = tn− k.

5. Removing vsrc, trm1 and trm2 , then updating vn and tn.

For example, in the step of simplifying the mesh from Figure 3(b)
to Figure 3(c), the current mesh shown in Figure 3(b) indicates vn
is 6 and tn is 6. In Figure 3(c), after collapsing v1 to v2, ecol[1] is

equal to 2. permuteV [1] is 6, the value of vn. Correspondingly,
by removing t1 and t6, permuteT [1] is 6, the value of tn; and
permuteT [6] is 5, the value of tn − 1. Since two triangles are
removed, map[5] is equal to 4. Figure 3(d) shows the simplest
mesh compound of the minimal number of vertices and triangles.

In Figure 3(e), we deal with the boundary vertices and the remain-
ing triangles. Since boundary vertices are non-collapsible, we as-
sign an invalid value (e.g., -1) to ecol[i](vi ∈ Q) and map[j](j ∈
[1, vn − 1]). Each unassigned element of permuteV corresponds
to a boundary vertex. To complete permuteV , each of those el-
ements is assigned with the value of vn in their increasing order.
After each assigning step, we decrease the value of vn by 1. In
the same way, we complete permuteT for each of the remaining
triangles.
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Figure 3: An example of simplification. (a)-(d) show the intermedi-
ate meshes resulted by edge-collapsing. At each simplification step,
the collapse information is recorded in the proposed array struc-
tures (on the right side). (e) shows the finalized array structures by
handling the boundary vertices and the remaining triangles.



4.2.2 Data re-arrangement

The sets of V and T in mesh M are re-arranged according to the
information recorded in permuteV and permuteT . If we define
the re-arranged mesh as M ′ = (V ′, T ′), the order of elements in
V ′ and T ′ reflect the order of vertex/triangle removal. Thus, if a
simplified version of M ′ contains k vertices (k ∈ [q,m]), where q
is the number of boundary vertices, and l triangles (l = map[k]),
it can be generated by using only a subset of V ′, {v1, v2, . . . , vk},
and a subset of T ′, {t1, t2, . . . , tl}. Data re-arrangement is required
by our runtime algorithm for per-triangle reformation (see Section
5.3). We present the algorithm of data permutation in Algorithm 1.
We also provide an example in Figure 4.

Algorithm 1 Re-arrange Data
Input: mesh M , ecol, permuteV , permuteT
Output: re-arranged mesh M ′, ecol′

for each vi ∈M.V do
ecol′[permuteV [i]]← permuteV [ecol[i]];
M ′.V ′.v[permuteV [i]]←M.V.v[i];

end for
for each ti ∈M.T do
M ′.T ′.t[permuteT [i]]←M.T.t[i];

end for

8  

2 5  

7  

7  

6 5 

6 

4 

4 3 

5 

-1 -1 -1 -1 

2 1

4 3 2 1

-1 ecol': 5  -1 -1 -1 3 2

(a)

(b)

v1
v2

v3 v4

v5
v7

v6

t2
t1

t3

t4

t5
t6

t7

t8
ecol:

permuteV:

permuteT:

v6
v5

v4 v3

v2
v1

v7

t2
t6

t4

t3

t8
t5

t1

t7

Figure 4: An example of data re-arrangement. (a) shows the orig-
inal mesh with the collapsing results from Figure 3. (b) shows the
re-arranged data and the re-arranged ecol.

5 Runtime Algorithm

In this section, we describe our runtime algorithm for rendering a
complex 3D model. Our algorithm has two major contributions: (1)
A novel GPU-based streaming approach minimizes the overhead of
data transfer by exploiting frame-to-frame coherence (see Section
5.2); (2) A massive parallel process for generating LOD meshes by
reforming the active triangles (see Section 5.3).

Algorithm Overview. The runtime algorithm takes a model with
a set of triangulated meshes, AABBs, and a ecol array as the in-
put. We define the model as D = {M1,M2, . . . ,Mr}, where
r is the number of meshes; similarly, AABBs is defined as B =
{b1, b2, . . . , br}. Note that each mesh Mi(i ∈ [1, r]) has been
re-arranged, and bounded by bi in B. Also, ecoli in the ecol ar-
ray includes the edge collapsing information of Mi. The rendering
process is shown in Algorithm 2.

