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ABSTRACT 
Geographic feature expansion is a common task in Geographic 
Information Systems (GIS). Identifying and integrating 
geographic features is a challenging task since many of their 
spatial and non-spatial properties are described in different 
sources. We tackle this expansion problem by defining semantic 
footprints as a measure of similarity among features. 
Furthermore, we propose three quantifiers of semantic similarity: 
spatial, dimensional, and ontological affinity. We show how these 
measures dilute, concentrate, harden, or concede the feature 
space, and provide useful insights into the semantic relationships 
of the spatial entities.  Experiments demonstrate the effectiveness 
of our approach in semantically associating the most appropriate 
spatial features.  

1. INTRODUCTION 
Geospatial web services as well as Geographic Information 
Systems (GIS) commonly exchange data for a multitude of 
application domains from real estate to marketing. For these 
systems, one major challenge has been interoperability: the 
capacity for understanding different data sources in spite of 
syntactic and semantic differences in language. Several 
organizations have attempted to mitigate this problem with 
standardized specifications. The Open Geospatial Consortium 
(OGC), for instance, has proposed a set of frameworks in an 
attempt to bring uniformity to spatial data processing [8]. In 
general, these frameworks use standard grammars such as 
Extensible Markup Language (XML) for data transport. Google 
and Yahoo! often use KML (Keyhole Markup Language) in their 
mapping APIs. Government agencies often use Geography 
Markup Language (GML) for data exchange [12]. One advantage 
of XML is its hierarchical structure which helps define 
relationships among entities. As a consequence, it also lends itself 
well to object orientation that is so prevalent in modern 
computing.  

Consider the two GML examples depicted in Figure 1: Data 
Source 1 describes a geometryProperty named Leon Dept of 
Housing, whereas Data Source 2 describes another geometric 
object called Hope Apartments. What is the relationship between 
these two geographic features/objects? A quick look at their 
attributes provides some hints: they are within close proximity of 
each other (lines 1-3), both are urban structures (line 6), and one 
object occupies similar but less area than the other (lines 7-9). 
Based on these observations, the following possibilities arise: (1) 
Hope Apartments is part of the Leon Dept of Housing; (2) They 
are indeed the same since Leon Dept of Housing was renamed 
Hope Apartments and moved across the street from its original 

location into a smaller facility; (3) They are two independent 
facilities that are coincidentally co-located. Without further 
contextual considerations, only domain experts can make a 
complete and necessary determination of the nature of relationship 
between these two geographic features.  

 
Figure 1 – Example GML Data Sources 

The discussion above illustrates the challenges in reasoning on 
disparate data sets. Work in this field of research proposes a wide 
variety of approaches to handle data disparity: value comparisons, 
word distances, disambiguation, look-ups on gazetteers, and 
others [24,25]. While some of these approaches have been 
successful to some extent, they often introduce a high level of 
complexity in semantic processing. Our work aims to reduce this 
complexity by proposing a semantic framework which exploits 
spatial relationships built into the geographic features. The 
framework will help elicit hidden and useful semantic information 
about the geographic features and their neighbors. Our goal is not 
only to determine possible matches, but also to determine whether 
geographic features can be deemed complementary (or irrelevant) 
to one another. We would like to determine if Leon Dept of 
Housing and Hope Apartments are the same building or just 
similar facilities.  We are also interested in measuring their 
physical proximity and then combine their associated descriptions 
so that a higher authority (i.e., the domain expert) may make a 
final decision based on his/her own constraints.  

We propose a method of semantic footprints based on the three 
relational concepts: the spatial affinity within the data space; the 
dimensional affinity within the XML hierarchy; and the 
ontological similarity based on the feature’s class label. In 
addition, we describe an approach that utilizes the above measures 
to associate and link disparate geographic features. Because the 
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number of geographic features is potentially large, we devise the 
concepts of dilution, hardness, concentration, and concession as a 
means to efficiently and effectively perform semantic analysis on 
the data. These concepts provide criteria to evaluate the ongoing 
progress of our analysis and help answer the following questions: 
are geographic features/objects being found in close proximity to 
the initial geographic feature query? If so, do these geographic 
features add sufficient relevant information to the initial 
geographic feature query? If the user is initially seeking only k 
number of features, then are the current ones sufficiently relevant 
or should the process continue to search for others that may be 
more relevant? Our motivation relates to tools and technologies 
that rely on hierarchically semi-structured data (e.g., XML, GML, 
and KML), have strong syntactic capabilities, but lack semantic 
support for data processing, and can exploit semantic footprints as 
an auxiliary tool to enhance semantic alignment.  

