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ABSTRACT

Geographic feature expansion is a common task ing@&ephic
Information Systems (GIS). Identifying and inteipgt
geographic features is a challenging task since ynah their
spatial and non-spatial properties are described different
sources. We tackle this expansion problem by aefisemantic
footprints as a measure of similarity among feadure
Furthermore, we propose three quantifiers of semasimmilarity:
spatial, dimensional, and ontological affinity. \8lgow how these
measures dilute, concentrate, harden, or concede féature
space, and provide useful insights into the sernartationships
of the spatial entities. Experiments demonstratedffectiveness
of our approach in semantically associating the nagpropriate
spatial features.

1. INTRODUCTION

Geospatial web services as well as Geographic rrdtion
Systems (GIS) commonly exchange data for a muéitud
application domains from real estate to marketirgr these
systems, one major challenge has been interopiéyabihe
capacity for understanding different data souraesspite of
syntactic and semantic differences in language. eBév
organizations have attempted to mitigate this pmoblwith
standardized specifications. The Open Geospatiais@tum
(OGQC), for instance, has proposed a set of framlesvam an
attempt to bring uniformity to spatial data prodegs[8]. In
general, these frameworks use standard grammark asc
Extensible Markup Languag@ML) for data transport. Google
and Yahoo! often use KML (Keyhole Markup Languamejheir
mapping APIs. Government agencies often use Gebygrap
Markup Language (GML) for data exchange [12]. Odeaatage
of XML is its hierarchical structure which helps fide
relationships among entities. As a consequenedsdtlends itself
well to object orientation that is so prevalent modern
computing.

Consider the two GML examples depicted in FigureDhta
Source ldescribes ageometryPropertynamed Leon Dept of
Housing whereasData Source 2describes another geometric
object calledHope ApartmentsWhat is the relationship between
these two geographic features/objects? A quick labktheir
attributes provides some hints: they are withirselproximity of
each other (lines 1-3), both are urban structumes 6), and one
object occupies similar but less area than theraoffirees 7-9).
Based on these observations, the following po#sdsilarise: (1)
Hope Apartmentss part of theLeon Dept of Housing(2) They
are indeed the same sinteon Dept of Housingvas renamed
Hope Apartmentand moved across the street from its original
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location into a smaller facility; (3) They are twndependent
facilities that are coincidentally co-located. With further
contextual considerations, only domain experts caake a
complete and necessary determination of the nafunaationship
between these two geographic features.

Data Source 1 Data Source 2

1 <gml:coordinates> <gml:coordinates> 1
2 -56.3159, -56.3101, >
3 52.5168 52.5199 3
2 </gml:coordinates> </gml:coordinates> 2
</gml:Point> </gml:Point>
5 </ogr:geometryProperty > </ogr:geometryProperty > 5
6 <ogr:building> <ogr:building> 6
7 <ogr:AREA > <ogr:AREA > 7
8 5.000 3.932 8
9 </ogr:AREA > </ogr:AREA > 9
10 <ogr:PERIMETER> <ogr:PERIMET ER> 10
11 25.010 22.882 11
</ogr:PERIMET ER > </ogr:PERIMET ER >
12 <ogr:NAME> <ogr:NAME> 12
13 Leon Dept of Housing Hope Apartments 13
14 </ogr:NAME> </ogr:NAME> 14
15 <ont:living space/> <ont:apartment/> 15
16 <ogr:LAT> <ogr:LAT> 16
17 543831 523300 17
</ogr:LAT> </ogr:LAT>
18 <ogr:LONG> <ogr:LONG> 18
19 56100 52449 19

Figure 1 — Example GML Data Sources

The discussion above illustrates the challenges#asoning on
disparate data sets. Work in this field of resegnaiposes a wide
variety of approaches to handle data disparityuez@omparisons,
word distances, disambiguation, look-ups on gaeetteand
others [24,25]. While some of these approaches hasen
successful to some extent, they often introducegh hevel of
complexity in semantic processing. Our work aimseiduce this
complexity by proposing a semantic framework whetploits
spatial relationships built into the geographic tdees. The
framework will help elicit hidden and useful semarmbformation
about the geographic features and their neighl@us.goal is not
only to determine possible matches, but also terdeéhe whether
geographic features can be deemed complementanydvant)
to one another. We would like to determineL#on Dept of
Housing and Hope Apartmentsare the same building or just
similar facilities. We are also interested in meas their
physical proximity and then combine their assodatescriptions
so that a higher authority (i.e., the domain eXperay make a
final decision based on his/her own constraints.

