
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, JANUARY-FEBRUARY 2011 1

Parallel Load Balancing Strategies for Ensem-
bles of Stochastic Biochemical Simulations

Tae-Hyuk Ahn, Adrian Sandu, Layne T. Watson
Clifford A. Shaffer, Yang Cao, and William T. Baumann

Abstract—The evolution of biochemical systems where some chemical species are present with only a small number of
molecules, is strongly influenced by discrete and stochastic effects that cannot be accurately captured by continuous and
deterministic models. The budding yeast cell cycle provides an excellent example of the need to account for stochastic effects in
biochemical reactions. To obtain statistics of the cell cycle progression, a stochastic simulation algorithm must be run thousands
of times with different initial conditions and parameter values. In order to manage the computational expense involved, the large
ensemble of runs needs to be executed in parallel. The CPU time for each individual task is unknown before execution, so a
simple strategy of assigning an equal number of tasks per processor can lead to considerable work imbalances and loss of
parallel efficiency. Moreover, deterministic analysis approaches are ill suited for assessing the effectiveness of load balancing
algorithms in this context. Biological models often require stochastic simulation. Since generating an ensemble of simulation
results is computationally intensive, it is important to make efficient use of computer resources. This paper presents a new
probabilistic framework to analyze the performance of dynamic load balancing algorithms when applied to large ensembles of
stochastic biochemical simulations. Two particular load balancing strategies (point-to-point and all-redistribution) are discussed
in detail. Simulation results with a stochastic budding yeast cell cycle model confirm the theoretical analysis. While this work
is motivated by cell cycle modeling, the proposed analysis framework is general and can be directly applied to any ensemble
simulation of biological systems where many tasks are mapped onto each processor, and where the individual compute times
vary considerably among tasks.

Index Terms—Stochastic simulation algorithm (SSA), parallel computing, load balancing, cell cycle, budding yeast.

F

1 INTRODUCTION

B IOLOGICAL systems are frequently modeled as
networks of interacting chemical reactions. At the

molecular level, these reactions evolve stochastically
and the stochastic effects typically become important
when there are a small number of molecules for one
or more species involved in a reaction [1]. Systems
in which the stochastic effects are important must be
described statistically. Large ensembles of simulations
are needed to capture multiple evolutions of the sys-
tem [2], [3], and to sample the probability density of
all possible future states.

The motivating system for this work is the growth
and division of eukaryotic cells [4]. A deterministic
model [5] of the cell cycle for budding yeast, Saccha-
romyces cerevisiae, was converted to a set of chemical
reaction equations and simulated stochastically [6]
using Gillespie’s stochastic simulation algorithm [7].
The statistics of interest are the time between birth

• T.-H. Ahn, A. Sandu, L.T. Watson, C.A. Shaffer, and Y. Cao are with
the Department of Computer Science, Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA. E-mail: {thahn, ltw,
sandu, shaffer, ycao}@cs.vt.edu

• L.T. Watson is also with the Department of Mathematics, Virginia
Polytechnic Institute and State University, Blacksburg, VA, USA.

• W.T. Baumann is with the Department of Electrical and Computer
Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, VA, USA. E-mail: baumann@vt.edu

and division of the cells, the probability that a single
cell will grow to a colony of a specified size, and
the average growth rate of the cells in culture. To
accurately model the real system, simulations of a
single cell, chosen from a specified distribution of
initial conditions, and all of its progeny are run until
a specified end time by the multistage cell tracking
implementation. By running many such simulations
the desired statistics can be computed.

The obvious way to speed up the overall simulation
is to distribute the initial cells to different processors
and run the simulations in parallel. For wild-type
cells, load balancing among processors is not a huge
issue. Wild-type cells divide in a relatively regular
fashion so each simulation starting from a single cell
and running to a specified end time will take roughly
the same CPU time. There will be variations in total
CPU time due to the stochastic nature of the chemical
reactions and the effect of this on the division time
and total number of progeny, but great differences are
not expected to arise.

The load imbalance for mutant cells, however, can
be quite significant. Mutant cells (e.g., cells deficient
in certain genes) are often studied to validate the
accuracy of models or to gain greater understanding
of the functioning of the system. For certain types of
mutations, the cells can behave erratically. A cell may
never divide, it may divide a number of times but
ultimately form a colony of fixed size where all of

2 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, JANUARY-FEBRUARY 2011

the cells have exited the cell cycle, or it may divide
endlessly and form a growing colony [5], [8]. The CPU
time required to simulate these different situations,
even if the end time of the simulations is fixed, can
vary over a wide range. For these simulations, load
balancing among processors is necessary to avoid
wasting computing resources and power.

There is a large body of research available in the lit-
erature on static and dynamic scheduling techniques
for load balancing [9], [10], [11], [12], [13]. The novelty
of the work presented in this paper consists of a new
framework for analyzing load balancing algorithms
when applied to ensembles of stochastic simulations.
In this case the established deterministic analysis ap-
proaches are not appropriate, so a probabilistic analy-
sis is developed. The times per task are assumed to be
independent identically distributed random variables
with a certain probability distribution. This is a natu-
ral assumption for ensemble computations, where the
same model is run repeatedly with different initial
conditions and parameter values. No assumption is
made, however, about the shape of the underlying
probability density function; the proposed analysis is
very general. The level of load imbalance (defined by
a given metric) is also a random variable. The analysis
focuses on quantifying the decrease in the expected
value of the random load imbalance.

The probabilistic framework is used to analyze
two dynamic load balancing strategies: point-to-point
(P2P) and all-redistribution (AR). Both strategies are
centralized schemes [14], [15]. In the P2P algorithm,
the processor that first finishes its work receives new
tasks from the most overloaded processor. In the AR
algorithm, when one worker becomes idle, the master
redistributes all remaining jobs evenly among all pro-
cessors. Both techniques use the termination detection
approach of Bertsekas and Tsitsiklis [11] based on
request and acknowledgement messages. The proba-
bilistic analysis reveals that both load balancing strate-
gies are effective for moderate parallelism; scalability
is not investigated here.

Despite the apparent complexity of the analysis, the
two dynamic load balancing strategies described here
are easy to implement in place of a static allocation
scheme. The resulting savings in computation time
make them extremely useful tools for the practicing
computational biologist.

The paper is organized as follows. Section 2 de-
scribes the cell cycle model. The two load balancing al-
gorithms are presented in Section 3. Section 4 explains
the analysis framework, and Section 5 contains the
probabilistic analysis of the load balancing algorithms.
Section 6 shows experimental results. Section 7 draws
some conclusions.

2 THE CELL CYCLE MODEL
This section explains Gillespie’s stochastic simulation
algorithm first, and then describes implementation

aspects of the budding yeast cell cycle model. The
multistage cell tracking algorithm is also discussed.

2.1 The Stochastic Simulation Algorithm (SSA)
Consider a biochemical system or pathway that in-
volves N molecular species S1, . . ., SN . Xi(t) denotes
the number of molecules of species Si at time t.
Stochastic simulations generate the evolution of the
state vector X(t) = (X1(t), ..., XN (t)) given that the
system was initially in the state vector X(t0). Suppose
the system is composed of M reaction channels R1,
. . ., RM . In a constant volume Ω, assume that the
system is well-stirred and in thermal equilibrium at
some constant temperature. There are two important
entities in reaction channel Rj : the state change vector
ν·j = (ν1j , ..., νNj), and the propensity function aj .
νij is defined as the change in the Si molecules’
population caused by one Rj reaction. aj(x)dt gives
the probability that one Rj reaction will occur in the
next infinitesimal time interval [t, t + dt).

The SSA simulates every reaction event [7]. X(t) =
x, p(τ, j|x, t)dτ is defined as the probability that the
next reaction in the system will occur in the infinites-
imal time interval [t+ τ, t+ τ +dτ), and will be an Rj

reaction. By letting a0(x) ≡ ∑M
j=1 aj(x), the equation

p(τ, j|x, t) = aj(x) exp(−a0(x)τ)

can be obtained. A Monte Carlo method is used to
generate τ and j. On each step of the SSA, random
numbers r1 and r2 are generated from the uniform
(0,1) distribution. From probability theory, the time
for the next reaction to occur is given by t + τ , where

τ =
1

a0(x)
ln

(
1
r1

)
.

The next reaction index j is given by the smallest
integer satisfying

j∑

j′=1

aj′(x) > r2a0(x).

After τ and j are obtained, the system states are
updated by X(t+τ) := x+νj , and the time is updated
by t := t+τ . This simulation proceeds iteratively until
the time t reaches its termination value.

It is clear from the stochastic nature of the system
that a different simulation of the same cell over the
same interval (using a different seed for the pseudo-
random number generator) will involve a different
number of reactions, and therefore will require a
different compute time.

2.2 The Budding Yeast Cell Cycle Model
The cycle of cell growth, DNA synthesis, mitosis, and
cell division is the fundamental process by which
cells grow, develop, and reproduce. The molecular
machinery of eukaryotic cell cycle control is known in

AHN, et al.: PARALLEL LOAD BALANCING STRATEGIES FOR ENSEMBLES OF STOCHASTIC BIOCHEMICAL SIMULATIONS 3

Cell Number 1 2 3 4 5 8

Time

(min)

0

ID=1 ID=2

ID=3

ID=4

ID=5

ID=6

ID=7

91 175 600

?