This paper is organized as follows: In Section 2, we give related 
approaches to feature reconciliation and object matching. Section 
3 gives the general problem statement, expands on our theoretical 
approach to Semantic Footprints, and elaborates on a semantic 
analysis approach. Experiments are described in Section 4 and 
conclusion is provided in Section 5.      

2. RELATED WORK 
Early research on spatial entities is related to the works of GIS. 
With the support of organizations such as the OGC, standards 
have been established for the management of geographic features 
[8] using common communication protocols (e.g., HTTP) and 
XML-based encodings (e.g., GML). With the advent of geospatial 
portals (e.g., Google Maps, Yahoo! Maps), geographic features 
have taken on increased popularity. Traditionally, geographic 
feature matching and expansion have been primarily utilized in 
spatial indexing methods for database systems. The use of spatial 
indices is abundant in this area as exemplified in [1, 5, 10]. 
However, our work does not focus on spatial indices but rather 
emphasize on the development of an approach that will enhance 
the extraction, processing, and analysis of semantic information in 
spatial data. Other aspects such as data quality and composability 
of grammars are described in [16, 17]. Current literature in 
semantic information processing can be classified into one of the 
following categories: 

Schema Matching: Rahm et al. proposed the decomposition of 
complex schemas into simpler sets [2,14]. Doan et al. used a set 
of semantic mappings to learn other mappings using machine 
learning techniques [7]. Islam et al. proposed a method to 
determine the semantic similarity of words and another for word 
segmentation [4]. Schema matching becomes challenging when 
many schemas are involved. In addition, it often only works with 
textual elements which makes spatial processing inefficient and/or 
impractical. We depart from the above works by considering the 
spatial characteristics of objects, which is not in the scope of any 
of the aforementioned works.  

Object Consolidation: The difficulty of combining objects 
described in different sources is addressed by Beeri et al [11]. 
They extend the one-sided nearest neighbor join into mutually 
nearest neighbors. As described by Bleiholder et al., data fusion 
can also be performed at a query language level [13]. Instead of 
relying on schema information, objects are considered for their 
attribute values rather than attribute types. Seghal et al. proposed 
entity resolution primarily as a function of locations [15]. The 
spatial component is deemed similar when their distance meets a 

certain threshold. We differ from these approaches by extending 
our work beyond object fusion and propose methods to evaluate 
semantic relationships within the attribute and ontological spaces. 
An example output of our method includes determination of 
geographic features that are complementary within an application 
domain. 

Ensemble Reasoning: This class of techniques combines 
characteristics of both schema matching and object consolidation 
to provide semantic analysis. They tend to be more effective in 
applications in which prior knowledge of the schemas is available. 
Fazzinga et al. proposed a query language to  combine partial 
answers from different sources on the basis of limited knowledge 
about the local schemas in XML documents [3]. Leitao et al. 
proposed a method to detect duplicate objects in XML data using 
Bayesian networks [6]. A schema matching approach, Protoplasm, 
is an aggregation of several existing methods to reconcile named 
entities [9]. Unlike our proposed framework, these studies do not 
consider the spatial component of an object and rely primarily on 
non-spatial textual content. 

 
Table 1 – Summary of Semantic Information Processing 

Approaches 
 

Table 1 provides a summarized view of the literature in   semantic 
feature analysis. The last row gives a snapshot of how our work 
differs from existing approaches. Our proposed framework is 
unique in several ways. First , we take a qualitative view of 
feature expansion by avoiding explicit comparisons on data 
values. Second, we extend the notion of spatial co-location to 
include the most semantically relevant nearby features which are 
not necessarily the closest in geographic space. For example, if a 
source describes several buildings and water bodies, nearby 
houses are possibly more relevant to a query originating from a 
house than a water body. Third , our framework is oriented 
towards data sources of similar application domains. As an 
illustration, consider the marketing realm. In its context, nearby 
stores and malls would most likely provide more relevant 
information than, for instance, weather data. We propose spatial 
proximity, dimensional affinity, and ontological similarity to 
improve the efficiency of our semantic analysis by limiting the 
number of geographic features or objects under consideration.    