We propose a method of semantic footprints basetherthree
relational concepts: the spatial affinity withiretidata space; the
dimensional affinity within the XML hierarchy; andhe
ontological similarity based on the feature’s cldabel. In
addition, we describe an approach that utilizesattmve measures
to associate and link disparate geographic featBesause the



number of geographic features is potentially lange,devise the
concepts of dilution, hardness, concentration, @rtession as a
means to efficiently and effectively perform seniaminalysis on
the data. These concepts provide criteria to etaltle ongoing
progress of our analysis and help answer the fatlgwuestions:
are geographic features/objects being found inecfeximity to
the initial geographic feature query? If so, dosthgeographic
features add sufficient relevant information to theitial
geographic feature query? If the user is initiabeking onlyk
number of features, then are the current onescserffly relevant
or should the process continue to search for ottiets may be
more relevant? Our motivation relates to tools tewhnologies
that rely on hierarchically semi-structured data.(eXML, GML,
and KML), have strong syntactic capabilities, batk semantic
support for data processing, and can exploit saméottprints as
an auxiliary tool to enhance semantic alignment.

This paper is organized as follows: In Section 2, give related
approaches to feature reconciliation and objecthiag. Section
3 gives the general problem statement, expandsiotheoretical
approach toSemantic Footprintsand elaborates on a semantic
analysis approach. Experiments are described itidBed and

conclusion is provided in Section 5

2. RELATED WORK

Early research on spatial entities is related ®whorks of GIS.
With the support of organizations such as the O&@ndards
have been established for the management of gdugrigatures
[8] using common communication protocols (e.g., ) Tand
XML-based encodings (e.g., GML). With the advengebspatial
portals (e.g., Google Maps, Yahoo! Maps), geog@fbatures
have taken on increased popularity. Traditionathgographic
feature matching and expansion have been primatilized in
spatial indexing methods for database systems.u$heof spatial
indices is abundant in this area as exemplifiedlin5, 10].
However, our work does not focus on spatial indibas rather
emphasize on the development of an approach thiaembiance
the extraction, processing, and analysis of semarftirmation in
spatial data. Other aspects such as data qualitc@mposability
of grammars are described in [16, 17]. Currentrditere in
semantic information processing can be classified one of the
following categories:

Schema Matching: Rahmet al. proposed the decomposition of
complex schemas into simpler sets [2,14]. Detial. used a set
of semantic mappings to learn other mappings usiaghine
learning techniques [7]. Islanet al. proposed a method to
determine the semantic similarity of words and heofor word
segmentation [4]. Schema matching becomes chatignghen
many schemas are involved. In addition, it oftety avorks with
textual elements which makes spatial processirf§icient and/or
impractical. We depart from the above works by aering the
spatial characteristics of objects, which is nothia scope of any
of the aforementioned works.

Object Consolidation: The difficulty of combining objects
described in different sources is addressed byiBzeal [11].
They extend the one-sided nearest neighbor joia mutually
nearest neighbors. As described by Bleihoketeal., data fusion
can also be performed at a query language levél [AStead of
relying on schema information, objects are consideior their
attribute values rather than attribute types. Slkeghal. proposed
entity resolution primarily as a function of loaais [15]. The
spatial component is deemed similar when theiradist meets a

certain threshold. We differ from these approadme®xtending
our work beyond object fusion and propose methodevaluate
semantic relationships within the attribute andotogical spaces.
An example output of our method includes deternmatof

geographic features that are complementary withimplication
domain.

Ensemble Reasoning: This class of techniqgues combines
characteristics of both schema matching and olgjeesolidation
to provide semantic analysis. They tend to be naffective in
applications in which prior knowledge of the scherizavailable.
Fazzingaet al. proposed a query language to combine partial
answers from different sources on the basis oftdéichknowledge
about the local schemas in XML documents [3]. it al
proposed a method to detect duplicate objects ir. Xfslta using
Bayesian networks [6]. A schema matching approBobtoplasm,

is an aggregation of several existing methods ¢orreile named
entities [9]. Unlike our proposed framework, thesedies do not
consider the spatial component of an object andmemarily on
non-spatial textual content.

Class Name Primary Goal General Spatial
Focus Applicability
Schema Rahm [2][14] Logical Feature L
Matching Doan [7] Structure Matching o
Object Beeri[11] Attribute Feature .
o K . i Medium
Consolidation | Bleiholder[12 Walues Matching
- Struct Feat
Ensemble Fazzinga [3] ru_t ure, =2 !JFE ’
. . . Attributes, | Matching & Medium
Reasoning Leitac [E] _
Types Likeness
Feature
Ensemble Semantic Spatial Matching, Hizgh
Reasoning Footprints Structure Likeness & g
Complement

Table 1 — Summary of Semantic Information Processi
Approaches

Table 1 provides a summarized view of the litemiar semantic
feature analysis. The last row gives a snapshdtoof our work
differs from existing approaches. Our proposed é&aork is
unique in several waysFirst, we take a qualitative view of
feature expansion by avoiding explicit comparisams data
values.Second we extend the notion of spatial co-location to
include the most semantically relevant nearby featwhich are
not necessarily the closest in geographic spaaeekxample, if a
source describes several buildings and water bodiesrby
houses are possibly more relevant to a query aiigig from a
house than a water bodyhird, our framework is oriented
towards data sources of similar application domaiAs an
illustration, consider the marketing realm. In dsntext, nearby
stores and malls would most likely provide moreevaht
information than, for instance, weather data. Weppse spatial
proximity, dimensional affinity, and ontological nsilarity to
improve the efficiency of our semantic analysis liogiting the
number of geographic features or objects underideration.