Algorithm 2 Data Visualization
Input: D, B, ecolList

// Initialization: allocating memories to store triangles and ver-
tices
activeT ← new triangle list;
existingT ← new triangle list;
streamedT ← new triangle list;
activeV ← new vertex list;
existingV ← new vertex list;
streamedV ← new vertex list;

// Initialization: allocating memories to store complexity lists
atn← new list; etn← new list; stn← new list;
avn← new list; evn← new list; svn← new list;

// LOD selection stage
for each bi ∈ B in parallel do

Testing bi against the view frustum;
if Mi is visible then

Compute the complexity of Mi into avn[i] and atn[i];
else
avn[i]← 0; atn[i]← 0;

end if
end for
Prefix-Sum avn and atn in parallel;

//Updating stage: GPU-based streaming to update active lists
UpdateTriangles(D, existingT , streamedT , atn, etn, stn,
activeT );
UpdateVertices(D, existingV , streamedV , avn, evn, svn,
activeV );
existingV ← activeV ; existingT ← activeT ;
evn← avn; etn← atn;

// Triangle reformation stage
for each ti ∈ activeT in parallel do

ReformTriangle(ti, atn, avn, ecolList, activeT.ti);
end for

// Rendering stage
for each Mi ∈ D do

Assign per-mesh attributes (e.g. color);
Render the LOD mesh of activeV [vavn[i]+1, vavn[i+1]] and
activeT [tatn[i]+1, tatn[i+1]];

end for

During initialization, global memory in GPU is allocated for stor-
age. For a given frame, the active triangles, activeT , and the ac-
tive vertices, activeV , are held in successive GPU memory space.
Similarly, those from previous frame are stored in existingT and
existingV ; and new primitives, which do not exist in the previous
frame, are stored in streamedT and streamedV . Figure 5 shows
how the active primitives are organized in activeT and activeV .

In our algorithm, The complexity of a mesh is actually represented
with two numbers: the number of vertices and the number of tri-
angles. Thus, the complexity of D is denoted as two complexity
lists: one is for triangle, another is for vertex. We organize each
complexity list based on the operation of prefix sum. As denoted
in Algorithm 2, atn is the complexity list associating to activeT ,
and avn is the complexity list associating to activeV . As a result, a
block of vertices in activeT , chosen fromMi, can be formalized as
activeV [vavn[i]+1, vavn[i+1]]; and the size of this block can be re-
covered from avn[i+1]−avn[i]. Accordingly, in Algorithm 2, evn
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Figure 5: This example shows how the active triangles and active
vertices are organized. The colored blocks stand for the triangles
and vertices chosen from the original meshes.

and etn associate to existingV and existingT , respectively. svn
and stn associate to streamedV and streamedT , respectively.

After initialization, the algorithm first computes the complexity
lists, avn and atn. Then, the active data, activeT and activeV ,
are updated on GPU. After that, in order to generate appropriate
LOD meshes, each triangle in activeT is reformed. Finally, we
render those LOD meshes using OpenGL Vertex Buffer Objects.

5.1 LOD Selection

In our system, the task of LOD selection is to generate the adaptive
complexity lists of the original model. [Funkhouser and Séquin
1993] proposed that LOD selection for a multi-mesh model is a
discrete optimization problem. Their approach selects appropriate
levels for all potentially visible objects so that the total number of
polygons is within a given maximal count. [Wimmer and Schmal-
stieg 1998] re-evaluated the problem and provided a closed-form
expression to solve LOD selection cheaply at each frame. Our met-
ric of LOD selection takes advantage of this closed-form expression
to generate the complexity lists, which is formularized as follows:

vni = N
A

1
α
iPm

i=1A
1
α
i

(1)

In Equation 1, the vertex count, vni, stands for the vertex complex-
ity for mesh Mi. Given the maximal vertex count N and the area
Ai, vni is computed out of m meshes. Ai denotes the projected
area of the AABB of mesh Mi on image plane. The exponent, 1

α
,

aims to estimate the contributions for model perception, refer to the
benefit function detailed in [Funkhouser and Séquin 1993]. Instead
of calculating the accurate area of the projected region, we estimate
it with a bounding circle so that Ai can be computed efficiently.
N is a user-defined parameter, and can be wisely chosen in terms
of the desired frame rate or rendering quality. Using data array,
map, generated in the preprocess, the desired triangle count, tni,
is defined as map[vni].