3. PROBLEM DEFINITION OF SPATIAL 
FEATURE EXPANSION 
The nomenclature below formalizes the spatial feature expansion 
problem. 

Given:  



• Set D = {d1,…,di,,…,dn}  where di is a semi-structured 
hierarchical data source (e.g., GML file). 

• Geographic feature set fgeo (di) = {g1,…,gj,,…,gm} where the gj’s 
are all the geographic features or objects of data source di and 
m = |di| is the number of geographic features in di. 

• Set G = Ui=1...n fgeo (di). The set G is the union of all geographic 
features in all data sources d1…dn. 

• Attribute set fatt (gj) = {a1,…,ak,,…,aq} where the ak‘s are all 
element/attribute types of the geographic feature gj. 

 

Objectives: 

I. From a starting geographic feature gs (initial query), find the set 
Gclose(gs) = {g j | gj,ϵ G and dualÅff (gs , gj) ≥  ξclose} where 
dualÅff  is a measure of the degree of spatial closeness and  
ξclose is a user-defined threshold. 

II. From a starting geographic feature gs, find the set   Gdim(gs ) = 
{gj  |  gj,ϵ  Gclose(gs) and dimÅff (gs , gj) ≥  ξdim} where Gdim is a 
measure of attribute similarity and ξdim is a threshold based on 
the ranking order of dimÅff (gs , gj). 

III.  From a starting geographic feature gs, find the set Gont (gs )= {g j  

|  gj,ϵ  Gclose(gs)  and ontÅff (gs , gj) ≥  ξont} where Gont is a 
measure of ontological similarity and ξont is a threshold based 
on the ranking order of ontÅff (gs , gj). 

IV. From a starting geographic feature gs, find an ordered set 
Gfinal(gs)= {g j  |  gj,ϵ  Gclose(gs) and (i < j → Semφ (gs , gi) ≥ 
Semφ (gs , gj) } where Semφ  is a measure of similarity based on 
dimÅff  and ontÅff.     

3.1 Concept of Semantic Footprints 
Hierarchical structures encapsulate a rich set of relationships not 
always visible to the naked eye. Names do not always match, 
locations are ambiguous, and characteristics may range wildly. 
These differences arise because data is affected by many factors, 
such as external noise, human subjectivity, and un-calibrated 
measuring tools. While some systems attempt to match features 
by introspecting their properties [18], we avoid exhaustive 
attribute comparisons as they tend to increase computational 
complexity when many geographic features are present. To 
establish an efficient and effective representation of semantic 
relationships, we define semantic footprints and their components 
in the subsections below. 

3.2 Spatial Affinity within the Data Space 
Geographic features are commonly described in terms of their 
locations and hence, we give our first definition for describing 
spatial closeness:  

Definition 1: Geographic feature gi is said to be locally-fit (LF) in 
data source di if its minimum bounding rectangle (MBR) is 
explicitly provided in the data source. 

For example, given five locally-fit geographic features g1…g5 

residing in data sources d1…d5, respectively, we investigate 
whether g1, the starting query feature, has any spatial significance 
to g2…g5. We give the spatial significance, namely dual affinity, 
by: 

( ) ( )
( ) ( )jiji

jiji
j ,ggMinDist,ggMaxDist

,ggMinDist,ggDist
 - ggDualÅff

−
−

=1),( i
(Eq. 1) 

Assuming that the geographic features gi and gj share a common 
coordinate system, Equation 1 defines dual affinity as the degree 
of spatial closeness between the features. The Dist function can be 

generalized to any appropriate spatial distance, for example, we 
often consider the geodesic distance for latitudinal and 
longitudinal coordinates. Other distances such as Euclidean or 
Manhattan distances can also be used. Furthermore, the choice of 
locations of spatial extents can be approximated by its centroid, 
which is an acceptable approach in many types of application. For 
example, Dist(gi, gj) may use the centroids of gi‘s and gj‘s MBRs 
as their representative locations. The functions MinDist and 
MaxDist represent the shortest and longest possible distances 
between two geographic features respectively.  