3. PROBLEM DEFINITION OF SPATIAL
FEATURE EXPANSION

The nomenclature below formalizes the spatial feagxpansion
problem.

Given:



e Set D = {dj,....d,....d} where ¢ is a semi-structured
hierarchical data source (e.g., GML file).

» Geographic feature s&f,(d) = {91,....9,.-...0n} Where the gs
are all the geographic features or objects of dsdarce gand
m = |d| is the number of geographic features in d

* SetG = Ui-;_p fyeo(d). The setG is the union of all geographic
features in all data sources.d.d..

* Attribute setfy (g) = {as,....&,...,a} where the gs are all
element/attribute types of the geographic featyre g

Objectives:

From a starting geographic featug(initial query), find the set
Geosd9s) = {9; | g€ G and dualAff (gs , g) > &uosd Where
dualAff is a measure of the degree of spatial closeneds a
EcoselS @ user-defined threshold.

From a starting geographic featigg find the set Gyn(9s ) =
{9 | 9.€ Guiosd@s) anddimAff(gs, g) > Egim} WhereGgin is a
measure of attribute similarity arigd, is a threshold based on
the ranking order afimAff(gs, g).

From a starting geographic featwgfind the seGoy (gs )= {9;

| g, Guosdds) and ontAff (gs , g) > &ond WhereGgp is a
measure of ontological similarity arggy is a threshold based
on the ranking order afntAff (g, 9).

From a starting geographic featugg find an ordered set
Grinal(9s)= {9j | 9.€ Guiosdds) and { <j — Semp (gs, @) =
Semp (gs, g) } whereSenp is a measure of similarity based on
dimAff andontAff

3.1 Concept of Semantic Footprints

Hierarchical structures encapsulate a rich seelationships not
always visible to the naked eye. Names do not awagtch,
locations are ambiguous, and characteristics magerawildly.
These differences arise because data is affectedamy factors,
such as external noise, human subjectivity, anccalirated
measuring tools. While some systems attempt to hmigatures
by introspecting their properties [18], we avoidhaustive
attribute comparisons as they tend to increase uatatipnal
complexity when many geographic features are pteséa
establish an efficient and effective representattdnsemantic
relationships, we define semantic footprints ar@rtbomponents
in the subsections below.

3.2 Spatial Affinity within the Data Space
Geographic features are commonly described in tesfmgheir
locations and hence, we give our first definitimr flescribing
spatial closeness:

Definition 1 Geographic feature;dgs said to be locallyit (LF) in
data source dif its minimum bounding rectangle (MBR) is
explicitly provided in the data source.

For example, given five locally-fit geographic feds g;...0s
residing in data sourced;...ds, respectively, we investigate
whetherg,, the starting query feature, has any spatial Sogmce
to g,...gs. We give the spatial significance, namelyal affinity
by:

Dist(g g, )~ MinDist(g g, ) (Eq. 1)

DualAff (gl 19 )=1- MaxDiSl(g 9 )— MinDiSt(g 9 )

Assuming that the geographic featuggsindg; share a common
coordinate systentquation 1ldefines dual affinity as the degree
of spatial closeness between the features Disigfunction can be

generalized to any appropriate spatial distanceefample, we
often consider the geodesic distance for latitudirzand
longitudinal coordinates. Other distances such aslidean or
Manhattan distances can also be used. Furtherihar&hoice of
locations of spatial extents can be approximatedtbygentroid,
which is an acceptable approach in many types pliGgtion. For
example Dist(g, g) may use the centroids gfs andg's MBRs
as their representative locations. The functiddeDist and
MaxDist represent the shortest and longest possible distan
between two geographic features respectively.
B

A
Figure 2 — MinDist and MaxDist for Two MBRs

For example, in Figure 2 the geographic featuresdascribed by
their MBRs, therefore thislaxDistbetween any two objects is the
length of the segment AB ardinDist is zero since the MBRs
overlap. From a spatial point of view, two featuhes’e maximal
affinity when their locations are the same, idmalAff=1. Hence,

to achieveObjective | G¢losdgs) can be determined by collecting
all features whosdualAff is higher than a givefyose

We build upon DualAff to define the spatial footprint of a
geographic feature:

Definition 2: Thefootprint ¢ of a geographic featug is given by
the set of all attributes of all geographic feastireGelosdds).