Fig. 1. Multistage cell cycle tracking diagram. ID is the
cell identification tag. Cell modeling simulations should
be executed beginning at each cell emergence time.
Biologists are interested in how many cells exist at a
specific final time.

more detail for budding yeast, Saccharomyces cerevisiae,
than for any other organism. Therefore, the unicellular
budding yeast is an excellent organism for which to
study cell cycle regulation.

Molecular biologists have dissected and character-
ized individual components and their interactions to
derive a consensus picture of the regulatory network
of budding yeast. The mechanism controls the activity
of three important classes of cyclins: Cln2, Clb5, and
Clb2. Cln2 is primarily responsible for bud emer-
gence, Clb5 for initiating DNA synthesis, and Clb2 for
driving the cell into mitosis. To exit mitosis, all Clb-
dependent kinase activity must be destroyed, which
is the job of Cdc20, Cdc14, and Sic1 [5], [8].

Stochastic methods require the model to be ex-
pressed in terms of population numbers because they
consider reactions with individual molecules. Because
the original budding yeast model [5] is based on
normalized concentration values, it must first be con-
verted to a model based on numbers of molecules [6].
The JigCell Model Builder (JCMB) [16] allows the
user to create and modify models with a simple
spreadsheet-like interface. JCMB includes a tool to
convert the concentration-based cell cycle model to
the number-based model. The physical model is in
the Systems Biology Markup Language (SBML) for-
mat [17]. After creating the population-based budding
yeast model, Gillespie’s SSA is executed with the
multistage cell tracking method that is explained in
detail in the next section. Conversion and simulation
steps are presented in [6], [18], [19].

2.3 Multistage Cell Tracking Implementation
To accurately mimic the experimental protocol it is
necessary to simulate all of the progeny from a single
cell that is chosen from a specific distribution of
initial conditions. Existing stochastic simulators using
the Gillespie SSA just simulate a system with one

0 2 4 6 8 10
0

200

400

600

800

1000

1200

Processor Number

E
la

ps
ed

 T
im

e(
se

c)

Fig. 2. Elapsed compute times for 100 prototype
multistage cell cycle simulations by static distribution
across 10 worker processors.

initial molecular state vector. To simulate all of the
progeny, whose initial states are different, multicycle
cell lineage tracking is needed.

Figure 1 symbolizes the multistage cell cycle im-
plementation. Implementing the multistage cell cycle
simulation requires selecting the initial conditions for
subsequent simulations. A priority queue is used to
maintain the cell division events ordered by time.
The precise algorithm for the multistage cell cycle
implementation follows. If one cell divides well into
two daughter cells, then the program inserts two
absolute times and indexes for these two cells into
the priority queue. The daughter cells’ number of
molecules at division are stored in a repository matrix
along with the cell index. After one simulation com-
pletes, the next simulation index chosen will be that
with the smallest time in the priority queue. The next
simulation takes the initial molecular state vector read
from the matrix. The multistage cell tracking imple-
mentation continuously simulates every cell lineage
cycle until the simulation’s termination time.

3 LOAD BALANCING ALGORITHMS

This section presents two dynamic load balancing
strategies: the point-to-point (P2P) algorithm and the
all-redistribution (AR) algorithm.

3.1 Motivation
Each run of a stochastic simulation leads to different
results. The goal of running an ensemble of stochastic
simulations is to estimate the probability distribution
of all possible outcomes. This typically requires thou-
sands of simulations run concurrently on many CPUs.
The stochastic nature of the system and the dramatic
differences in number of cells among cell lineages can
cause a severe load imbalance among processors that
are each simulating many lineages.

Consider, for example, stochastic simulations of the
budding yeast cell. For certain mutants, a cell may
never divide, or it may divide several cell cycles par-
tially that means cells divide with some probability of

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, JANUARY-FEBRUARY 2011

1

10 10 10 10 1010

2 3 4 5 6

src

5 3 3 2 33

dest

w[k]

k

Initial

Distribution

Overload

Check

Redistribution

w[k]

src

5 3 0 2 36

dest

w[k]

(a) P2P load balancing idea.

1

10 10 10 10 1010

2 3 4 5 6

5 3 0 2 36

3 3 3 3 34

w[k]

k

Initial

Distribution

Overload

Check

Redistribution

w[k]

w[k]

SUM(w[k]) / k 3 3 3 3 34

(b) AR load balancing idea.

Fig. 3. Adaptive load balancing strategies. Ellipses
represent tasks to be done and gray rectangles rep-
resent completed tasks. Gray elipses indicate tasks to
be done on processors whose load has been adjusted
by an adaptive load balancing algorithm.

dividing. Therefore, the CPU time to simulate such a
mutant cell is quite different from one case to another.
Figure 2 shows 100 prototype mutant multistage cell
lineage simulations assigned statically to 10 worker
processors. The results reveal a considerable load im-
balance, with the CPUs being idle for approximately
40% of the aggregate compute time. This results in
poor utilization of computer resources, longer time to
results, and reduced scientific productivity. Dynamic
load balancing strategies are required to improve the
parallel efficiency.

3.2 Point-to-Point Algorithm
The P2P algorithm is based on the central redistribution
work of Powley [20] and Hillis [21]. The idea of the
P2P algorithm is presented in Figure 3 (a). First, the
tasks (cell simulations) are evenly distributed to every
worker processor in the system. Workers concurrently
execute their jobs. Due to different CPU times per
task, other processors may be well behind the first
processor to finish its tasks. The processor that finishes
its jobs becomes idle. The processor with the largest
number of remaining jobs is considered to be the
most overloaded processor. At this time the most
overloaded processor sends out half of its remaining
jobs to the idle processor. This sequence of steps is
executed repeatedly until there is no remaining work.

To implement this P2P algorithm, the idle processor
has to receive new work from the highest load pro-
cessor. Therefore, the highest load processor stops its
work, and reduces its remaining work when another

processor has completed all of its work. Stopping
the computation when all the tasks are completed is
called termination. The termination detection approach
used here is that described by Bertsekas and Tsitsiklis
[11], using a request and acknowledgement message.
Initially, each processor is in one of two states: inactive
and active. Upon receiving a task from the master,
slave processors are active. Slave processors send a
message to the master whenever they finish a job, and
receive messages setting their state to continue activ-
ity or become inactive once the termination condition
is satisfied. When any processor finishes its assigned
jobs, the highest load processor receives a suspend
message. It suspends execution, reduces its tasks to
half of its remaining jobs, and then resumes execution
where it left off.

The advantage of a centralized dynamic load bal-
ancing algorithm is that the master processor can
easily recognize when to terminate. A slave process
can detect when the local work is complete, but
cannot easily detect which remote processor has com-
pleted its work, or which has the highest load. The
disadvantage is that the approach does not scale, since
the master becomes a bottleneck and must maintain a
large amount of global state information. Centralized
load balancing is an adequate approach for stochastic
ensemble simulations when the jobs are long com-
pared to the communication time.

3.3 All-Redistribution Algorithm
The all-redistribution (AR) algorithm is also a cen-
tralized load balancing scheme. The idea of the AR
algorithm is presented in Figure 3 (b). The initial step
of the AR algorithm is similar to that of the P2P
algorithm. The processor that finished its jobs first
becomes idle, and notifies the master of its idle status.
Then, the master directs all workers to suspend exe-
cution, redistributes all remaining jobs in the workers’
queues evenly among all workers, and finally directs
the workers to resume execution.

4 THE ANALYSIS FRAMEWORK

This section presents a probabilistic framework for
load balancing analysis. The assumptions needed for
the analysis and the metrics used to measure load
imbalance are considered in detail.

4.1 Assumptions for the Analysis
The computational goal is to run an ensemble of n
stochastic (biochemical) simulations. Each individual
simulation is referred to as a “task”. Due to the
stochastic nature of each simulation, the execution
time t associated with a particular task cannot be
estimated in advance. (The same situation occurs with
deterministic adaptive models where the grid or time
step adaptation depends on the data, and the chosen

AHN, et al.: PARALLEL LOAD BALANCING STRATEGIES FOR ENSEMBLES OF STOCHASTIC BIOCHEMICAL SIMULATIONS 5

grid and step sizes greatly affect the total compute
time.) The task compute times are modeled by ran-
dom variables.

ASSUMPTION 1. The compute times associated with
different tasks are independent identically distributed
(i.i.d.) random variables.

The mean and the standard deviation of the random
variable task compute time T are denoted by µT and
σT , respectively. The exact shape of the probability
density function for T is not relevant for the analysis;
thus, the analysis results are very general.

Assumption 1 naturally covers the case where the
ensemble is obtained by running the same model mul-
tiple times, with different initial conditions, different
parameter values, or different seeds of the pseudo
random number generator. New model runs are inde-
pendent of the results of previous runs. Assumption 1
is also appropriate where multiple models are being
run, and where each model of the batch is chosen with
a specified frequency.

Next, the mapping of the n tasks of the ensemble
onto the p processors is considered. Processor i has
Ri tasks, such that R1 + . . . + Rp = n. Let tij denote
the compute time of the jth task on the ith processor
where i = 1, . . . , p , j = 1, . . . , Ri . Note that all tij
are i.i.d. random variables according to Assumption 1.
The total compute time Xi =

∑Ri

j=1 tij of processor i
is also a random variable. In probability theory, the
central limit theorem (CLT) states that the normalized
sum of a sufficiently large number of independent
identically distributed random variables, each with
finite mean and variance, will be approximately stan-
dard normally distributed [22]. Therefore, using As-
sumption 1, if Ri is large enough, then

Xi −Ri µT√
Ri σT

will be approximately normally distributed with

E [Xi] = Ri · µT , Var [Xi] = Ri · σ2
T .