 
Figure 2 – MinDist and MaxDist for Two MBRs 

 
For example, in Figure 2 the geographic features are described by 
their MBRs, therefore the MaxDist between any two objects is the 
length of the segment AB and MinDist is zero since the MBRs 
overlap. From a spatial point of view, two features have maximal 
affinity when their locations are the same, i.e., dualÅff=1. Hence, 

to achieve Objective I, Gclose(gs) can be determined by collecting 
all features whose dualÅff  is higher than a given ξclose.   
 
We build upon DualÅff to define the spatial footprint of a 
geographic feature:  
   
Definition 2: The footprint φ of a geographic feature gs is given by 

the set of all attributes of all geographic features in Gclose(gs). 

( ) ( )( )U |)(|..1
 

sclose
gi iatts G

gfg
=

=ϕ  where gi  ϵ Gclose(gs)       (Eq. 2) 

The footprint represents the maximal collection of attributes types 

within the set of Gclose(gs). This maximal set will impose a bound 
on the computational complexity of the proceeding semantic 
operations. 

3.3 Dimensional Affinity in the Data Space 
One attractive aspect of XML is its ability to define class relation 
in a hierarchical fashion. This idea gives rise to dimensional 
affinity and applies to all geographic features, whether they are 
locally-fit or do not have an explicit location. In these cases, we 
observe the dimensions of the feature (its attributes/elements), 
while relying on the location of its parent. In Figures 3 and 4, the 
five features (the circles) are within some MBR not of their own, 
indicated by the encompassing squares covering an area larger 
than the features themselves. In Figure 3, only the location of the 
parent is available (locally-displaced feature), and Figure 4 has no 
location but the bounds of the data set (globally-displaced). While 
these two cases do not have an explicit location, they can still be 
useful to establish a semantic footprint. Dimensional affinity gives 
the ability to measure how similar two geographic features are in 
relation to their elements and attributes. 

 
Figure 3 – A set of 5 locally-displaced features in 5 data sets 



 
Figure 4 – A set of 5 globally-displaced features in 5 data sets 

We define dimensional affinity as follows: 
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         (Eq. 3) 

where gs, gk ϵ Gclose(gs). 

DimÅff gives the ratio of common attributes between two 
geographic features, gs and gk, in relation to its total number of 
attributes, i.e., its footprint. Hence, the dimensional affinity is 

dependent upon the spatial proximity of features in Gclose(gs) and 
what attribute types they share in common. If Leon and Stellar 
together have 22 attributes, but only 5 in common, then 
DimÅff(Leon,Stellar) = 5/22= 0.23 and if the ξdim, is met, the 
geographic features can later be utilized in the analysis of the 
complete semantic footprint. Objective II is then achieved by 

forming Gdim(gs ) as the sorted set of all geographic features with 
dimensional affinity  ≥ ξdim. 

3.4 Ontological Class Affinity 
Ontologies represent a classification scheme to group similar 
objects and are commonly used in a wide range of fields, from 
medicine  to the data sciences [19,20]. Given this as a motivation, 
we show a method to compute the hierarchical ontological 
distance among features as the third component of our semantic 
footprint. We define the class distance between two nodes in a 
common hierarchical ontology as follows [23]:  

Class_d(gs,gk)  = d(LCA(gs, gk), gs) + d(LCA(gs, gk), gs)     (Eq. 4)  
 

where d(gi, gj) is the edge length between the classes of gi and gj  
and LCA(gi, gj) is the Lowest Common Ancestor defined as the 
farthest node from the root that is the most immediate ancestor of 
both gi and gj. 

