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Abstract—For decades, performance has driven the high-end
computing (HEC) community. However, as highlighted in recent
exascale studies that chart a path from petascale to exascale
computing, power consumption is fast becoming the major design
constraint in HEC. Consequently, the HEC community needs to
address this issue in future petascale and exascale computing
systems.

Current scientific benchmarks, such as LINPACK and
SPEChpc, only evaluate HEC systems when running at full
throttle, i.e., 100% workload, resulting in a focus on performance
and ignoring the issues of power and energy consumption. In
contrast, efforts like SPECpower evaluate the energy efficiency
of a compute server at varying workloads. This is analogous
to evaluating the energy efficiency (i.e., fuel efficiency) of an
automobile at varying speeds (e.g., miles per gallon highway
versus city). SPECpower, however, only evaluates the energy
efficiency of a single compute server rather than a HEC system;
furthermore, it is based on SPEC’s Java Business Benchmarks
(SPECjbb) rather than a scientific benchmark. Given the absence
of a load-varying scientific benchmark to evaluate the energy
efficiency of HEC systems at different workloads, we propose
the load-varying LINPACK (LV-LINPACK) benchmark. In this
paper, we identify application parameters that affect performance
and provide a methodology to vary the workload of LINPACK,
thus enabling a more rigorous study of energy efficiency in
supercomputers, or more generally, HEC.

I. Introduction

The Top500 [7] maintains a list of fastest supercomput-
ers in the world by measuring their performance using the
high-performance LINPACK (HPL) benchmark [2]. However,
because power is fast becoming the major constraint in high-
end computing (HEC)1, a benchmark that evaluates the energy

efficiency of a HEC system is needed.
Since applications rarely execute at maximum performance

due to the time that is spent waiting for data- and memory-
related operations, we need to analyze and understand the
energy efficiency of a system at varying workloads, partic-
ularly in light of the observation that the power profile of a
server system is non-linear with respect to the performance
achieved [9]. The SPECpower benchmark [6] does exactly
this by varying the workload of the SPEC Java Business
Benchmark (SPECjbb). However, its applicability to HEC is
limited for the following reasons:

1Exascale systems are predicted to consume about 67 megawatts (MW) of
power [10]

• SPECpower only evaluates the energy efficiency of a
single compute server rather than a HEC system.

• SPECpower is a Java-based business transaction work-
load rather than a scientific benchmark.

• The performance metric for the SPECpower is ssj ops
(i.e., server-side Java operations per second) whereas the
metric widely used in the HEC community is FLOPS
(i.e., floating-point operations per second).

Conventional HEC benchmarks, on the other hand, adopt a
“pedal to the metal” approach and only execute at full throttle,
i.e., 100% workload. The most prominent example of such
a benchmark is high-performance LINPACK (HPL). Unfortu-
nately, calibrating the parameters of HPL to incorporate load
variation is not nearly as easy as the SPECpower benchmark,
where the workload is varied by simply controlling the rate at
which requests arrive for processing.

To address the aforementioned issues simultaneously, we
propose a load-varying LINPACK (LV-LINPACK) benchmark
for which the following contributions are made:

1) The identification of HPL parameters that are critical
in determining HPL performance by using principal
component analysis (PCA).

2) The correlation of the HPL parameters that impact
performance via a feature selection technique.

3) A methodology to vary the workload of HPL by cal-
ibrating the parameters identified above, thus enabling
the analysis of the power profile of the HEC system
under varying workload.

4) The insight in identifying the cause of different power
profiles by using the “Performance Application Pro-
gramming Interface” (PAPI) [5] as well as the corre-
lation between performance-related activities and the
power profile of the HEC system under different work-
loads.

5) The demonstration of the strong correlation between the
power profile of an HEC system and data movement
from memory.

With the power consumption of HEC systems being non-
linear under varying workload, the in-depth analysis of LV-
LINPACK can lead us to identify new benchmark metrics and
benchmarks for energy-efficient HEC.