It is therefore assumed that

ASSUMPTION 2. The number of tasks mapped onto
each processor is sufficiently large such that the probability
density function of the total compute time per processor is
approximately Gaussian.

Assumption 2 allows the analysis to work with
Gaussian distributions of the total compute times per
processor regardless of the underlying distribution of
individual task times. Thus a very general setting for
the analysis is possible. Assumption 2 is invalid dur-
ing the winddown period (when there are only a few
tasks left per processor), but that is a small fraction
of the total ensemble computation time. Even during
winddown load balancing continues to be beneficial,
but the theoretical analysis cannot be directly applied.

4.2 Metrics of Load Imbalance

The algebraic mean of the compute times per proces-
sor is defined as

ηX =
1
p

p∑

i=1

Xi =
1
p

p∑

i=1

Ri∑

j=1

tij .

Note that ηX is itself a random variable with E[ηX] =
(n/p)µT . The algebraic variance of the compute times
among processors is defined by

ξ2
X =

1
p− 1

p∑

i=1

(Xi − ηX)2

and is also a random variable. The basic premise of
variance is that larger variance between the compute
times on different processors is a symptom of larger
load imbalance. The first measure of the degree of
load imbalance is therefore the expected value of the
algebraic variance,

E
[
ξ2
X

]
=

1
p− 1

p∑

i=1

E
[
(Xi − ηX)2

]
, (1)

or more conveniently the square root
√

E
[
ξ2
X

]
.

Consider now the minimum and the maximum
computation times among all processors, Y1 =
min{X1, . . . , Xp} and Yp = max{X1, . . . , Xp}. These
are both random variables. The idle time spent by
processor i is the difference between the maximum
time and the compute time on the processor, Yp−Xi.
The second measure of load imbalance is the expected
value of the largest idle time, i.e., the difference
between the largest and the smallest compute times
across all processors,

E [Yp − Y1] =E [max{X1, . . . , Xp}]
− E [min{X1, . . . , Xp}] .

(2)

Finally, the third measure of load imbalance is the
expected value of the average idle compute time
across all processors,

E

[
1
p

p∑

i=1

(Yp −Xi)

]
= E [Yp − ηX] . (3)

4.3 Variability in Compute Times per Cell

The wild-type cell lineage simulation time distribu-
tion from a simulation experiment is plotted in Figure
4 (a). This distribution is based on 1,000 budding
yeast multistage cell tracking simulations with 25
processors. The best continuous Gaussian CDF ap-
proximation to the discrete cumulative histogram is
also shown; it is clear that the cell cycle simulation
times are not normally distributed [23]. The wild-type
simulation data from Figure 4 (a) has the mean and
standard deviation

µT = 488.1 sec. and σT = 116.6 sec. (4a)

6 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, JANUARY-FEBRUARY 2011

200 300 400 500 600 700 800
0

200

400

600

800

1000

Time (sec)

Fr
eq

ue
nc

y

200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Fi
tti

ng
 C

D
F

(a) Wild-type 1,000 simulations.

0 200 400 600 800
0

200

400

600

800

1000

Time (sec)

Fr
eq

ue
nc

y

(b) Prototype mutant 1,000 simulations.

Fig. 4. Discrete cumulative histogram of compute
times per cell (grey bar) for wild-type and mutant simu-
lations. The solid line represents the best-fit Gaussian
CDF.

Figure 4 (b) shows the cumulative discrete his-
togram of 1,000 prototype budding yeast mutant sim-
ulations. Approximately 75% of the cells never divide
and the remaining 25% divide very irregularly. For
the mutant simulation results

µT = 152.0 sec. and σT = 191.1 sec. (4b)

5 ANALYSIS OF THE LOAD BALANCING
ALGORITHMS

The probabilistic framework proposed here models
compute times per task as i.i.d. random variables.
Level of load imbalance is measured by three well-
defined metrics (1)–(3). The analysis approach quan-
tifies the expected value of the load imbalance metrics
before and after each work redistribution step, and
assess the reduction in the expected load imbalance.

This analysis framework is useful for a considerably
more general class of problems, beyond stochastic
cell cycle modeling. The proposed analysis approach
is applicable to any parallel ensemble calculations
where the compute times per task follow the same
probability distribution.

5.1 Order Statistics
Let X1, . . . , Xp be p independent identically dis-
tributed random variables with a probability den-
sity function (PDF) fX(x), and cumulative distri-
bution function (CDF) FX(x). The variables Y1 ≤
Y2 ≤ · · · ≤ Yp, where the Yi are the Xi arranged

in order of increasing magnitudes, are called or-
der statistics corresponding to the random sample
X1, . . . , Xp. Therefore, Y1 = min{X1, . . . , Xp} and
Yp = max{X1, . . . , Xp}. Some useful facts about order
statistics [24] follow. The CDF of the largest order
statistic Yp is given by

FYp
(y) = Pr [Yp ≤ y] = Pr [X1 ≤ y; . . . ; Xp ≤ y]

=
p∏

j=1

Pr [Xj ≤ y] =
p∏

j=1

FXj
(y) = [FX(y)]p

because the Xjs are independent. Likewise

FY1(y) = Pr [Y1 ≤ y] = 1− [1− FX(y)]p.

These are important special cases of the general for-
mula for FYr

(y),

FYr
(y) = Pr [Yr ≤ y]

=
p∑

i=r

(
p

i

)
[FX(y)]i [1− FX(y)]p−i

.

The probability density function for the rth order
variable Yr from X is

fYr (y) =
[FX(y)]r−1[1− FX(y)]p−r

B(r, p− r + 1)
fX(y),

where B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

is the Euler beta function.

Γ(r) =
∫ ∞

0

xr−1e−x dx is the gamma function. Thus,

the special probability density function for the maxi-
mum Yp and the minimum Y1 are

fYp(y) = p [FX(y)]p−1
fX(y), (5a)

fY1(y) = p [1− FX(y)]p−1
fX(y). (5b)

Numerical evaluation of expected order statistics is
complex. Chen and Tyler [25] show that the expected
value, standard deviation, and complete PDF of the
extreme order distributions can be accurately approx-
imated when the samples Xi are i.i.d. Gaussian. The
formulas use the expression Φ−1

(
0.52641/p

)
, where p

is the sample size and Φ−1(y) =
√

2 erfinv(2y − 1) is
the inverse function of the standard Gaussian CDF
Φ, and erfinv is the inverse of the error function

erf(x) =
2√
π

∫ x

0

e−t2 dt. Specifically, the expected val-

ues of the largest and the smallest order statistics of
i.i.d. Gaussian samples are, respectively,

E[Yp] ≈ µX + σX Φ−1
(
0.52641/p

)
, (6a)

E[Y1] ≈ µX − σX Φ−1
(
0.52641/p

)
. (6b)

Numerical evidence presented in [25] indicates that
the relative approximation errors are of the order
of a few percent for moderately large values of p
(p ≥ 20). Note that the compute times Xi here are not
identically distributed (unless all the Ri are the same),

AHN, et al.: PARALLEL LOAD BALANCING STRATEGIES FOR ENSEMBLES OF STOCHASTIC BIOCHEMICAL SIMULATIONS 7

and thus in general (6) does not apply to the min and
max compute times Y1 and Yp. (6) is used only for
initially equal Ri followed by AR, and in that case
experimental results presented in Section 6 indicate
that the approximations (6a) and (6b) are very close
to the experimentally determined expected values.

5.2 Some Useful Results for Load Balancing

Consider the moment right after one processor (say,
P1) finishes all its jobs. Define Ri to be the num-
ber of remaining jobs outstanding (including the one
currently executing) on the processor Pi. Since the
analysis is carried out at a given moment in time,
the Ri are known and are not random variables. Let
tij be the execution time for the remaining job j on
processor Pi. Let Xi be the execution time of all the
remaining jobs on Pi.

Consider a load balancing step that redistributes
(nonexecuting) jobs among processors. Since the total
number of jobs is not changed, the algebraic mean of
compute times remains the same.

LEMMA 1. Let X = [X1, . . . , Xp] be the remaining
compute times when the first processor finishes its tasks,
and before the load balancing is performed. Let X ′ =
[X ′

1, . . . , X
′
p] be the vector of compute times after the load

balancing step. The algebraic mean of compute times per
processor is the same random variable for all configurations,

ηX =
1
p

p∑

i=1

Xi = ηX′ =
1
p

p∑

i=1

X ′
i,

since X ′ contains the same tasks, therefore the same exe-
cution times tij , as X (just distributed differently). A load
balancing step does not change the expected algebraic mean
time E[ηX] = E[ηX′].

In what follows, the algebraic mean and the alge-
braic variance of the remaining number of jobs per
processor are denoted by

M(R) =
1
p

p∑

`=1

R`, V(R) =
1

p− 1

p∑

i=1

(
Ri−M(R)

)2
. (7)

Lemma 2 estimates the time left to completion.

LEMMA 2. Consider a task that has started but not yet
finished. There is no information about how far along the
computation is. The total execution time t of the task is
a random variable from a distribution with mean µT and
variation σ2

T . Then the total remaining execution time τ is
a random variable with

E[τ] =
1
2

µT , Var[τ] =
σ2

T

3
+

µ2
T

12
.