From the class distance measure above, we define the ontological 
class affinity OntÅff as follows: 

Definition 3:  The ontological class affinity  OntÅff(gs, gk)  is the 
degree of similarity between the classes of gs and gk from a 
common hierarchical ontology:  

���Å����� , �
� � 
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Hence, if geographic features gs and gk are of the same class, 
OntÅff(gs,gk) = 1. For example, if Leon is classified as an 
“apartment” and Stellar is a “house”, assuming these two classes 

are two hops apart in the ontology, then their ���Å�� � 
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0.333. Objective III can then be achieved by creating Gont (gs ) as 
the sorted set of all geographic features with ontological class 
affinity ≥ ξont.  

One goal of this study is to maintain the total number of threshold 
parameters to a minimum under the assumption that spatial, 
dimensional, and ontological affinities are jointly independent. 
Our framework minimally maintains only one threshold for each 
of the components of the semantic footprint (DualÅff, DimÅff, and 
OntÅff). Although we assume joint independence amongst these 
components, existence of correlations does not affect the 

effectiveness of our semantic measures. In fact, potential 
correlations between these components can be discovered and 
further explored via our proposed semantic analysis process 
discussed in the proceeding Section 3.5.  

Fusing Dual Affinity, Dimensional Affinity, and Ont ological 
Class Affinity 

Combining the measures of OntÅff and DimÅff, we propose 
semantic footprint Semφ as a total measure of the semantic 
similarity between two geographic features of Gclose(gs). Formally, 
semantic footprint Semφ is defined as follows: 

Definition 4:  The semantic footprint between two geographic 
features gs and gk is given by: 

������� , �
� �  !"Å##���,����$%&Å##���,���
�         (Eq. 6)    

 

Because OntÅff and DimÅff apply to elements of Gclose, Semφ 
inherits the spatial similarity constraint (via DualÅff) of the 
geographic features. Hence, Semφ provides a similarity measure 
between geographic features based on spatial, dimensional, and 
ontological affinities. 

From our example in Figure 1, the semantic footprint between 
Leon and Stellar is Semφ(Leon,Stellar)= (0.23 + .33)/2 = 0.28. 
Equation 6 helps us achieve Objective IV by establishing a 
ranking criterion for Gfinal (gs) as the set of all geographic features 
starting from gs. 

3.5 Complexity Analysis 
This section provides an analysis of the costs for computing the 
terminal set of geographic features in Gfinal (gs) for a given 
geographic feature query gs. The total cost for generating the set 
Gfinal (gs) is: 

(Eq. 7) 

'()� *+#!%������, � '()�-+.�/�0����1 2 '()�-+�!"����1
2 '()�-+/%&����1 

Assuming that no spatial indexing has been applied to the 
geographic feature set G, the cost for generating Gclose(gs) is:  

(Eq. 8) 

'()�-+.�/�0����1 � |+| 4 56)�'789_'()� � ��|+|� 

where DistCalc_Cost is the cost of calculating the distance 
between two features. The distance calculation is a constant time 
operation. 

To obtain Gdim(gs), the footprint is generated and the set intersect 
operation is performed between gs and all other geographic 
features in Gclose(gs). The set intersect operation is implemented 
using a hash table which gives a linear time cost. The total cost for 
computing the set Gdim(gs) is thus: 

(Eq. 9) 
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� *|+.�/�0����| 4 A7B!;
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��|+.�/�0����| 4 |�����|�  
where φ(gs) is the footprint. 

The set Gont (gs) is obtained by performing ontological class 
distance calculations between gs and all other geographic features 
in Gclose(gs). A lookup table of the class IDs which link to the class 



nodes in the ontology allows for O(1) search time for a given 
geographic feature class. Once the pair of nodes is found in the 
ontology graph, the Lowest Common Ancestor (LCA) can be 
determined in time linear to the ontology level size by traversing 
to the root node and obtaining the longest common node sequence 
between the two geographic feature classes. The following 
provides the total cost of generating Gont (gs): 

(Eq. 10) 
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where Ontls is the level size of the ontology. 