#0)=Uors o, (fule) Wheres €Goosdo)  (E0.2)

The footprint represents the maximal collectiorattfibutes types

within the set 0lG¢losdgs). This maximal set will impose a bound
on the computational complexity of the proceedirenantic
operations.

3.3 Dimensional Affinity in the Data Space
One attractive aspect of XML is its ability to dediclass relation
in a hierarchical fashion. This idea gives risedimensional
affinity and applies to all geographic features, whethey #re
locally-fit or do not have an explicit location. these cases, we
observe the dimensions of the feature (its atteffelements),
while relying on the location of its parent. In &igs 3 and 4, the
five features (the circles) are within some MBR nbtheir own,
indicated by the encompassing squares coveringrea larger
than the features themselves. In Figure 3, onlydbation of the
parent is available (locally-displaced featurel] &mgure 4 has no
location but the bounds of the data set (globaibpidced). While
these two cases do not have an explicit locatioey tan still be
useful to establish a semantic footprint. Dimenaiaifinity gives
the ability to measure how similar two geograpleiatéires are in
relation to their elements and attributes.
Y =
d, ds g

d; ds

g

@
e

Figure 3 — A set of 5 locally-displaced features i data sets



Figure 4 — A set of 5 globally-displaced featuresi5 data sets
We define dimensional affinity as follows:

(0N fui (00))

DimAff (9., 9,) = ) (Ea-3)

wheregs, Ok é_G‘closégs)-

DimAff gives the ratio of common attributes between two
geographic featureg, and gy, in relation to its total number of
attributes, i.e., its footprint. Hence, the dimensil affinity is

dependent upon the spatial proximity of featureSipsdds) and
what attribute types they share in commonLébn and Stellar
together have 22 attributes, but only 5 in commadimen
DimAff(Leon,Stellar) = 5/22= 0.2%nd if the&yn, is met, the
geographic features can later be utilized in thalysis of the
complete semantic footprinDbjective Il is then achieved by

forming Ggim(gs ) as the sorted set of all geographic features with
dimensional affinity> &gin,.

3.4 Ontological Class Affinity

Ontologies represent a classification scheme taimrsimilar
objects and are commonly used in a wide rangeebfidj from
medicine to the data sciences [19,20]. GivendBisa motivation,
we show a method to compute the hierarchical ogicéd
distance among features as the third componentuotemantic
footprint. We define the class distance between hwdes in a
common hierarchical ontology as follows [23]:

Class_d(ggy =d(LCA(g, 99, &) +d(LCA(g, 9, ) (Eq. 4)

whered(g, g) is the edge length between the classeg ahdg;
and LCA(g, g) is the Lowest Common Ancestor defined as the
farthest node from the root that is the most immagdancestor of
bothg; andg;.

From the class distance measure above, we definerttological
class affinityOntAffas follows:

Definition 3 Theontological class affinityOntAff(g, g) is the
degree of similarity between the classesgefand gy from a
common hierarchical ontology:

_ 1

OntAff (95, 91) = Trgmes atacas Eq.9

Hence, if geographic featurgg and g, are of the same class,
OntAff(g,g) = 1. For example, if Leon is classified as an
“apartment”andStellaris a ‘house”, assuming these two classes

are two hops apart in the ontology, then th@itAff = !

142

0.333. Objective Illcan then be achieved by creat®gnt (gs ) as
the sorted set of all geographic features with logioal class
affinity > &g,

One goal of this study is to maintain the total bemof threshold
parameters to a minimum under the assumption thatiad,
dimensional, and ontological affinities are jointlydependent.
Our framework minimally maintains only one threshébr each
of the components of the semantic footprbudlAff, DimAff,and
OntAff). Although we assume joint independence amongsteth
components, existence of correlations does notctaffbe

effectiveness of our semantic measures. In factemntial
correlations between these components can be dissbvand
further explored via our proposed semantic analymiscess
discussed in the proceeding Section 3.5.

Fusing Dual Affinity, Dimensional Affinity, and Ontological
Class Affinity

Combining the measures @ntAff and DimAff, we propose
semantic footprintSenp as a total measure of the semantic
similarity between two geographic features3gf,sdgs). Formally,
semantic footprinBenp is defined as follows:

Definition 4 The semantic footprint between two geographic
features gand g is given by:

DimAff(gs.gi)+0ntAff(gsgi) (Eq.6)
2 Q.

Semp(gs, gi) =

BecauseOntAff and DimAff apply to elements 0Gyose SEMP
inherits the spatial similarity constraint (vidualAff) of the
geographic features. Henc®enp provides a similarity measure
between geographic features based on spatial, dioval, and
ontological affinities.