Proof: Consider that a fraction f ∈ [0, 1] of the task
still needs to run, while a fraction (1− f) of the task
has completed. Since there is no information about the
part that is done, f is a uniformly distributed random

variable, f ∈ U([0, 1]). It is important to notice that t
and f are independent random variables.

The time left to completion τ = f t is a random
variable. Due to the independence of t and f ,

E[τ] = E[f t] = E[f] E[t] =
1
2

µT .

For the variance,

E

[(
f t− 1

2
µT

)2
]

=
σ2

T

3
+

µ2
T

12
.

Define adjusted numbers R̂i of tasks per processor
such that E[Xi] = R̂i µT . The definition must account
for the fact that one task may be running. When
all processors are still working one task on each
processor is running. The adjusted number of tasks
is defined as

R̂i = Ri − 1
2

for i = 1, . . . , p . (8a)

Assume, without loss of generality, that P1 is the first
processor that finishes its jobs and becomes idle. All
other processors have one running task, and therefore

R̂1 = 0 and R̂i = Ri − 1
2

for i = 2, . . . , p . (8b)

Right after the load balancing step the processor Pi

has R′i tasks to execute. On processors P2, . . . , Pp the
first task is the one being executed, but all the R′1
tasks on P1 are newly assigned and queued: none has
started yet. This leads

R̂1 = R′1 and R̂i = R′i −
1
2

for i = 2, . . . , p . (8c)

The following lemma is a useful ingredient in prov-
ing the main results of the paper.

LEMMA 3. The expected value of the algebraic variance
of the compute times (1) depends on both the algebraic
variance of the number of tasks, and the variance of the
individual compute times, and is given by

E
[
ξ2
X

]
=V(R̂)µ2

T + M(R̂)σ2
T

+
p− 1

p

(
−1

6
σ2

T +
1
12

µ2
T

)
,

(9)

where the R̂i represent the adjusted numbers of tasks per
processor (8). The algebraic mean M(R̂) and the algebraic
variance V(R̂) are defined in (7).

Proof: Redefine tij to be the time remaining for
job j on processor Pi; the (random) compute times
per processor and their average are

Xi =
Ri∑

j=1

tij , ηX =
1
p

p∑

`=1

R∑̀
m=1

t`m .

Each processor Pi, i ≥ 2, has one task in progress
with expected completion time µT /2 when P1 finishes

8 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, JANUARY-FEBRUARY 2011

its tasks. Note that if P1 is idle (right before load
balancing) then R1 = 0. If P1 is not idle (right after
load balancing step) then none of the tasks assigned
to it has started and E[t1j] = µT for j = 1, . . . , R1.
Consequently, the mean compute time of the first job
is different on P1 than it is on other processors;

E[tij] =





µT /2, i = 2, . . . , p and j = 1,
µT , i = 2, . . . , p and 2 ≤ j ≤ Ri,
µT , i = 1 and R1 ≥ 1,
0 , i = 1 and R1 = 0.

Now

Xi − ηX =
Ri∑

j=1

tij − 1
p

p∑

`=1

R∑̀
m=1

t`m

=
(

1− 1
p

) Ri∑

j=1

tij − 1
p

p∑

`=1,` 6=i

R∑̀
m=1

t`m

=
(

1− 1
p

) Ri∑

j=1

(tij − E[tij]) +
(

1− 1
p

) Ri∑

j=1

E[tij]

− 1
p

p∑

`=16̀=i

R∑̀
m=1

(t`m − E[t`m]) − 1
p

p∑

`=1
` 6=i

R∑̀
m=1

E[t`m].

(10)

Recall that R̂i was defined so that
Ri∑

j=1

E[tij] = R̂i µT

and
(

1− 1
p

) Ri∑

j=1

E[tij]− 1
p

p∑

`=1
` 6=i

R∑̀
m=1

E[t`m] =

(
R̂i −M(R̂)

)
µT .

Note that

E




Ri∑

j=1

(tij − E[tij])


 = 0 .

E[(Xi−ηX)2] will be determined from (10). First apply
Lemma 2 to get

E
[
(tij − E[tij])

2
]

=




σ2
T

3 + µ2
T

12 , i = 2, ..., p and j = 1,
σ2

T , i = 2, ..., p and j ≥ 2,
σ2

T , i = 1 and R1 ≥ 1,
0 , i = 1 and R1 = 0.

In compact notation

Ri∑

j=1

E
[
(tij − E[tij])

2
]

=

R̂i σ2
T +

(
−1

6
σ2

T +
1
12

µ2
T

)
(1− δi1) ,

where δi1 is the Kronecker delta. Due to the indepen-

dence of individual compute times,

E [(tij − E[tij]) (t`m − E[t`m])] = 0 for j 6= m or i 6= `.

Hence E[(Xi − ηX)2] =
(
R̂i −M(R̂)

)2

µ2
T +

1
p

(
M(R̂) + (p− 2) R̂i

)
σ2

T

+
(
−1

6
σ2

T +
1
12

µ2
T

) (
p2 − p− 1− (p2 − 2p) δi1

p2

)
.

Finally the expected value of the algebraic variance

E
[
ξ2

]
=

1
p− 1

p∑

i=1

E[(Xi − ηX)2]

= V(R̂)µ2
T + M(R̂)σ2

T +
p− 1

p

(
−1

6
σ2

T +
1
12

µ2
T

)
.

Lemma 3 provides insight into how the load bal-
ancing algorithms reduce the algebraic variance of
compute times per processor. Any redistribution of
tasks does not change the total number of tasks, and
therefore does not change the algebraic mean M(R̂).
The second and the third terms in (9) are invariant
with any load balancing algorithm. However, a re-
duction in the algebraic variance V(R̂) of the number
of tasks will decrease the expected algebraic variance
of the compute times by reducing the first term in (9).
Therefore the following corollary can be derived.

LEMMA 4. Let R and R′ be the number of tasks per
processor before and after a load redistribution step, respec-
tively. Let X and X ′ be the compute times per processor
before and after a load redistribution step, respectively. The
decrease in the expected value of the algebraic variance of
the compute times (1) is

E
[
ξ2
X

]− E
[
ξ2
X′

]
=

(
V(R̂)−V(R̂′)

)
µ2

T , (11)

where the R̂i represent the adjusted numbers of tasks per
processor (8).

5.3 Analysis of Static Distribution

Let Xi be total job execution time for processor i and
tij be the jth job time of Xi in the static (no dynamic
load balancing) approach. Assume the total number
n of jobs is a multiple of the number p of processors.
Processor i is assigned R = dn/pe = n/p jobs, so that

Xi =
R∑

j=1

tij for i = 1, . . . , p. From the analysis in the

previous section, the total times per processor are i.i.d.
approximately Gaussian random variables X1, . . . , Xp

with mean and variance given by

µX = R µT , σ2
X = R σ2

T . (12)

AHN, et al.: PARALLEL LOAD BALANCING STRATEGIES FOR ENSEMBLES OF STOCHASTIC BIOCHEMICAL SIMULATIONS 9

The expected value of the algebraic variance (1) is
given by Eq. (9) where all R̂i = R,

E
[
ξ2
X

]
= R σ2

T +
p− 1

p

(
−1

6
σ2

T +
1
12

µ2
T

)
. (13)

Let Y be the order distribution of X : Y1 ≤ Y2 ≤
· · · ≤ Yp. From (5a)–(5b),

E[Yp] =
∫ ∞

−∞
y p [FX(y)]p−1fX(y) dy, (14)

E[Y1] =
∫ ∞

−∞
y p [1− FX(y)]p−1fX(y) dy (15)

with the Gaussian probability density function

fX(y) =
1

σX

√
2π

e−(y−µX)2/(2σ2
X) , (16)

and the Gaussian cumulative distribution function

FX(y) =
1
2

[
1 + erf

(
y − µX

σX

√
2

)]
. (17)

From (14)–(17) together with the simulation data (4a),
the probabilistic load imbalance measures (2)–(3) can
be evaluated by numerical integration.

Alternatively, the approximations (6) can be used
together with (12) to obtain

E[Yp − Y1] ≈ 2
√

R σT Φ−1
(
0.52641/p

)

and

E[Yp − ηY] ≈
√

R σT Φ−1
(
0.52641/p

)
.

5.4 Analysis of P2P Load Balancing

Call P1 the first processor that finishes its jobs and
becomes idle. At this time each processor Pi , i > 1,
has Ri outstanding jobs and a total remaining exe-
cution time Xi. By the CLT, each of X2, . . . , Xp is
approximately normally distributed if all Ri are large.
The first (running) job on P2, . . . , Pp has a different
PDF and a negligible effect on compute time statistics,
assuming that Ri À 1 for i ≥ 2.

In the P2P algorithm the highest loaded processor
sends half of its unfinished jobs to the idle processor.
Assume, without loss of generality, that and Pp has
the highest load of Rp unfinished jobs. The P2P load
balancing step moves bRp/2c jobs from the processor
Pp to P1. The loads for P2, . . . , Pp−1 are not changed.
Therefore, the number of jobs per processor after
redistribution is

R′1 =
⌊

Rp

2

⌋
, R′2 = R2 , . . . , R′p−1 =

Rp−1, R′p =
⌈

Rp

2

⌉
.