As shown in the LOD selection step of Algorithm 2, all AABBs
are first tested for view-frustum culling. If an AABB, bi, is outside
the view frustum, the complexity for mesh Mi is set to zero. If
bi is inside, the desired vertex and triangle numbers are calculated.
For fast execution, We use CUDA CUDPP [Harris et al. 2007] to
compute Equation 1 on GPU. If the desired vertex number is less
than the number of boundary vertices, q, we set the desired vertex
number to q. It can effectively avoid “popping” effects, even though
the total number of vertices may exceeds N . Finally, we modify
the complexity lists, avn and atn, using prefix sum by applying
CUDPP on GPU.

5.2 GPU-based Streaming with Frame-to-frame Coher-
ence

After computing the complexity lists, we stream and update the
set of active data stored on GPU memory. Since the proce-
dures used for streaming active triangles and active vertices are
the same, we only elaborated the procedure for streaming active
triangles, StreamTriangles, in Algorithm 3. This procedure takes
D, existingT , streamedT and three corresponding complexity
lists as the input, and updates activeT as the output. Note that
existingT , streamedT and activeT are initially allocated on
GPU global memory, while streamedT is allocated on CPU main
memory.

Let us walk through the major steps of this procedure.The first step
in Algorithm 3 is collecting the triangles not existing in the previ-
ous frame and prepare streamedT on CPU. To do this, we check
the original meshes iteratively to find out if any triangle should be
collected from them. In each iteration, if the complexity for Mi is
increased, we should include more triangles in active triangle list
than the previous frame. Referring to Algorithm 3, it means n > 0.
Then, we collect those newly added triangles from Mi.T , and up-
date stn and streamedT accordingly. If n ≤ 0, it indicates that
the complexity for Mi is decreased or not changed; so we do not
collect any triangle, and set stn[i+ 1] equal to stn[i].

Algorithm 3 Stream Active Triangles
procedure StreamTriangles(
in D, existingT , streamedT , atn, etn, stn;
out activeT )

// Data collection on CPU
ntn[1]← 0;
for each Mi ∈ D do
n1 ← etn[i+ 1]− etn[i];
n2 ← atn[i+ 1]− atn[i];
n← n2 − n1;
if n > 0 then
stn[i+ 1]← stn[i] + n;
streamedT [tstn[i]+1, tstn[i+1]]←Mi.T [tn1+1, tn2 ];

else
stn[i+ 1]← stn[i];

end if
end for

// CPU-GPU data transfer
Transferring streamedT from CPU memory to GPU memory;

// Defragmentation on GPU
for each ti ∈ activeT in parallel do
midx← 0;
Binary searching atn to return midx for ti;
tidx← i− atn[midx];
n1 ← etn[midx+ 1]− etn[midx];
if tidx ≤ n1 then
j ← tidx+ etn[midx];
activeT.t[i]← existingT.t[j];

else
j ← tidx− n1 + stn[midx];
activeT.t[i]← streamedT.t[j];

end if
end for

In the second step, we transfer streamedT from CPU to GPU.
Because streamedT is constructed based on frame-to-frame co-
herence, we have a minimized cost of data transfer. After transfer-
ring streamedT to GPU memory, we update activeT by merg-
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Figure 6: Updating activeT by reuniting existingT and
streamedT . In this example, the complexity of M1 is decreased
so that the block of activeT for M1 is shrunk and filled only with
the corresponding block of existingT . The blocks of activeT for
M2 and M3 are extended and updated by using both existingT
and streamedT .

ing streamedT and existingT . Although blocks of memories
are released in activeT due to the decreased complexities of some
meshes, we cannot simply fill streamedT into empty “holes”. It is
because a block of triangles representing a mesh may be broken into
many blocks that are not close to each other. As a result, the essen-
tial triangle-continuity of a mesh can not be preserved in activeT .
This problem is generally known as Data Fragmentation.