Hence, the total cost of generating Gfinal (gs) is: 

(Eq. 11) 
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3.6 Progressive Dilution, Hardness, 
Concentration, and Concession 
Traversing data sources in search of related features is an ongoing 
process for which no halting point is clearly defined.  Using the 
concepts of our approach, we present a systematic method to 
evaluate the progression of the relevant features from a starting 
geographic feature gs as more geographic features g1… gm become 
available for processing. The goal is to observe the changes in 
semantic footprint as more geographic features are analyzed, and 
determine to which extent DimÅff and OntÅff are contributing to 
the semantic footprint Semφ. For this purpose, we present four 
definitions also referred to as density sets: 

Definition 5: The set Gdilution(gs) = {g j | gj,ϵ  Gclose(gs) and 
DimÅff(gs,gj) ≤  tdim and Semφ(gs,gj) ≥  ξsem}, where ξsem is a user-
defined threshold for high semantic footprint and tdim is a user-
defined threshold that establishes a low level for dimensional 
affinity.  

Dilution  is the set of features with high semantic footprint, but 
low dimensional affinity. It is indicative of features that do not 
share many attributes in common.  In such cases, a high Semφ is 
mostly dependent on OntÅff, the second component of the 
semantic measure. 

Definition 6: The set Ghardness(gs) = {g j | gj,ϵ  Gclose(gs) and 
OntÅff(gs,gj) ≤  tont and Semφ(gs,gj) ≥  ξsem}, where ξsem is a user-
defined threshold for high semantic footprint and tdim is a user-
defined  threshold that establishes a low level for ontological 
affinity.  

Hardness defines a set of features with high semantic footprint, 
but low ontological affinity. When the features are not similarly-
typed (i.e., far in the ontological classification), a high Semφ must 
rely primarily on DimÅff.  

Definition 7: The set Gconcentration(gs) = {g j | gj,ϵ Gclose(gs) and 
DimÅff(gs,gj) > tdim and OntÅff(gs,gj) > tont and Semφ(gs,gj) ≥  
ξsem}, where ξsem is a user-defined threshold for high semantic 
footprint and tdim, tont are thresholds for minimum values of  for 
dimensional and ontological affinities respectively. 

Concentration is the set of features that yield a high semantic 
footprint from both a high number of shared attributes and close 
ontological proximity. It balances a mix of geographic features 
that are not only similar in attribute commonality, but also similar 
in attribute types. 

Definition 8: The set Gconcession(gs) = {g j | gj,ϵ Gclose(gs) and gj C 
(Gconcentration(gs )  U  Gdilution(gs )  U  Ghardness(gs ))  

Concession is the set of features that cannot be classified as any 
of the types in Definitions 5-7. Practically, they represent 
geographic features with low affinity in general, both 
dimensional, ontological, and as a consequence, have a low 
semantic footprint. 

 
Figure 5 – A Hypothetical Snapshot of Dilution, Hardness, 

Concentration, and Concession 

Figure 5 illustrates the progression graph of a hypothetical 
geographic feature traversal.  The H-set shows an area of hardness 
composed of five features with high semantic footprint, but low 
ontological affinity.  Dilution can be seen at the D-set where 
dimensional affinity is low. In this case, the high semantic 
footprint can be explained from the high ontological affinity.  The 
concentration set C shows features with both high dimensional 
and ontological affinity, whereas all other cases fall under the 
concession Ccs-set. A concentration set (C) is possibly a richer 
source of information that can enhance the starting geographic 
feature more so than D or H. 

Thresholds tont , tdim, and ξsem can be manipulated to accommodate 
the application requirements.  For instance, if dimensional affinity 
(i.e., common attributes) is more desirable than type matching 
(i.e., ontological proximity), the application should explore a 
hardness set (and vice-versa for a dilution set).  When both factors 
are important, a concentration set provides a more suitable mix. It 
is also possible to provide an initial and automatic determination 
of tont , tdim, and ξsem by using the centroid of the semantic 
footprints of the geographic features in Gfinal. The automatically 
generated thresholds can serve as the starting point for which 
further adjustments can be made as the analysis progresses. The 
thresholds tont , tdim, and ξsem can be obtained as follows for a given 
starting geographic feature query gs: 

    (Eqs. 12) 
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Similarly, the medoid of the semantic footprints can also be used 
in lieu of the centroid. Employing the medoid can provide a more 
robust threshold set as it less sensitive to any outliers that may 
exist in Gfinal.  