Let X ′
i be the remaining compute time for processor

Pi after the P2P load balancing step. From the above
X ′

i = Xi for i = 2, . . . , p − 1. For the first and last

processors the expected values of the compute times
are

E[X ′
1] = R′1 µT =

⌊
Rp

2

⌋
µT ,

E[X ′
p] =

(
R′p −

1
2

)
µT =

(⌈
Rp

2

⌉
− 1

2

)
µT .

The above expression accounts for the fact that Pp has
one task in progress. Furthermore,

E[X ′
p]− E[X ′

1] =
(

Rp mod 2− 1
2

)
µT .

The following propositions prove that each P2P re-
distribution step decreases the level of load imbalance
as measured by the metrics (1)–(3).

PROPOSITION 1. The expected value of the algebraic
variance of the compute times per processor (1) decreases
after a P2P load balancing step by

E[ξ2
X]− E[ξ2

X′] =
Rp (Rp − 1)

2 (p− 1)
µ2

T .

Proof: The average adjusted number of tasks per
processor is the same before and after P2P load bal-
ancing, M(R̂) = M(R̂′). The decrease in the algebraic
variance of the adjusted number of tasks is

V(R̂)−V(R̂′) =
1

p− 1

(
(R̂1 −M(R̂))2 − (R̂′1 −M(R̂))2

+(R̂p −M(R̂))2 − (R̂′p −M(R̂))2
)

=
Rp (Rp − 1)

2 (p− 1)
.

Lemma 4 provides the difference between the ex-
pected variances of compute times across processors
before and after a P2P load balancing step,

E[ξ2
X]− E[ξ2

X′] =
Rp (Rp − 1)

2 (p− 1)
µ2

T . (18)

The P2P algorithm can be meaningfully applied
only when the number of tasks on the most over-
loaded processor is Rp ≥ 2. The relation (18) then
provides a strict decrease in the expected value of the
algebraic variance of compute times.

PROPOSITION 2. The expected value of the largest idle
time (2) is monotonically decreased after a P2P load bal-
ancing step, E

[
Y ′

p − Y ′
1

] ≤ E [Yp − Y1] .

Proof: Before the P2P load balancing step the
expected maximum imbalance is

E[Yp]− E[Y1] = E[Yp] ≥ E[Xp] = R̂p µT .

After the P2P load balancing step, the new expected
maximum imbalance time is E[Y ′

p]− E[Y ′
1].

Consider the random variables

Z2 = min{X2, · · · , Xp−1} ,

Zp−1 = max{X2, · · · , Xp−1} ≤ Yp .

10 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, JANUARY-FEBRUARY 2011

The smallest and the largest order statistics after
P2P balancing are Y ′

1 = min{X ′
1, X

′
p, Z2} and Y ′

p =
max{X ′

1, X
′
p, Zp−1}. There are nine possible combi-

nations of Y ′
1 and Y ′

p values. Two of them lead to
Y ′

1 = Y ′
p , i.e., the maximum idle time is zero after load

balancing. The remaining seven combinations are as
follows:

(1) Y ′
1 = Z2 and Y ′

p = Zp−1 ;
(2) Y ′

1 = Z2 and Y ′
p = X ′

p ;
(3) Y ′

1 = Z2 and Y ′
p = X ′

1 ;
(4) Y ′

1 = X ′
p and Y ′

p = Zp−1 ;
(5) Y ′

1 = X ′
p and Y ′

p = X ′
1 ;

(6) Y ′
1 = X ′

1 and Y ′
p = Zp−1 ;

(7) Y ′
1 = X ′

1 and Y ′
p = X ′

p .
In Case (1) the balanced times fall between Z ′2 and
Z ′p−1. The expected maximum idle time reduction is

{E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= {E[Yp]− E[Y1]} − {E[Zp−1]− E[Z2]}
= {E[Yp]− E[Zp−1]}+ {E[Z2]} ≥ E[Z2] ≥ 0 .

The reductions of expected maximum idle times for
Cases (2) to (7) are straightfoward verification.

Case(2) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

p]− E[Z2]} ≥ E[Yp]− E[X ′
p]

≥ R̂p µT − (dRp/2e − 0.5)µT > 0 .

Case(3) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

1]− E[Z2]} ≥ E[Yp]− E[X ′
1]

≥ (Rp − 0.5− bRp/2c) µT > 0 .

Case(4) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[Zp−1]− E[X ′

p]} ≥ E[X ′
p]

= (dRp/2e − 0.5) µT > 0 .

Case(5) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

1]− E[X ′
p]}

≥
(
R̂p − bRp/2c+ dRp/2e − 0.5

)
µT > 0 .

Case(6) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[Zp−1]− E[X ′

1]} ≥ E[X ′
1] > 0 .

Case(7) : {E[Yp]− E[Y1]} − {E[Y ′
p]− E[Y ′

1]}
= E[Yp]− {E[X ′

p]− E[X ′
1]}

≥
(
R̂p + 0.5 + bRp/2c − dRp/2e

)
µT > 0 .

Therefore, after a P2P load balancing step, the ex-
pected maximum time imbalance is always the same
on reduced.

The third measure of load imbalance is the expected
value of the average idle compute time across all
processors

E

[
1
p

p∑

i=1

(Yp −Xi)

]
= E [Yp − ηX] .

PROPOSITION 3. The expected value of the average idle
time (3) does not increase after a P2P load balancing step,

E
[
Y ′

p − ηX′
] ≤ E [Yp − ηX] .

Proof: The decrease in the expected average idle
time is (since ηX′ = ηX)

E [Yp − ηX]− E
[
Y ′

p − ηX′
]

= E [Yp]− E
[
Y ′

p

]
.

Consider each of the possible values of Y ′
p separately.

Y ′
p = Zp−1 : E [Yp]− E

[
Y ′

p

]
= E [Yp − Zp−1] ≥ 0;

Y ′
p = X ′

1 : E [Yp]− E
[
Y ′

p

] ≥
(

R̂p −
⌊

Rp

2

⌋)
µT > 0;

Y ′
p = X ′

p : E [Yp]− E
[
Y ′

p

] ≥
(

Rp −
⌈

Rp

2

⌉)
µT > 0.

5.5 Analysis of AR Load Balancing

In the AR algorithm, all remaining jobs on all proces-
sors are equitably redistributed among all processors
right after P1 finishes its jobs and becomes idle. At this
time each processor Pi, i = 2, · · · , p, has Ri remaining
jobs and a remaining execution time Xi. One job is
in progress with an expected completion time µT /2
and Ri − 1 jobs are queued. Ri is known and not a
random variable because the analysis is carried out at
a given time. The total number of remaining jobs is

p∑

i=1

Ri. Let b =

(
p∑

i=1

Ri

)
mod p , and

r = bM(R)c = M(R)− b

p
, r̂ = r − 1

2
.

The new number of jobs that the AR algorithm assigns
to processor Pi is

R′i =





r , if b = 0 and i = 1, . . . , p ,
r , if b 6= 0 and i = 1, . . . , p− b ,
r + 1 , if b 6= 0 andi = p− b + 1, . . . , p .

Let X ′
i denote the execution time of the jobs on Pi

after the AR step. The expected value of X ′
i is

E[X ′
i] =





r µT , if i = 1 ,
r̂ µT , if i = 2, · · · , p− b ,
(r̂ + 1) µT , if i = p− b + 1, . . . , p .

(19)

PROPOSITION 4. The expected algebraic variance (1) of
X ′ is smaller than the expected algebraic variance of X
after an AR load balancing step, E[ξ2

X′] < E[ξ2
X] .

Proof: According to Lemma 4 the expected de-
crease in the algebraic variance of the execution
times is proportional to the decrease in the algebraic
variance of the modified number of jobs. The AR
algorithm redistributes the number of jobs equitably,
such that after the load balancing step the algebraic
variance of the number of tasks is the smallest among
all possible distributions. Therefore the AR load bal-
ancing algorithm decreases the expected variability of
execution times across processors by the maximum
possible amount, and E[ξ2

X′] < E[ξ2
X].

AHN, et al.: PARALLEL LOAD BALANCING STRATEGIES FOR ENSEMBLES OF STOCHASTIC BIOCHEMICAL SIMULATIONS 11

The algebraic variance of the modified number of
jobs after AR load balancing is

V(R̂′) =
1

p− 1

p∑

i=1

(
R̂′i −M(R̂′)

)2

=
p (4b + 1)− (2b + 1)2

4 p (p− 1)
.

The decrease in the expected value of the algebraic
variance of the compute times is

E
[
ξ2
X

]− E
[
ξ2
X′

]
=(

V(R̂)− p (4b + 1)− (2b + 1)2

4 p (p− 1)

)
µ2

T .

For the remaining part of the analysis consider
the case where the mean number of jobs is large,
M(R) À 1. In this case r + 1 ≈ r ≈ r̂, i.e., the jobs
are nearly equally distributed to processors by the AR
step. Moreover, the fact that one job has started on
each of P2 to Pp but not on P1 has a negligible effect
on the statistics of compute times (which are domi-
nated by the large number of queued tasks). Therefore
assume that M(R) is large, b = 0, and no jobs have
started on any of the processors. The AR algorithm
recursively returns to the initial circumstances of the
previous AR load balancing step, but with a smaller
number of jobs. The equal distribution of work and
the CLT permit approximation of the compute times
per processor X ′

1, . . . , X
′
p with i.i.d. Gaussian random

variables.