From our example in Figure 1, the semantic footphatween
Leon and Stellar iSenp(Leon,Stellar)= (0.23 + .33)/2 = 0.28.
Equation 6 helps us achieveObjective IV by establishing a
ranking criterion foiGy,4 (gs) as the set of all geographic features
starting fromgs.

3.5 Complexity Analysis

This section provides an analysis of the costscomputing the
terminal set of geographic features @,y (gs) for a given
geographic feature que The total cost for generating the set

Grinal (G9) IS:
(Eq.7)

Cost (Gfinal(gs)) = COSt(Gcluse(gs)) + COSt(Gdim(gs))
+ Cost(Gone(95))

Assuming that no spatial indexing has been apptedthe
geographic feature s, the cost for generatin@gosdJs) Is:

(Eq. 8)
Cost(Gclose(gs)) = |G| * DistCalc_Cost = 0(|G])
where DistCalc_Costis the cost of calculating the distance

between two features. The distance calculationdsrestant time
operation.

To obtainGy;n(gs), the footprint is generated and the set intersect
operation is performed betweegp and all other geographic
features inGgpsdgs). The set intersect operation is implemented
using a hash table which gives a linear time ciist. total cost for
computing the seby;n(gs) is thus:

(Eq.9)

COSt(Gdim(gs)) = Zi:l..mc,ose(gsﬂ(lfatt(gs)| + | faee (@) =
0 (IGctose(9)] * Moy 6,109 (fare(90) =
O(IGclose(gs)l * I(p(gs)l)

wherep(gs) is the footprint.
The setGqn (gs) is obtained by performing ontological class

distance calculations betweggnand all other geographic features
in Ggosdds)- A lookup table of the class IDs which link to ttlass



nodes in the ontology allows fdD(1) search time for a given
geographic feature class. Once the pair of nodésuisd in the
ontology graph, thd.owest Common AncestgtCA) can be
determined in time linear to the ontology levelesky traversing
to the root node and obtaining the longest comnuaersequence
between the two geographic feature classes. Thiewiolg
provides the total cost of generatiBg (gs):

(Eq. 10)
Cost(Gone(gs)) = 0(0Ontys)
whereOnt; is the level size of the ontology.
Hence, the total cost of generatiBg,, (gs) is:
(Eq. 11)
Cost (Grinar(9)) = 0UGD + 0Gerose (g5)] * l9(gs)D) +

0 (Ontls)

3.6 Progressive Dilution, Hardness,

Concentration, and Concession

Traversing data sources in search of related featisran ongoing
process for which no halting point is clearly defin Using the
concepts of our approach, we present a systematihath to
evaluate the progression of the relevant featumas fa starting
geographic featurg; as more geographic featugs. g, become
available for processing. The goal is to obserw ¢hanges in
semantic footprint as more geographic featuresanedyzed, and
determine to which exterimAff andOntAffare contributing to
the semantic footprinSenp. For this purpose, we present four
definitions also referred to aensity sets

Definition 5: The set Guion(d) = {9; | 9,6 Guosdgs) and
Dim/—\ff(g;,gj) < t4im and Sem(gs,gj) > E&send, Whereleenis a user-
defined threshold for high semantic footprint agg s a user-
defined threshold that establishes a low level damensional
affinity.

Dilution is the set of features with high semantic footpriut
low dimensional affinity. It is indicative of feaes that do not
share many attributes in common. In such casbkgleSenyp is
mostly dependent orOntAff, the second component of the
semantic measure.

Definition 6: The set Girnestds) = {9j | 9,6 Guosdds) and
OntAf(g,g) < tone and Sem(9s,) > Esend, Wheresemis a user-
defined threshold for high semantic footprint agg s a user-
defined threshold that establishes a low level datological
affinity.

Hardness defines a set of features with high semantic footp
but low ontological affinity. When the features aret similarly-
typed (i.e., far in the ontological classificatipa)highSenp must
rely primarily onDimAff.

Definition 7: The set Gneenyatiokds) = {9j | G;,€ Geosdds) and
DimAff(g,g) > tgm and OntAff(g,g) > ton and Sem(gsg) >
Esent» Where &semis a user-defined threshold for high semantic
footprint and §m tone are thresholds for minimum values of for
dimensional and ontological affinities respectively

Concentrationis the set of features that yield a high semantic
footprint from both a high number of shared atttésiand close
ontological proximity. Itbalances a mix of geographic features
that are not only similar in attribute commonalityt also similar

in attribute types.

Definition 8: The Set Gncessiokds) = {0 | G, € Goiosdds) andg; &
(Gconcemratior(gs) u GUiIution(gs) u G?1ardnes£gs ))

Concessionis the set of features that cannot be classifieday
of the types in Definitions 5-7. Practically, thegpresent
geographic features with low affinity in general,oth
dimensional, ontological, and as a consequence e haviow
semantic footprint.