The rest of the paper is organized as follows. We start with
a brief overview of the HPL benchmark and its parameters



in Section II. In Section III, we identify the parameters that
can have an effect on performance using principal component
analysis and feature selection technique. Section IV presents
the LV-LINPACK benchmark and the methodologies that we
use to create it. Section V describes the experimental platforms
and setup used for evaluating the benchmark. Section VI
presents our results and the analysis of the power profiles for
executing the LV-LINPACK benchmark. The related work is
described in Section VII. Section VIII presents our conclusions
and future work.

II. Overview of High-Performance LINPACK (HPL)
HPL is a popular benchmark used in the HEC community. It

is used by the Top500 List [7] to rank the fastest supercomput-
ers of the world. The benchmark is also used by the Green500
List [11] to rank the most energy-efficient supercomputers.
The workload is an algorithm to solve a dense linear system
of equations of the form Ax = b of the order N. It uses
recursive LU decomposition of matrix A and the solution x
is obtained by back substitution. The data is distributed on a
two dimensional PxQ grid using a cyclic scheme for better
load balance and scalability. Table I shows the HPL input
parameters.

# Parameter Name Predefined Values (If
Applicable)

1 Problem Size (N) NA
2 Block Size (NB) NA
3 Process Mapping (PMAP) 0=Row-major, 1=Column-

major
4 Rows of Process Grid (P) NA
5 Columns of Process Grid (Q) NA
6 Threshold NA
7 Panel Factorization (PFACT) 0=left, 1=Crout, 2=Right
8 Minimum Columns For Recursion

(NBMIN)
NA

9 Subpanel Division (NDIV) NA
10 Recursive Factorization (RFACT) 0=left, 1=Crout, 2=Right
11 Broadcast Algorithm (BCAST) 0=1rg, 1=1rM, 2=2rg,

3=2rM, 4=Lng, 5=LnM
12 Look Ahead Depth (Depth) NA
13 Swapping Algorithm (SWAP) 0=bin-exch, 1=long,

2=mix
14 Swapping Threshold NA
15 Storage for Columns of Upper Trian-

gular Matrix
0=transposed, 1=no-
transposed

16 Storage for Rows of Upper Triangular
Matrix

0=transposed, 1=no-
transposed

17 Equilibration 0=no, 1=yes
18 Memory Alignment NA

TABLE I
LIST OF HPL PARAMETERS

III. Identifying Important Parameters in HPL
In SPECpower benchmark, different workload is achieved

by controlling the arrival rate of the request. For example,
if the maximum throughput achieved by a server system is
1000 ssj ops, then to achieve a workload of 20% throughput
requires 200 ssj ops. So, this can be achieved by either
controlling the arrival rate of request to be 400 ssj operations

at the start of one second and not submitting any request to be
processed for the next second or submitting 200 ssj operations
every second. Currently, the SPECpower benchmark uses a
negative exponential distribution for controlling the rate of
arrival of work requests [6]. However, as shown in Table I,
there are 18 parameters that can determine the performance of
HPL and eight parameters have predefined values independent
of the problem size used. Identifying the important parameters
of HPL is not easy as even a change in single parameter
can cause huge variations in performance as shown in Fig. 1.
Hence, identifying the parameters that affect HPL performance
is a very challenging, multi-variable problem. In this section,
we determine the HPL parameters which have the most effect
on performance.

A. Principal Component Analysis (PCA)

PCA is a dimension extraction technique which reduces
the number of dimensions in a data set while preserving the
variance of the data set as much as possible. The features
extracted are expected to provide the relevant information
from the input data in order to produce an output using
only the reduced number of parameters. To achieve this, PCA
transforms the data into principal components and finds an
order in which the fewer dimensions accounts for the variation
in the data set [15]. The first identified principal component
accounts for the most variability and each of the succeeding
components account for as much as variability as possible.

HPL Parameter Data Set considered

PxQ Values of PxQ ∀P ∗Q ≤
number of cores

N 10, 20 and 30 percent of
memory

NB 16, 32, 64, 96, 128
PFACT 0, 1, 2
NBMIN 2, 4
NDIV 2, 4

RFACT 0, 1, 2
BCAST 0, 1, 2, 3, 4, 5

TABLE II
DATA SET USED FOR PCA

In this section, we apply PCA to HPL parameters. Table II
shows the data set that we used. The systems that we used to
collect the data set required to perform PCA are called Armor
and Ice, respectively, and are described in Section V.