PROPOSITION 5. If Rp is sufficiently large, the ex-
pected value of the largest idle time (2) is decreased after
an AR load balancing step, E

[
Y ′

p − Y ′
1

]
< E [Yp − Y1 .]

Proof: The maximum compute time before bal-
ancing is at least equal to the compute time on the
processor with the largest number of remaining jobs
(assumed to be Pp without loss of generality). This
implies that

E[Yp] ≥ E[Xp] = Rp µT .

Similarly, the minimum compute time is at most equal
to the compute time on the processor with the smallest
number of remaining jobs. Therefore

E[Y1] ≤ E[X1] = R1 µT = 0 ,

and

Rp µT ≤ E[Yp− Y1] ,
(
Rp−M(R)

)
µT ≤ E[Yp− ηY] .

The expected values of the greatest and the least
order statistics in Gaussian samples can be accurately
approximated using (6a)–(6b). Under the above sim-
plifying assumptions (b = 0 and no processes have
started) all the Xi are (approximately) i.i.d. normal

random variables. From (6a), (6b), and (19),

E[Y ′
p] = r µT +

√
r σT Φ−1(0.52641/p) + errp(p),

E[Y ′
1] = r µT −

√
r σT Φ−1(0.52641/p) + err1(p) .

Assume that the relative approximation errors have
an upper bound ε < 0.5 for all p ≥ 20:

|errp(p)| ≤ ε ·
∣∣∣r µT +

√
r σT Φ−1(0.52641/p)

∣∣∣ ,

|err1(p)| ≤ ε ·
∣∣∣r µT −

√
r σT Φ−1(0.52641/p)

∣∣∣ ,

taking the relative errors with respect to the approxi-
mate values for convenience. Note that the results in
[25] estimate ε ≤ 0.04. Consequently,

E[Y ′
p]− E[Y ′

1] =

2
√

r σT Φ−1(0.52641/p) + errp(p)− err1(p)

For bounded numbers of processors p ≤ pmax

the inverse function Φ−1(0.52641/p) is bounded by
Φ−1(0.52641/pmax) = Cmax ≈ 4.4 for pmax = 1, 000, 000.
Therefore,

E[Y ′
p]− E[Y ′

1] ≤ 2 Cmax

√
r σT + |errp(p)|+ |err1(p)|

≤ 2 (1 + ε)Cmax

√
r σT + 2 ε r µT .

The decrease in expected maximum idle time is at
least

E [Yp − Y1]− E
[
Y ′

p − Y ′
1

]

≥ (Rp − 2 ε r) µT − 2 (1 + ε)Cmax

√
r σT

> (1− 2 ε) Rp µT − 2 (1 + ε)Cmax

√
Rp σT ≥ 0

for r < Rp and

Rp ≥ 4 (1 + ε)2 C2
max

(1− 2 ε)2

(
σT

µT

)2

.

This lower bound for Rp does not depend on p (20 ≤
p ≤ pmax), but depends only on σT and µT .

PROPOSITION 6. If Rp > (1 + ε + k) r for some k > 0
and r is sufficiently large, the expected value of the average
idle time (3) is decreased after an AR load balancing step,
E

[
Y ′

p − ηX

] ≤ E [Yp − ηX] .

Proof: Before an AR load balancing step, since
E[Yp] ≥ E[Xp] = Rp µT as before, the mean load
imbalance is E [Yp − ηX] ≥ (Rp − r)µT . After the AR
step, and using ε from the proof of Proposition 5, the
mean load imbalance becomes

E
[
Y ′

p − ηX

]

= r µT +
√

r σT Φ−1(0.52641/p) + errp(p)− rµT

≤ (1 + ε)
(
r µT +

√
r σT Φ−1(0.52641/p)

)
− rµT

≤ ε rµT + (1 + ε)Cmax

√
r σT .

12 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, JANUARY-FEBRUARY 2011

Therefore, the difference after the AR step is

E [Yp − ηX]− E
[
Y ′

p − ηX

]

≥ (Rp − r − ε r) µT − (1 + ε) Cmax

√
r σT

> k r µT − (1 + ε)Cmax

√
r σT .

The expected mean idle time decreases if Rp is suffi-
ciently large, when

Rp > (1 + ε + k) r ≥ (1 + ε + k)
(

(1 + ε)Cmax σT

k µT

)2

.

6 EXPERIMENTAL RESULTS
This section provides experimental load balancing
results with the budding yeast cell cycle model. To
evaluate the proposed load balancing algorithms, the
ensemble of simulations is executed on Virginia Tech’s
System X supercomputer [26]. The supercomputer has
1,100 Apple PowerMac G5 nodes, with dual 2.3 GHz
PowerPC 970FX processors and 4GB memory.

6.1 Evaluation of the Static Balancing
Consider the case with n = 1, 000 cell cycle simu-
lations distributed evenly across p = 25 processors,
which results in R = 40 tasks per processor, to asses
how well the theoretical estimates of load imbalance
metrics agree with the simulation results. To evaluate
probabilistic measures the expected maximum CPU
time E[Yp] and minimum CPU time E[Y1] can be
calculated in two ways: the integral method (14)–
(15) and the approximation method (6a)–(6b). E[Yp] =
20, 973 and E[Y1] = 18, 075 from the former method
are very similar to the latter approximation results
E[Yp] = 20, 965 and E[Y1] = 18, 083. Results from both
methods match the experimental results in Table 1.

Probabilistic measures (1)–(3) of load imbalance are
the root expected algebraic variance of times across
the processors,

√
E

[
ξ2
X

]
=

√
p

p− 1
·R · σ2

T ≈ 752.65 seconds,

the expected worst case load imbalance,

E[Yp]− E[Y1] ≈ 2, 898 seconds,

and the expected idle time per processor,

E [Yp − ηX] ≈ 1, 449 seconds.

In the simulation experiment based on 1,000 simu-
lations with a static distribution over 25 processors,
the root algebraic variance of CPU times is 679.83
seconds, the maximum load imbalance Yp − Y1 is
2, 740.42 seconds, and the average CPU idle time

(1/p)
p∑

i=1

(Yp−Xi) = 1, 270.75 seconds. The theoretical

probabilistic measures of load imbalance are consis-
tent with the simulation experiment values.

6.2 Evaluation of Load Balancing Efficiency
Two test cases are used to numerically evaluate the
P2P and the AR algorithms: the first uses the real
compute times per task obtained from running the
wild-type cell cycle model, and the second uses syn-
thetic task compute times drawn from the best fit
Gaussian distribution. There are n = 1, 000 tasks in
the ensemble run on p = 25 processors.

Figures 5 (a) and (d) show the decrease in the
root expected algebraic variance of compute times
when performing several P2P and AR steps of the
algorithm. Figures 5 (b) and (e) show the reduction in
the expected maximum load imbalance among CPUs.
Figures 5 (c) and (f) show the decrease in the expected
idle time per processor after load balancing steps.
For all test cases the variance decreases consistently
on each iteration as predicted by the theory. The
AR algorithm requires fewer iterations than the P2P
algorithm.

6.3 Load Balancing Results for Wild-Type Yeast
This section describes our load balancing results for
the wild-type budding yeast cell cycle model. Figure 6
compares the processor CPU times and wall-clock
time using no dynamic load balancing, P2P load
balancing, and AR load balancing algorithms. 1,000
simulations with 25 processors and 10,000 simulations
with 100 processors are executed for this experiment.
With the static distribution (no load balancing), the
variance of the CPU times is not huge because wild-
type cells divide in a relatively regular fashion. The
simulation time is just affected by the stochastic
nature of the SSA. Nevertheless, the two dynamic
load balancing methods reduce the wall-clock time
compared to the static method; the differences are ap-
proximately 1,000 seconds (4.9% of static distribution
wall-clock time) for 1,000 runs with 25 processors, and
2,800 seconds (5.4% of static distribution wall-clock
time) for 10,000 runs with 100 processors.

Table 1 demonstrates the efficiency of the two dy-
namic load balancing algorithms clearly. The average
idle CPU times (3) for the no-balancing simulation are
1270.75 seconds for 1,000 runs with 25 processors and
3160.77 seconds for 10,000 runs with 100 processors.
Therefore, the average idle CPU time has increased
with the increasing number of jobs per processor.
The average idle CPU times for the load balancing
algorithms, however, do not increase with the number
of jobs per processor. For the P2P load balancing
simulation, the average idle times are 418.88 seconds
for 1,000 runs with 25 processors and 510.84 seconds
for 10,000 runs with 100 processors. For the AR load
balancing simulation, the average idle times are 432.44
seconds for 1,000 runs with 25 processors and 373.80
seconds for 10,000 runs with 100 processors. Figure
7 compares the average idle CPU times for the static
and load balancing algorithms. For wild-type yeast

AHN, et al.: PARALLEL LOAD BALANCING STRATEGIES FOR ENSEMBLES OF STOCHASTIC BIOCHEMICAL SIMULATIONS 13

0 2 4 6 8
200

300

400

500

600

700

800

Steps

T
im

e
(s

ec
)

Experimental
Gaussian

0 2 4 6 8
500

1000

1500

2000

2500

3000

Steps

T
im

e
(s

ec
)

Experimental
Gaussian

0 2 4 6 8
400

600

800

1000

1200

1400

1600

Steps

T
im

e
(s

ec
)

Experimental
Gaussian

(a) P2P :
√

E [ξ2
X] (b) P2P : E[Yp − Y1] (c) P2P : E[Yp − ηX]

0 1 2
200

300

400

500

600

700

800

Steps

T
im

e
(s

ec
)

Experimental
Gaussian

0 1 2
500

1000

1500

2000

2500

3000

Steps

T
im

e
(s

ec
)

Experimental
Gaussian

0 1 2

400

600

800

1000

1200

1400

1600

Steps

T
im

e
(s

ec
)

Experimental
Gaussian

(d) AR :
√

E [ξ2
X] (e) AR : E[Yp − Y1] (f) AR : E[Yp − ηX]

Fig. 5. Numerical evaluation for the two load-balancing algorithms on two test cases: with the real simulation
times per task and with synthetic Gaussian distributed simulation times per task. There are n = 1, 000 tasks in the
ensemble run on p = 25 processors. The root expected algebraic variance, the expected maximum imbalance,
and the expected idle CPU time per processor are evaluated with the P2P and AR load balancing algorithms.