Semantic Footprint (Semeyp)
10 20 30 40 50 60 70

Figure 5 — A Hypothetical Snapshot of Dilution, Hadness,
Concentration, and Concession

Figure 5 illustrates the progression graph of a ofiygtical
geographic feature traversal. THeset shows an area of hardness
composed of five features with high semantic faotput low
ontological affinity. Dilution can be seen at tBeset where
dimensional affinity is low. In this case, the higlemantic
footprint can be explained from the high ontologeffinity. The
concentration se€ shows features with both high dimensional
and ontological affinity, whereas all other casel @inder the
concessionCcsset. A concentration seC) is possibly a richer
source of information that can enhance the startjaggraphic
feature more so théab or H.

Thresholdd, , tgim andésemcan be manipulated to accommodate
the application requirements. For instance, ifefisional affinity
(i.e., common attributes) is more desirable thape tynatching
(i.e., ontological proximity), the application shduexplore a
hardness set (and vice-versa for a dilution sé&then both factors
are important, a concentration set provides a raoitable mix. It

is also possible to provide an initial and automagtermination
of tont , tgim and &em by using the centroid of the semantic
footprints of the geographic features @,,. The automatically
generated thresholds can serve as the starting fminvhich
further adjustments can be made as the analysgrgu®es. The
thresholdd,, , tgim, and&semcan be obtained as follows for a given
starting geographic feature queyy

(Egs. 12)
- Zie1|6 pinaitos)|OPAS S (95.90)
ont |Gfinal(gs)|
R s |6 pimartos)|PIMA £ (95.90)
dim |Gfinal(gs)|
T o finatos] SR G590
{sem -

|Gfinal(gs)|



Similarly, the medoid of the semantic footprints @so be used
in lieu of the centroid. Employing the medoid canyide a more
robust threshold set as it less sensitive to artieosi that may
exist inGﬁna|.

Algorithm 1 - Identifying Dilution, Hardness, Concentration, and Concession Sets
Inputs: g, Gecee, Erem, Lam, tons

OUtPUTS: GyuronlB:). Gharsness(Bels Gconcentraton{Bs): Gconcessionl 85)

1: using g, and g in Gy, whereiin {1.n}

2: foreachg:

3: calculate DimAff(g..g) (Eq.4);

4 calculate OntAff(g,g) (Eq.6);

5 Semd|g,.g)= DimAffig,g) + OntAff(g. g);

6 If (DimMAFf(g..g) Sts, && Semd(g..g)=Een)

7 add g2 Gguron(B:) 5

8 Else If (ONtAF{{£,8) = Lo 8& Sem (g ) 2 Euur)
9: add g Gharness(8:) 5

10: Else If (DimAff{g., g) >t;, && OntAff{g, g) >t && Semd(g., g)>E.)
1L add 8> Geoncentratont B:) 5

12: Else  add 2= GoncessonlB:) 5

13: end for

14: output Ggiuron » Ghardness » Geoncentration, Geoncession

Algorithm 1 shows a method that uses Definitiorn, B, and 8.
First, the semantic components are calculated ire<d.i3 and 4,
and combined as the total semantic footprint inelin Lines 6-
12 apply simple logic to determine if the currergographic
feature falls wunder dilution, hardness, concerdmti or
concession. Each feature is stored into its apfatpset for later
examination.

4. EXPERIMENTS

Given a starting geographic feature, our goal isfind other
related features within one or more data sources.datasets are
composed of features of the cities of Frankfurtydrkusen, and
Konigswinter [21]. For the ontology, we used NAS/SSWEET
[22], which we extended with urban structure cotsed home,
apartment, hotel, building, warehouse, and consionc

Our first step is to extract features from thetfissailable data
source and calculate their semantic footpribtglAff, DimAff,
OntAf). Subsequently, regions of dilution,
concentration, and concession can be identifiddwalg their
respective sets to be populated accordinggorithm 1

In terms of measurement, we are interested in:of#gaining
Grinal(0s) when different parameters are considered;
identifying sets of dilution, hardness, concemnrat and
concession related to the starting geographic featu

[Fatt (gs)l [Fatt (9s) N Fare (@)l Class_d, i.e.
g. = Geb537 | i.e., Attribute |i.e, Shared Attribute| Ontological
Count (gs) Count Range (g;) Variation (g;)
Query | 30 min=5, max=24 min=0, max=25
Query Il 30 10 min=1, max=29
Query Il 30 18 min=10, max=38

Table 2 — Evaluation Queries

Table 2 summarizes three representative queriestsdl from the
experiments. We desire to find features locatetiwit ,s. =100

km of the starting geographic feature.4@eb537 that are
considered “most related” in terms of their sen@fdotprint. The
features in this data set have anywhere from ¥UDtattributes (or
elements) and have a variation of labels in theology (e.g.,
house, apartment, construction, warehouse, etc...).