The first step in PCA is to make all the data mean-centered
in order to standardize the inputs. This is done by subtracting
the respective mean from each of the data. Then we need
to study the covariance of the data in order to extract the
parameters which account for most variation. To understand
the variance accounted by each of these parameters, we
calculate the covariance matrix. The covariance between X
and Y can be calculated from the Equation (1), where X̄ and
Ȳ refers to the mean of the respective variables and n is the
number of samples used. The covariance matrix can be directly
calculated by using Equation (2) where each row in matrix Z



Fig. 1. HPL Performance Variation While Changing Its Parameter. Note: Other Parameters Are Set To Default

is a mean-centered data point, and each column corresponds
to one of the HPL parameters.

cov(X,Y ) =
n�

i=1

(Xi − X̄)(Yi − Ȳ )
n− 1

(1)

CovarianceMatrix =
1

n− 1
ZT Z (2)

We identify the principal components of HPL by finding the
eigenvalues and eigenvectors of the covariance matrix where
each of the eigenvector is the principal component and the
corresponding eigenvalue is the strength of the component.
Alternatively, we can apply Singular Value Decomposition
(SVD) [15] by simply dividing each of the mean centered
data in matrix Z by 1√

n−1
. This is because SVD decomposes

the matrix as shown in Equation (3) where E(*) represents
the eigenvectors of the matrix * and S represents the singular
value. To find the principal components we need to find the
eigenvectors and eigenvalues of the covariance matrix which
essentially means multiplying the matrix Z by 1√

n−1
. The

singular values S obtained from the SVD can be used for
assessing the strength of the component as the singular values
are the square root of eigenvalues of matrix Z. Table III shows
the singular values for the HPL parameters on the different
experimental platforms.

SV D(Z) = USV T

= E(ZT Z) X S X E(ZZT )T (3)

The results show that N, NB, P and Q account for the
greatest variation in the data set. As singular values shows
the strength of the respective component, we can neglect the
HPL parameters with low singular values. Hereafter in our
analysis, we will only use parameters with singular values
greater than one. PCA extracts the parameters which account
for the most variation, however, it is still unclear as to how
these parameters influence performance.

HPL Parameter Armor Ice
N 1536.78 2149.45

NB 41.0213 75.3872
P 1.77259 3.1384
Q 1.26315 1.40127

PFACT 0.795845 1.19465
NBMIN 0.298923 1.08907
NDIV 0.588981 0.507249

RFACT 0.549211 0.241647
BCAST 1.14771 e-15 2.03751 e-16

TABLE III
SINGULAR VALUES SHOWING THE STRENGTH OF HPL PARAMETERS

B. Feature Selection Technique

In this section, we show how the parameters identified
by PCA influence performance by using feature selection
technique. Feature selection is applied as a preprocessing
technique to machine learning algorithm and data mining
techniques such as neural networks. It is applied to optimally
reduce the number of features used based on criterion such
as redundancy and degree of relevance. In this paper we
use a feature selection technique called fast correlation-based
filter solution (FCBF) [19]. This technique uses symmetrical
uncertainty to determine whether a feature is relevant or not.
We use the FCBF software [1] to apply feature selection on
the HPL parameters. The software identifies the features (HPL
input parameters) that are relevant to the output (performance
achieved) and list them in order of their symmetrical uncer-
tainty. The symmetrical uncertainty normalizes the relevance
of the parameters in the range of [0,1] with 1 indicating that
the parameter completely predicts the output and 0 indicating
that there is no relevance between the parameter and the
output. By using symmetrical uncertainty we find the HPL
parameters which are not only relevant to performance but
also the parameters which are not redundant. In other words,
the FCBF software finds the HPL parameters which predict
performance and do not have a high enough correlation with
other parameters so that the parameter cannot be predicted



by another relevant parameter. Table IV shows the valid
parameters and their corresponding symmetrical uncertainty.