 
Algorithm 1 shows a method that uses Definitions 5,6,7, and 8. 
First, the semantic components are calculated in Lines 3 and 4, 
and combined as the total semantic footprint in Line 5.  Lines 6-
12 apply simple logic to determine if the current geographic 
feature falls under dilution, hardness, concentration, or 
concession. Each feature is stored into its appropriate set for later 
examination.  

4. EXPERIMENTS 
Given a starting geographic feature, our goal is to find other 
related features within one or more data sources. Our datasets are 
composed of features of the cities of Frankfurt, Leverkusen, and 
Konigswinter [21]. For the ontology, we used NASA’s SWEET 
[22], which we extended with urban structure concepts of home, 
apartment, hotel, building, warehouse, and construction.  

Our first step is to extract features from the first available data 
source and calculate their semantic footprint (DualÅff, DimÅff, 
OntÅff). Subsequently, regions of dilution, hardness, 
concentration, and concession can be identified, allowing their 
respective sets to be populated according to Algorithm 1. 

In terms of measurement, we are interested in: (a) obtaining 
Gfinal(gs) when different parameters  are considered; (b) 
identifying sets of dilution, hardness,  concentration, and 
concession related to the starting geographic feature. 

 

Table 2 – Evaluation Queries 

Table 2 summarizes three representative queries selected from the 
experiments. We desire to find features located within ξclose =100 
km of the starting geographic feature (gs=Geb537) that are 
considered “most related” in terms of their semantic footprint. The 
features in this data set have anywhere from 12 to 40 attributes (or 
elements) and have a variation of labels in the ontology (e.g., 
house, apartment, construction, warehouse, etc…). 

High Overall Semantic Footprint (Semφ) 
Query I sets the starting geographic feature at Geb537 with 30 
total attributes, and labeled as a “house”. For the target features, 
the number of shared attributes varies considerably from 5 to 30. 
The ontological distance varies from zero hops (i.e., Class_d) for 
one feature and all the way to 25 for others. Figure 6 gives a 
visual representation of the top 10 elements in Gfinal(Geb537) with 
arrows pointing in the direction of the 10 geographic features and 
labels for the semantic footprint values. Interestingly, the most 
related geographic features are not necessarily the closest ones. In 
fact, Figure 6 shows that even though Geb537 is surrounded by 
nearby buildings, its footprint is composed of several farther away 
buildings. Figure 7 shows all geographic features as indicate by 
the id field of Table 3. 
 

 
Figure 6 – Top 10 Highest Semantic Footprint Features 

related to Geb537 
 

Figure 7 – Features Related to gs=Geb537 According to Table 3 

High Dimensional Affinity (DimÅff) 
Query II targets a more regular data set. We keep the same 
geographic starting point considering 20 total attributes. Of those, 
10 are shared across all features. This configuration has the effect 
of setting an equal dimensional affinity across the data set (not 
shown). The ontological distance, however, can be fairly large. 
Elements are as close as one hop apart in the ontological 
hierarchy, and as far as 29 hops away. Figure 6 shows the top 10 
most related elements, most of which have high dimensional 
affinity. In this scenario, the ontological affinity provides at best a 
low contribution to the semantic footprint.  

High Ontological Affinity ( OntÅff) 
Still using Geb537 as gs , Query III operates on features that share 
many attributes (i.e., high dimensional affinity on 18 shared 
attributes). The ontological distance, in addition, is low for most 
elements, varying from 10 to 38 hops. While ontological affinity 
is very low, the semantic footprint remains somewhat constant at 
~ 0.6 since dimensional affinity is the same across the data set. 
Since all features are described with similar attributes, it can be 
inferred that such data set most likely originated from the same 



provider using the same geographic standards. This is a real-world 
scenario, albeit possibly less common than Query I, where GIS 
often deal with a high variety of data descriptions from disparate 
sources.  