hardness,

(b)

High Overall Semantic Footprint (Semp)

Query | sets the starting geographic featureGath537with 30
total attributes, and labeled as a “house”. Forténget features,
the number of shared attributes varies considerfabip 5 to 30.
The ontological distance varies from zero hops, Ctass_d for
one feature and all the way to 25 for others. Fgérgives a
visual representation of the top 10 elementsn,&eb537 with
arrows pointing in the direction of the 10 geogragdbatures and
labels for the semantic footprint values. Intereglyi, the most
related geographic features are not necessarilgltisest ones. In
fact, Figure 6 shows that even thou@eb537is surrounded by
nearby buildings, its footprint is composed of sal/éarther away
buildings. Figure 7 shows all geographic featuresnaicate by
the id field of Table 3.

\ B 5 g d/

Figure 6- Top 10 Highest Semantic Footprint Featwes
related to Geb537

P\ =4 ‘
Figure 7 — Features Related tg=Geb537According to Table 3

High Dimensional Affinity (DimAff)
Query Il targets a more regular data set. We keep the same
geographic starting point considering 20 totalilattes. Of those,
10 are shared across all features. This configurdtas the effect
of setting an equal dimensional affinity across tla¢a set (not
shown). The ontological distance, however, can didyflarge.
Elements are as close as one hop apart in the ogital
hierarchy, and as far as 29 hops away. Figure @&shioe top 10
most related elements, most of which have high dgiomal
affinity. In this scenario, the ontological affipiprovides at best a
low contribution to the semantic footprint.

High Ontological Affinity ( OntAff)

Still using Geb537 ags, Query llloperates on features that share
many attributes (i.e., high dimensional affinity d8 shared
attributes). The ontological distance, in additianjow for most
elements, varying from 10 to 38 hops. While ontaabaffinity

is very low, the semantic footprint remains somewdumstant at

~ 0.6 since dimensional affinity is the same actbesdata set.
Since all features are described with similar latiies, it can be
inferred that such data set most likely originabein the same



provider using the same geographic standards.i3 liseal-world
scenario, albeit possibly less common tl@mery | where GIS
often deal with a high variety of data descriptiéresn disparate
sources.

95=Geb537 fan(gs) =30
7 n Dilution (D),
i dimAff | Class d | ontAff | Semg Hardness (H),
gi id | Ifatt (g)l | Ifatt (gs) N fait (i)l (9s.9i) | (9s.91) | (gs.91) | (9s.97) | Concentration (C),
Concession (Ccs)
Geb855 1 25 23 0.719 0 1.000 0.859 c
Geb521 2 25 20 0.571 1 0.500 0.536 c
[Geb592 3 35 22 0512 1 0500 0.506 c
[Geb600 4 40 30 0.750 8 0411 0431 H @
Geb597 5 kL 2 0.524 2 0.333 0429 C
Geb579 (] 40 30 0.750 12 0.077 0413 H ®
Geb643 7 40 30 0.750 25 0.038 0.3%4 H ®
Geb653 8 27 1 0.233 1 0.500 0.370 D ®
[Geb593 9 40 ] 0522 5 0.167 0.344 H @
[Geb545 10 33 21 0.500 6 0.143 0321 H @
Geb877 1 3 2 0.489 6 0.143 0.316 H®
Geb557 12 30 18 0.429 4 0.200 0.314 H ®
Geb504 13 38 23 0511 8 011 0311 H ®
[Geb559 14 32 20 0476 6 0143 0.310 H ®
[Geb595 15 39 23 0.500 8 0411 0.306 H @
Geb874 16 29 17 0.405 4 0.200 0.302 H @
Geb889 17 36 2 0.500 9 0.100 0.300 H®
Geb589 18 M 19 0.452 6 0.143 0.298 H ®
Geb873 19 26 1 0.244 2 0333 0.289 D &
[Geb560 20 23 10 0233 2 0333 0.283 D ®
[Geb514 il 10 7 0212 2 0333 0273 D ®
Geb562 y) 20 8 0.130 2 0.333 0.262 D ®
Geb540 23 2 8 0.182 2 0.333 0.258 D &
Geb516 24 14 6 0.158 2 0.333 0.246 D e
Geb865 25 28 13 0.289 4 0.200 0.244 Ces
Geb532 26 16 6 0.150 2 0333 0.242 D ®
Geb550 yij 18 6 0143 2 0333 0238 D ®
Geb522 28 12 5 0135 2 0.333 0234 D ®
Geb561 29 24 11 0.256 4 0.200 (.228 Ccs