To avoid the problem of data fragmentation, in the third step, we
employ a defragmentation process to update activeT in parallel.
We first determine the original mesh that the triangle, activeT.ti,
belongs to. We search the triangle complexity list, atn, and re-
turn the index of the mesh, midx. Since the order of triangles ap-
pearing in activeT is the same as the order in atn, if atn[k] <
tidx ≤ atn[k + 1], midx is equal to k. In order to search atn
efficiently, we use binary search algorithm. Then, activeT.ti is re-
placed by a triangle chosen from either existingT or streamedT .
We compute the local index of this triangle, tidx, in Mmidx. If
tidx ≤ n1, activeT.ti is replaced with a corresponding triangle in
existingT ; otherwise, it is replaced with a corresponding triangle
in streamedT . Figure 6 shows an example of how to update the
activeT .

5.3 Triangle Reformation

When activeT and activeV are ready in GPU global memory,
we reform each triangle in the array, activeT , by collapsing its
vertices to the target vertices. As shown in Algorithm 2, we per-
form this reforming process for all active triangles in parallel. We
elaborate the procedure for per-triangle reformation, ReformTrian-
gle, in Algorithm 4. As mentioned, each triangle is represented as
ti = {idx1, idx2, idx3}, where idxj(j ∈ [1, 3]) is a vertex index.
The process of reformation is collapsing a vertex vidxj to a target
vertex based on the vertex mapping array, ecol, and the vertex com-
plexity defined in avn. The first step is to determine which original
mesh the triangle, activeT.ti, belongs to. Similar to the method
used in the Defragmentation step in Algorithm 3, we conduct the
binary search in atn to find the mesh index, midx.

In the second step, we replace a vertex index, idxj , in ti with a
target index by looking up the collapse information stored in the
ecolmidx. We elaborate this process in the procedure, Collapsing,
which performs per-vertex collapsing. This procedure takes three
inputs: src vidx (the index of source vertex), vn (the desired num-
ber of vertices recovered from avn) and ecol; and it returns the in-
dex of target vertex, tar vidx. As mentioned in Section 4.2.2, the
3D model has been re-arranged based the order of edge-collapsing
in preprocess step. Thus, for a generated LOD mesh, its triangles
must be formed by the set of vertices, {v1, . . . , vvn}. According

Algorithm 4 Triangle Reformation
procedure ReformTriangle(
in activeT.ti, atn, avn, ecolList;
out activeT.ti)
midx← 0;
Binary-searching atn to return midx for activeT.ti;
ecol← ecolList.ecolmidx;
vn← avn[midx+ 1]− avn[midx];
for j = 1 to 3 do
vidx← activeTri.ti.idxj ;
Collapsing(vidx, vn, ecol, activeT.ti.idxj);

end for

procedure Collapsing(
in src vidx, vn, ecol;
out tar vidx)
tar vidx← src vidx;
while tar vidx > vn do
tar vidx← ecol[tar vidx];

end while

to this property, the procedure, Collapsing, maps src vidx to a
tar vidx while satisfying tar vidx ≤ vnum. In Figure 7, we
provide an example of how a LOD mesh is generated by using the
Collapsing procedure.

5.4 Rendering with Vertex Buffer Objects

In the last step of our rendering system, the desired LOD meshes
have been constructed in the index buffer, activeT , and vertex
buffer, activeV on GPU. In order to accelerate the rendering,
we use OpenGL vertex buffer objects (VBOs) by registering them
to the address space of activeT and activeV . In order to ef-
ficiently assign per-mesh attributes (e.g., mesh color), we render
LOD meshes sequentially with appropriate data offsets.