0 5 10 15 20 25
1

1.5

2

2.5
x 10

4

Processor Number

E
la

p
se

d
 T

im
e
(s

e
c)

(a) Static distribution.

0 5 10 15 20 25
1

1.5

2

2.5
x 10

4

Processor Number

E
la

p
se

d
 T

im
e
(s

e
c)

(b) P2P load balancing.

0 5 10 15 20 25
1

1.5

2

2.5
x 10

4

Processor Number

E
la

p
se

d
 T

im
e
(s

e
c)

(c) AR load balancing.

0 20 40 60 80 100
3.5

4

4.5

5

5.5
x 10

4

Processor Number

E
la

p
se

d
 T

im
e
(s

e
c)

(d) Static distribution.

0 20 40 60 80 100
3.5

4

4.5

5

5.5
x 10

4

Processor Number

E
la

p
se

d
 T

im
e
(s

e
c)

(e) P2P load balancing.

0 20 40 60 80 100
3.5

4

4.5

5

5.5
x 10

4

Processor Number

E
la

p
se

d
 T

im
e
(s

e
c)

(f) AR load balancing.

Fig. 6. Elapsed compute times per processor (diamond marker) and wall clock time (solid line) for wild-type
multistage cell cycle simulations. 1,000 runs with 25 processors for (a), (b), (c) and 10,000 runs with 100
processors for (d), (e), (f). Small grey rectangular height represents each job time for the processor.

simulations, the dynamic load balancing algorithms
have eliminated approximately two thirds of the idle
time for 25 processors (from 6.5% of the total CPU
time down to 2% of the total CPU time), and roughly
85% for the 100 processor experiment (from 7% of the
total CPU time down to 1% of the total CPU time).

The communication time for the load balancing
methods should be considered. The total communi-
cation times for the two dynamic load balancing al-

gorithms are approximately 0.2 seconds for 1,000 runs
with 25 processors and 1.0 second for 10,000 runs with
100 processors. Therefore, the total communication
time for the load balancing is negligible compared
to elapsed wall-clock time. The two load balancing
algorithms (P2P and AR) have similar performance
for these simulations. Both of the load balancing
strategies reduce system resources efficiently for the
wild-type cell cycle simulation.

14 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, JANUARY-FEBRUARY 2011

TABLE 1
Average, maximum, and minimum compute times, maximum idle time, average (percentage) idle time and RAV
(root of the algebraic variance) of compute times for wild-type cell simulations. The static and the two proposed
load balancing approaches are compared by results from both a small and a large ensemble. Units are seconds.

1,000 Runs (25 processors) 10,000 Runs (100 processors)
Metrics Static P2P AR Static P2P AR

Avg compute time 19524.46 19362.33 19276.73 47880.41 47778.01 48038.93
RAV of compute times 679.83 195.10 171.67 1271.90 196.16 155.76

Max compute time 20795.21 19781.22 19708.78 51050.18 48288.85 48412.73
Min compute time 18054.79 19084.42 19033.22 44430.84 47354.04 47801.99

Max idle time 2740.42 696.80 675.56 6619.34 934.81 610.74
Avg idle time 1270.75 418.89 432.05 3169.77 510.84 373.80

Percentage idle time (%) 6.50% 2.16% 2.24% 6.62% 1.07% 0.78%

0 5 10 15 20 25
0

2000

4000

6000

8000

Processor Number

E
la

p
se

d
 T

im
e
(s

e
c)

(a) Static distribution.

0 5 10 15 20 25
0

2000

4000

6000

8000

Processor Number

E
la

p
se

d
 T

im
e
(s

e
c)

(b) P2P load balancing.

0 5 10 15 20 25
0

2000

4000

6000

8000

Processor Number

E
la

p
se

d
 T

im
e
(s

e
c)

(c) AR load balancing.

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10

4

Processor Number

E
la

p
s
e
d
 T

im
e
(s

e
c
)

(d) Static distribution.

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10

4

Processor Number

E
la

p
s
e
d
 T

im
e
(s

e
c
)

(e) P2P load balancing.

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10

4

Processor Number

E
la

p
s
e
d
 T

im
e
(s

e
c
)

(f) AR load balancing.

Fig. 8. Elapsed compute times per processor (diamond marker) and wall clock time (solid line) of prototype
mutant multistage cell cycle simulations. 1,000 runs with 25 processors for (a), (b), (c) and 10,000 runs with 100
processors for (d), (e), (f). Small grey rectangular height represents each job time for the processor.

0 500 1000 1500 2000 2500 3000 3500 4000

10,000 runs

1,000 runs

Time (sec)

Static Distribution
P2P Load Balancing
AR Load Blancing

Fig. 7. The average idle CPU times comparison for
the static distribution and the final step of the load
balancing methods.

6.4 Load Balancing Results for Mutant Yeast

This section presents experimental results for the pro-
totype budding yeast mutant cell cycle model. For the
mutant strain we are considering, the initial cell might
never divide at all or it might divide several times

and then cease division [5]. Therefore, the CPU time
to simulate such a mutant cell varies, even if the end
time of the simulation is fixed. For these simulations,
the two dynamic load balancing algorithms show
huge advantages in CPU utilization.

Figure 8 compares the CPU time that each processor
required to complete its assigned tasks. Figures 8 (a),
(b), (c) show results for 1,000 runs with 25 processors
and Figures 8 (e), (f), (g) show results for 10,000
runs with 100 processors. For the static distribution,
the variance is huge because of the characteristics of
mutant simulations. Different rectangle heights show
different CPU times per task. The dynamic load bal-
ancing algorithms reduced the wall clock times by
approximately 26% for 1,000 runs with 25 processors,
and by approximately 21% for 10,000 runs with 100
processors. Thus the two dynamic load balancing

AHN, et al.: PARALLEL LOAD BALANCING STRATEGIES FOR ENSEMBLES OF STOCHASTIC BIOCHEMICAL SIMULATIONS 15

TABLE 2
Average, maximum, and minimum compute times, maximum idle time, average (percentage) idle time and RAV
(root of the algebraic variance) of compute times for wild-type cell simulations. The static and the two proposed
load balancing approaches are compared by results from both a small and a large ensemble. Units are seconds.

1,000 Runs (25 processors) 10,000 Runs (100 processors)
Metrics Static P2P AR Static P2P AR

Avg compute time 6079.19 5611.64 5740.47 13920.60 14041.65 13989.86
RAV of compute times 943.35 165.24 117.51 1695.19 192.80 164.07

Max compute time 8054.18 5922.13 5965.04 18037.66 14616.97 14605.74
Min compute time 3995.03 5416.86 5553.87 8949.82 13801.48 13814.88

Max idle compute time 4059.15 505.27 411.17 9087.84 815.49 790.86
Avg idle time 1974.99 310.49 224.58 4117.06 575.32 615.88

Percentage idle time (%) 32.49% 5.53% 3.91% 29.57% 4.10% 4.40%

algorithms show greater improvements for mutant
model simulation than for wild-type model simula-
tion. Table 2 also shows the improved efficiency of the
two dynamic load balancing algorithms compared to
a static method. Statements similar to those for Table 1
can be made about Table 2, but the differences for
mutant simulation are considerably more pronounced
than for wild-type simulation. Average processor idle
time was reduced by 85% or more for each dynamic
algorithm and on each ensemble (from 30% of the
total CPU time down to only 4% of the total CPU
time).

7 CONCLUSIONS AND FUTURE WORK

This paper introduces a new probabilistic framework
to analyze the effectiveness of load balancing strate-
gies in the context of large ensembles of stochastic
simulations. Ensemble simulations are employed to
estimate the statistics of possible future states of the
system, and are widely used in important applications
such as climate change and biological modeling. The
present work is motivated by stochastic cell cycle
modeling, but the proposed analysis framework can
be directly applied to any ensemble simulation where
many tasks are mapped onto each processor, and
where the task compute times vary considerably.