 
Table 3 – Data results for Query I 

Dilution, Hardness, Concentration, and Concession Sets 
Using Algorithm 1, we generate Table 4 to list how variations in 
DimÅff and OntÅff create sets of dilution, hardness, concentration, 
and concession.  We set both tdim and tont  at 0.3 to designate our 
minimum cutoff requirements for dimensional and ontological 
affinity. If the domain expert has a strict demand for both attribute 
and type similarity, Table 4 identifies four features in 
Gconcentration(Geb537) that are comprised of those characteristics. The  
10 features in Gdilution(Geb537) group elements with high 
ontological/low dimensional affinity, whereas the 7 features in  
Ghardness(Geb537) provide the converse. Figure 8 gives a plot of the 
geographic features in Table 3 (only a subset of the geographic 
features are shown). The three cases above underscore the 
importance of exploratory tasks in semantic data analysis. 
Understanding how features compare with and complement one 
another promote good information extraction and knowledge 
discovery. 
 

 
Table 4 – Feature sets in Gdim(gs) and Gont(gs) 

Discussion 
From a mathematical perspective, semantic footprint is a measure 
of similarity between two geographic features. But in practice, we 
would like to understand its qualitative aspect, i.e., how similar 
the features are or how related they may be according to their 
natural characteristics.  Looking closer at Query I and according 
to Geb537’s semantic footprint, its most related element is 
Geb855: they share many attributes (Table 3 row 1) in addition to 
being the same type of feature in the ontology (“houses”). For 

example, their shared attributes include appearance, rgbTexture, 
image, ambientIntensity, and diffuseColor, among others. Other 
geographic features in Table 3 lack some of those attributes, such 
as image and texture, which are not populated consistently. This 
scenario depicts an ideal case where semantic footprint is high 
from both a dimensional and an ontological perspective. As the 
number of shared elements decreases, so does the dimensional 
affinity values. Rows 2-5 still maintain a high semantic footprint 
due to the fairly high dimensional affinity. Row 7 (Geb645) finds 
a feature much farther in the ontological space (Class_d=25), 
causing the semantic footprint to drop as compared to the previous 
5. These results force the semantic footprint to fluctuate as 
expected and demonstrate that semantic footprint is as an effective 
measure of relatedness. 
 
For geographic features with far-apart types, the behavior of the 
semantic footprint can have a different connotation. For instance, 
looking into Geb537 and Geb645, the ontology indicates they are 
25 hops apart. The traversal path goes through “house�private 
residence�living Space�…,…� construction� building� 
private � warehouse”. The framework punishes the relationship 
between these two elements as possibly “unrelated” due to the 
different nature between house and warehouse. In spite of that, the 
semantic footprint is still kept high to reward their high number of 
shared attributes. The implication of this behavior reflects 
possible real-life scenarios whether the domain expert is looking 
for a house-house or a house-warehouse correlation. The semantic 
footprint is flexible enough to allow these adjustments to occur 
without dismissing one or the other as unrelated. 
 

 
Figure 8 – Sets of Concentration, Dilution, Hardness, and  

Concession 
 
In terms of density sets, the framework provides interesting 
insights. First, geographic features originating in the same data set 
tend to be highly concentrated, i.e., their semantic footprint is 
fairly balanced from both an attribute and ontology perspective. 
While this is not exactly surprising, variations in application 
domain often give rise to diluted and hardened sets even when the 
sources are the same or different, but from the same provider. We 
observed this behavior after processing geographic features 
(buildings in general) from Koenigswinter and Leverkusen. Some 
of the data sources come in different levels of detail which are 
hard to compare due to the differences in attributes, but are 



common in CityGML format. In addition, attempts to relate 
applications of different domains (e.g., marketing and health) may 
easily yield concession sets, where the semantic footprint suffers 
significantly from a lack of common attributes and the fact that 
the same ontology may not always be the same for each source. In 
our study, we do not propose ontology merging or 
disambiguation, as it is outside of our scope. However, our 
framework still operates correctly by placing a lower premium on 
geographic features for which no common ontology is applied. 

5. CONCLUSION 
In this study, we approach spatial data analysis from an 
exploratory perspective. Our work proposes semantic footprints as 
a framework for geographic feature expansion based on three 
concepts: spatial, dimensional, and ontological affinity. Together 
these concepts reason over attributes and types to uncover the 
most related geographic features to a starting point. In addition, 
they show the dilution, concentration, hardness, and concession of 
the feature space.  Experiments on real data sets demonstrate how 
semantic footprints provide useful insight into data sources and 
the adequacy of ontological techniques for spatial applications.  
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