As mentioned in Section 5.1, the total number of vertices may ex-
ceed the user-defined maximal vertex count,N , due to the existence
of boundary vertices. If the original data contains a large number
of boundary vertices, it is possible that the active data exceeds the
maximum of GPU memory. To solve this problem, we allow a sec-
ond call to the runtime algorithm to render the extra data. However,
this solution will significantly influence the performance. If the
problem appears frequently, an optimal solution is reducing N and
construct a simpler approximation of the original 3D model.

6 Experiments and Results

In this section, we discuss the evaluation of our GPU-based real-
time rendering system, and highlight the performance advantages.

6.1 Implementation and Environment Models

We have implemented our rendering algorithm with parallel LOD
on an Intel Core i7 2.67GHz PC with 12 GB of RAM, and a Nvidia
Quadro 5000 graphics card with 2.5 GB of GDDR5 device mem-
ory. It is developed using Nvidia CUDA Toolkit v3.2, and runs on
a 64-bit Windows system. Our algorithm has been applied to two
complex 3D models. One is a Boeing 777 airplane composed of
more than 332 millions of triangles and 223 millions of vertices.
Another is a coal fired power plant composed of more than 12 mil-
lions of triangles and 6 millions of vertices (see Figure 1).

Our system is designed for very complex models with hundreds of
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Figure 8: Different 3D models rendered with different camera views. Boeing 777 model is used in images (a) and (b); power plant model is
used in images (c) and (d).

millions primitives. Boeing model requires approximately 6 GB
memory space for storage, which exceed the maximum of memory
on graphics card. As mentioned in Section 5.2, we applied a GPU-
based streaming approach to update the list of active data based
on frame-to-frame coherence. However, the power plant model, a
relatively small model, can fit into GPU memory so that the cost of
CPU-GPU data transfer can be completely eliminated.

6.2 Performance Evaluation

In our experiments, we evaluate the performance of two major con-
tributions in our rendering system: parallel progressive simplifica-
tion algorithm and GPU-based streaming with frame-to-frame co-
herence. We also provide overall system evaluation using two ex-
ample datasets under different viewing options.

6.2.1 Parallel Progressive Simplification

We test the parallel simplification algorithm on GPU and show the
result in Table 2, column Reforming. It shows that our implementa-
tion is very efficient, where 17 million triangles can be processed in
35 ms, and the algorithm is not the performance bottleneck of the
overall rendering system.

6.2.2 GPU-based Streaming

To evaluate the efficiency the GPU-base streaming approach, espe-
cially the proposed frame-to-frame coherence method, we compare
our implementation, Streaming with Coherence (SC) with two other
approaches: No Streaming (NS) and Streaming without Coherence
(SnC), which are commonly used brute-force strategies. No Stream-
ing approach sequentially copies all simplified meshes from CPU
memory space to GPU one-by-one. Streaming without Coherence
collects all simplified mesh in a continuous CPU memory block,
and then streams the entire block to GPU once. Our coherence-
based streaming approach only streams a small amount of geom-
etry data to GPU, which contributes to a significant performance
gain on GPU-based architecture.

We perform the performance comparison with two different cam-
era settings using the Boeing 777 model, as shown in Figure 8
(a) and (b). From the results shown in Table 1, our approach re-
quires much less memory transfer from CPU to GPU. With the
camera setting shown in Figure 8 (a), only 0.04% of the total
5,814,786 active triangles needs to be transferred, and only 0.042%
of the total 3,879,636 active vertices need to be transferred. With
the camera setting shown in Figure 8 (b), only 0.038% of the to-
tal 17,373,329 active triangles needs to be transferred, and only
0.0037% of the total 14,501,553 vertices need to be transferred.
Therefore, our coherence-base streaming approach achieves 1.96X
to 2.39X speedup compared with SnC approach, and 4.82X to
19.83X speedup compared with NC approach.

6.2.3 Overall System Evaluation

Our results show that we can achieve an interactive rendering rate
for both example 3D models used in our experiment: 26-212 fps for
the Power Plant model and 6-22 fps for the Boeing 777 model. In
our experiments, we have set α in Equation 1 to 3, because Wimmer
and Schmalstieg [1998] claimed that when α is equal to 3, Equation
1 produces the equivalent of Funkhouser’s benefit function [1993].