The analysis assumes that the compute times of
individual tasks are not known, but can be modeled
as independent identically distributed random vari-
ables. This is a natural assumption for an ensemble
computation, where the same model is run repeat-
edly with different initial conditions and parameter
values. No assumption is made about the shape of the
underlying probability density; therefore the analysis
is very general. The level of load imbalance, as given
by well defined metrics, is also a random variable.
The analysis focuses on determining the decrease in
the expected value of load imbalance after each work
redistribution step. The analysis is applied to two dy-
namic load balancing strategies. In the P2P algorithm
the idle processor receives new tasks from the most

overloaded processor. In the AR algorithm the master
processor redistributes all jobs evenly to the workers
when one processor finishes all its work. Termination
detection is using request and acknowledgement mes-
sages. The analysis reveals that the expected level of
load imbalance is decreased after a step of each of the
algorithms. Numerical results support the theoretical
analysis. On an ensemble of budding yeast cell cycle
simulations, compute times required to simulate each
cell cycle progression using Gillespie’s algorithm are
inherently variable due to the stochastic nature of
the model. Dynamic load balancing reduced the total
compute times by about 5% for ensembles of wild
type cells, and by about 25% for ensembles of mutant
cells. Average processor idle time was reduced by 85%
or more for ensembles of mutant cells.

Future work will investigate decentralized dynamic
load balancing approaches that are scalable to mas-
sively parallel architectures. The theoretical analy-
sis proposed here for centralized schemes will be
extended to the decentralized case. Scalability, not
investigated here, will also be analyzed. It would be
valuable to simulate and analyze large ensemble runs
with different models, where the i.i.d. assumption
does not hold.

ACKNOWLEDGMENTS
This work is supported by awards NIGMS/NIH 5 R01
GM078989, AFOSR FA9550–09–1–0153, NSF DMS–
0540675, NSF CCF–0916493, and NSF OCI–0904397.

REFERENCES
[1] H. H. McAdams and A. Arkin, “Stochastic mechanisms in

gene expression,” Proc. Natl. Acad. Sci., vol. 94, pp. 814–819,
1997.

[2] J. M. Murphy, D. M. H. Sexton, D. N. Barnett, G. S. Jones,
M. J. Webb, M. Collins, and D. A. Stainforth, “Quantification of
modelling uncertainties in a large ensemble of climate change
simulations,” Nature, vol. 430, pp. 768–772, 2004.

[3] V. Nefedova, R. Jacob, I. Foster, Z. Liu, Y. Liu, E. Deelman,
G. Mehta, M.-H. Su, and K. Vahi, “Automating climate science:
large ensemble simulations on the teragrid with the GriPhyN
virtual data system,” in Proc. of the Second IEEE Int. Conf. on
e-Science and Grid Computing (E-SCIENCE ’06). Washington,
DC, USA: IEEE Computer Society, 2006, pp. 32–37.

16 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, JANUARY-FEBRUARY 2011

[4] A. Murray and T. Hunt, The Cell Cycle: an Introduction. New
York, USA: Oxford University Press, 1993.

[5] K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak,
and J. J. Tyson, “Integrative analysis of cell cycle control in
budding yeast,” Mol. Biol. Cell, vol. 15, no. 8, pp. 3841–3862,
2004.

[6] P. Wang, R. Randhawa, C. A. Shaffer, Y. Cao, and W. T. Bau-
mann, “Converting macromolecular regulatory models from
deterministic to stochastic formulation,” in Proceedings of the
2008 Spring simulation multiconference. San Diego, CA, USA:
Society for Computer Simulation International, 2008, pp. 385–
392.

[7] D. T. Gillespie, “Exact stochastic simulation of coupled chem-
ical reactions,” J. Phys. Chem., vol. 81, no. 25, pp. 2340–2361,
1977.

[8] K. C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak,
and J. J. Tyson, “Kinetic analysis of a molecular model of the
budding yeast cell cycle,” Mol. Biol. Cell, vol. 11, no. 1, pp.
369–391, 2000.

[9] W. W. Chu, L. J. Holloway, M.-T. Lan, and K. Efe, “Task
allocation in distributed data processing,” Computer, vol. 13,
no. 11, pp. 57–69, 1980.

[10] M. A. Iqbal, J. H. Saltz, and S. H. Bokhari, “A comparative
analysis of static and dynamic load balancing strategies,” ACM
Performance Evaluation Revision, vol. 11, no. 1, pp. 1040–1047,
1985.

[11] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1989.

[12] B. P. Lester, The Art of Parallel Programming. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1993.

[13] J. Jacob and S.-Y. Lee, “Task spreading and shrinking on a
network of workstations with various edge classes,” in Proc.
1996 Int’l Conf. Parallel Processing, vol. 3, Aug. 1996, pp. 174–
181 vol.3.

[14] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction
to Parallel Computing, 2nd ed. Boston, MA, USA: Addison-
Wesley, 2002.

[15] B. Wilkinson and M. Allen, Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Comput-
ers, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
2004.

[16] M. T. Vass, C. A. Shaffer, N. Ramakrishnan, L. T. Watson, and
J. J. Tyson, “The JigCell model builder: A spreadsheet interface
for creating biochemical reaction network models,” IEEE/ACM
Trans. Comput. Biol. Bioinformatics, vol. 3, no. 2, pp. 155–164,
2006.

[17] M. Hucka, A. Finney, H. Sauro, and 40 additional authors,
“The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models,”
Bioinfomatics, vol. 19, no. 4, pp. 524–531, 2003.

[18] T.-H. Ahn, P. Wang, L. T. Watson, Y. Cao, C. A. Shaffer, and
W. T. Baumann, “Stochastic cell cycle modeling for budding
yeast,” in Proceedings of the 2009 Spring Simulation Multicon-
ference, ser. SpringSim ’09. San Diego, CA, USA: Society for
Computer Simulation International, 2009, pp. 113:1–113:6.

[19] T.-H. Ahn, L. T. Watson, Y. Cao, C. A. Shaffer, and W. T. Bau-
mann, “Cell cycle modeling for budding yeast with stochastic
simulation algorithms,” Computer Modeling in Engineering and
Sciences, vol. 51, no. 1, pp. 27–52, 2009.

[20] C. Powley, C. Ferguson, and R. E. Korf, “Depth-first heuristic
search on a simd machine,” Artif. Intell., vol. 60, no. 2, pp.
199–242, 1993.

[21] W. D. Hillis, The Connection Machine. Cambridge, MA, USA:
MIT Press, 1986.

[22] J. A. Rice, Mathematical Statistics and Data Analysis, 3rd ed.
Belmont, CA, USA: Duxbury Press, 2001.

[23] K. S. Trivedi, Probability and Statistics with Reliability, Queueing,
and Computer Science Applications, 2nd ed. Hoboken, NJ, USA:
Wiley-Interscience, 2001.

[24] H. A. David and H. N. Nagaraja, Order Statistics, 2nd ed.
Hoboken, NJ, USA: Wiley-Interscience, 2003.

[25] C.-C. Chen and C. W. Tyler, “Accurate approximation to the
extreme order statistics of gaussian samples,” Communications
in Statistics - Simulation and Computation, vol. 28, no. 1, pp.
177–188, 1999.

[26] “System X Website,” http://www.arc.vt.edu/arc/SystemX/.

Tae-Hyuk Ahn is a Ph.D. student in the
Department of Computer Science at Virginia
Tech. After he received a B.S. in Electrical
Engineering from Yonsei University in S. Ko-
rea, he worked for Samsung SDS for 4 years.
He received his M.S. in Electrical and Com-
puter Engineering from Northwestern Univer-
sity. His current research interests are com-
putational biology, numerical analysis, and
parallel computing.

Adrian Sandu obtained the Diploma in Elec-
trical Engineering – Control Systems from
the Technical University Bucharest, Roma-
nia, M.S. in Computer Science and Ph.D.
in Applied Mathematical and Computational
Sciences from the University of Iowa. Be-
tween 1998–2003 he served as a faculty
in the Department of Computer Science at
Michigan Tech. In 2003 he joined Virginia
Tech’s Department of Computer Science.
Sandu’s research interests are in the area of

computational science and engineering.

Layne T. Watson received the B.A. degree
(magna cum laude) in psychology and math-
ematics from the University of Evansville,
Indiana, in 1969, and the Ph.D. degree in
mathematics from the University of Michigan,
Ann Arbor, in 1974. He is a professor of
computer science and mathematics at Vir-
ginia Tech. His research interests include
fluid dynamics, solid mechanics, numerical
analysis, optimization, parallel computation,
mathematical software, image processing,

and bioinformatics. He is a fellow of the IEEE, the National Institute
of Aerospace, and the International Society of Intelligent Biological
Medicine.

Clifford A. Shaffer received the PhD de-
gree from the University of Maryland. He
is a professor in the Department of Com-
puter Science at Virginia Tech. His current re-
search interests include problem-solving en-
vironments, bioinformatics, component archi-
tectures, visualization, algorithm design and
analysis, and data structures. He is a senior
member of the IEEE.

Yang Cao received his Ph.D. degree in com-
puter science from the University of Califor-
nia, Santa Barbara in 2003. He is an As-
sistant Professor in the Computer Science
Department at Virginia Tech. His research
focuses on the development of multiscale,
multiphysics stochastic modeling and simu-
lation methods and tools that help biologists
build, simulate and analyze complex biolog-
ical systems. He has published around 40
refereed journal articles.

William T. Baumann received the B.S, M.S,
and Ph.D. degrees in electrical engineering
from Lehigh University, the Massachusetts
Institute of Technology, and the Johns Hop-
kins University, respectively. He joined the
Bradley Department of Electrical and Com-
puter Engineering at Virginia Tech in 1985
where he is currently an associate profes-
sor. His research interests include active
structural acoustic control, control of thermo-
acoustic instabilities, and, most recently, sys-

tems biology.