Table 3 — Data results for Query |

Dilution, Hardness, Concentration, and Concessioness
Using Algorithm 1, we generate Table 4 to list how variations in
DimAff andOntAffcreate sets of dilution, hardness, concentration,
and concession. We set bdgfy, andt,,; at 0.3 to designate our
minimum cutoff requirements for dimensional and obogical
affinity. If the domain expert has a strict demdoidboth attribute
and type similarity, Table 4 identifies four featar in
Geoncentratiof G€D537)that are comprised of those characteristics. The
10 features in Guion(Geb537) group elements with high
ontological/low dimensional affinity, whereas théeatures in
Graranes{Geb537)provide the conversé&igure 8 gives a plot of the
geographic features in Table 3 (only a subset efgbographic
features are shown). The three cases above undershe
importance of exploratory tasks in semantic datalysis.
Understanding how features compare with and comgérone
another promote good information extraction and wdedge
discovery.

taim=0.3, taim=0.3 | G stion (9=)]  Gaitution (9s) Ghardness 195) | G ion (95)
Query | Geb855 Geb653,Geb875 | Geb600,Geb579 GebB65
Gebs21 Gebb860,Geb574 | GebB45,Geb593 Geb561
Gebs92 Geb562.Geb540) | Geb545,Geb877
Gebh87 Geb516,Gebh32 | GebB57,Geb504
Gebb50 Geb522 | Geb559,GebBT4
Geb389.Geb589

Table 4 — Feature sets in G(gs) and Goni(9s)

Discussion

From a mathematical perspective, semantic footjgiat measure
of similarity between two geographic features. Bupractice, we
would like to understand its qualitative asped,,ihow similar
the features are or how related they may be acuprth their
natural characteristics. Looking closerQuery land according
to Geb537s semantic footprint, its most related element is
Geb855:they share many attributes (Table 3 row 1) in aoldito
being the same type of feature in the ontology (4es"). For

example, their shared attributes incluafgpearance, rgbTexture,
image, ambientintensity, and diffuseColamong others. Other
geographic features in Table 3 lack some of thésibates, such
asimageandtexture,which are not populated consistently. This
scenario depicts an ideal case where semantic rinbtis high
from both a dimensional and an ontological perspectAs the
number of shared elements decreases, so does rttemsional
affinity values. Rows 2-5 still maintain a high samtic footprint
due to the fairly high dimensional affinity. Row(@eb64j finds
a feature much farther in the ontological spaCéags_e25),
causing the semantic footprint to drop as comptoele previous
5. These results force the semantic footprint tactflate as
expected and demonstrate that semantic footprag &n effective
measure of relatedness.

For geographic features with far-apart types, thkabior of the
semantic footprint can have a different connotatfeor instance,
looking into Geb537andGeb645 the ontology indicates they are
25 hops apart. The traversal path goes throdgiusez>private
residence?living Space?...,...» construction? building=>
private 2 warehouse”.The framework punishes the relationship
between these two elements as possibly “unrelaties’ to the
different nature betwedmuseandwarehouseln spite of that, the
semantic footprint is still kept high to reward ith@gh number of
shared attributes. The implication of this behaviaflects
possible real-life scenarios whether the domairegxis looking
for ahouse-houser ahouse-warehouseorrelation. The semantic
footprint is flexible enough to allow these adjustits to occur
without dismissing one or the other as unrelated.

0.6 08 1.0

04

Semantic Footprint (Seme)

0.2

o
Figure 8 — Sets of Concentration, Dilution, Hardnes, and
Concession

In terms of density sets, the framework providetergsting
insights. First, geographic features originatinghie same data set
tend to be highly concentrated, i.e., their sencafdabtprint is
fairly balanced from both an attribute and ontolqmgrspective.
While this is not exactly surprising, variations application
domain often give rise to diluted and hardened set® when the
sources are the same or different, but from theegamovider. We
observed this behavior after processing geograghatures
(buildings in general) from Koenigswinter and Lduesen. Some
of the data sources come in different levels ofidlethich are
hard to compare due to the differences in attrijutsut are



common in CityGML format. In addition, attempts telate
applications of different domains (e.g., marketamgl health) may
easily yield concession sets, where the semandipifimt suffers
significantly from a lack of common attributes atiné fact that
the same ontology may not always be the same f@r ®aurce. In
our study, we do not propose ontology merging or
disambiguation, as it is outside of our scope. Hmxe our
framework still operates correctly by placing a &vpremium on
geographic features for which no common ontologapiglied.

5. CONCLUSION

In this study, we approach spatial data analyssmfran

exploratory perspective. Our work proposes semdoditprints as
a framework for geographic feature expansion bamedhree

concepts: spatial, dimensional, and ontologicah#gf. Together

these concepts reason over attributes and typesdover the
most related geographic features to a startingtpainaddition,

they show the dilution, concentration, hardnesd, @ncession of
the feature space. Experiments on real data setemktrate how
semantic footprints provide useful insight into alaburces and
the adequacy of ontological techniques for spagglications.
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