In Table 2, we illustrate the performance results using both exam-
ple 3D models and different camera settings, as shown in Figure 8
(a) (b) (c) and (d). To provide the insight analysis of our system,
we also present the breakdown of the processing time for different
steps in our rendering system, including LOD Selection, Streaming,
Triangle Reforming, and Rendering. The table shows that, when
rendering a large number of active triangles, for Boeing 777 model
and camera setting (b), a large number of triangles are streamed to
GPU, making streaming step the performance bottleneck of the sys-
tem (47.68% of total rendering time). In all experiments, rendering
step never becomes the bottleneck, even more than 10 millions of
triangles need to rendered.



Table 1: Comparison of three different streaming approaches: Streaming with Coherence (our work), Streaming without Coherence, and No
Streaming.

Camera Approaches FPS CPU CPU to GPU GPU # of Active # of Active # of Streamed # of Streamed
Setting Collection Transfer Defrag. Triangles Vertices Triangles Vertices

(a)
SC 14 13.63 ms 5.13 ms 19.68 ms 5,814,786 3,879,636 2,314 1,657

SnC 12 26.69 ms 48.82 ms N/A 5,814,786 3,879,636 5,814,786 3,879,636
NS 2 N/A 762.46 ms N/A 5,814,786 3,879,636 5,814,786 3,879,636

(b)
SC 6 15.36 ms 12.02 ms 59.64 ms 17,373,329 14,501,553 6,649 5,476

SnC 5 68.26 ms 139.82 ms N/A 17,373,329 14,501,553 17,373,329 14,501,553
NS 2 N/A 419.81 ms N/A 17,373,329 14,501,553 17,373,329 14,501,553

Table 2: Overall system performance.

Model Camera FPS Selection Streaming Reforming Rendering Number of Number of
Setting Active Triangles Active Vertices

Boeing 777 (a) 14 23.82 ms 38.44 ms 9.6 ms 4.64 ms 5,814,786 3,879,636
31.14% 50.25% 12.55% 6.07%

Boeing 777 (b) 6 19.14 ms 87.02 ms 35.05 ms 35.05 ms 17,377,329 14,501,553
10.49% 47.68% 19.21% 22.62%

Power Plant (c) 110 4.79 ms N/A 1.75 ms 2.86 ms 451,355 244,699
50.96% 18.62% 30.43%

Power Plant (d) 39 6.46 ms N/A 15.23 ms 3.81 ms 2,790,689 1,314,593
25.33% 59.73% 14.94%

7 Conclusion and Future Work

We presented a novel approach for visualizing complex models on
GPU at interactive rates, especially focusing on LOD-based mesh
simplification. In our system, the input models are re-arranged into
a novel data structure in pre-process step, which enable a parallel
triangle processing algorithm for real-time mesh simplification. At
runtime, the mesh simplification algorithm processes hundreds of
millions of triangles in parallel based on a LOD selection criterion.
Since only a fraction of original data is used for final rendering,
we propose a GPU-based streaming approach by employing frame-
to-frame coherence. In our streaming approach, we also develop a
defragmentation method to managing the data continuity on GPU,
so that the data can be efficiently rendered using OpenGL.

Limitations. Our approach assumes high temporal coherence be-
tween frames. If the camera is changed dramatically from one
frame to the next, the amount of the streamed data collected based
on frame difference could be increased significantly. As a result,
it may lead to a noticeable performance lost. Another limitation of
our system is that we require the entire 3D model can fit into the
CPU main memory.

Future works. There are several future works that can strengthen
our system. First, our approach can be extended to render large
single-mesh models. Using a spatial partitioning structure, such as
K-D tree, each partition can be preprocessed as a separated mesh,
then rendered with our GPU-based runtime algorithm. Second,
LOD selection metric is an important factor for managing active
data and preserving visual fidelity. We would like to explore and
analyze other metrics applicable for rendering massive and com-
plex models. Third, in our runtime algorithm, we keep the data
from the previous frame on GPU so that we can update the active
data efficiently. However, it is not the best method for optimizing
memory usage. In the future, we would like to explore some in-
place algorithms for active data updating.
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