System Name HPL Parameter Symmetrical Uncertainty

Armor
NB 0.423886
P 0.355749
N 0.138793

Ice

P 0.443355
NB 0.424584
Q 0.420685
N 0.173625

TABLE IV
RESULT OF FCBF ON HPL PARAMETERS

NB, P and N were chosen as the most relevant parameters
for both the systems and Q was chosen as important for
Ice. Since P and Q are the rows and columns of the MPI
process grid in the benchmark, it makes sense to use them
simultaneously. Moreover, the parameter Q is not chosen
due to its redundancy with parameter P and not due to its
irrelevance to performance. However, it is clear that N is the
relatively less significant. Therefore, from here on the effect
of parameter N on performance will be ignored as it is least
relevant for both the systems. We will use NB, P and Q to
create the LV-LINPACK in the subsequent sections.

C. Understanding the Important Parameters

As we have identified the important parameters, it is
necessary to understand these parameters in greater detail
so that we have a clear idea about the effects of these
parameters on power consumed and performance achieved by
HPL benchmark. In this section, we discuss about the four
different important parameters (N, NB, P and Q) and how
these parameters affect the execution of HPL.

Fig. 2. Data Distribution in HPL Algorithm (A) Coefficient Matrix (B)
Distribution of Data on the Process Grid [2]

The HPL benchmark is an algorithm to solve dense linear
system of equations of the form Ax = b. The problem
size N specifies the order of the matrix A which means
there are NxN elements in matrix A. In order to solve for
x, the coefficient matrix [A b] is first factorized by using
LU factorization algorithm and the solution to x is obtained
by backward substitution. To perform the factorization, the
coefficient matrix is logically partitioned into NB by NB

blocks and distributed on to a P by Q grid of process. To better
understand the data distribution consider the Figures 2A & 2B.
The Figure 2A shows a coefficient matrix of size N/NB = 8
and Figure 2B shows how each of these logically partitioned
blocks are distributed on the process grid where PxQ = 2x3.
In each iteration of the main loop in the benchmark, a panel
of NB columns are factorized. Due to the data distribution
scheme used in the algorithm, each panel factorization occurs
in one column of the processes. The panel factorization lies
in the critical path of the HPL benchmark and thus it affects
the overall execution time of the algorithm.

IV. Load-Varying LINPACK (LV-LINPACK)
In previous section, we identified the parameters that are

important for determining the performance of HPL using the
FCBF algorithm. It is necessary that we come up with a
methodology to vary the workload. With parameter N having
the least relevance to performance on both Armor and Ice, it is
clear that the workload of HPL can be varied by calibrating the
parameters NB, P & Q. Thus we propose two methodologies
to vary the workload of HPL. The first methodology is to
fix the PxQ configuration and vary the parameter NB and
second methodology is to fix parameter NB and vary PxQ
configuration. We then present an algorithm used for executing
the LV-LINPACK at different workloads.

A. LV-LINPACK With Fixed PxQ and Fixed NB

LV-LINPACK With Fixed PxQ is used to provide insights
into the power profile of the system while using the same
number of process. By fixing the PxQ configuration, we can
clearly identify the effects of N and NB on the power profile
of the system. The benchmark gives a better understanding
of the power profile at particular range of workload of the
application. LV-LINPACK With Fixed NB gives a better
understanding of the power profile of the system while using
similar configuration. By fixing NB, we will be able to
gain insights into effects of PxQ configuration on the power
and performance of the system. We investigate this power
profile using PAPI and find that there is correlation between
performance related activities such as data cache misses and
the power profile of the system at different workloads.

B. Algorithm For Executing LV-LINPACK

The LV-LINPACK is executed by using a series of HPL
executions with different input configuration to achieve differ-
ent workload. As discussed earlier, the different workloads
are achieved by calibrating the parameters of HPL. The
system dissipates some power even when it is not executing
any workload which we call as idle power. While executing
subsequent HPL for different workload, it is important that
we make sure that the system cools down to its idle power
after the end of one HPL execution and before the start of
the other execution. For achieving these conditions we use an
algorithm similar to that used in SPECpower benchmark [6].
The algorithm followed to execute the LV-LINPACK can be
summarized as follows:



1) Ready the system for power measurement
2) Record the idle power
3) Iterate for all workloads:

• Calibrate the HPL parameters to achieve next incre-
mental workload

• Wait for the system to dissipate only idle power
• Record the initial energy value
• Execute the benchmark
• Record the final energy value
• Record the performance achieved

4) End

V. EXPERIMENTAL PLATFORMS AND SETUP

In this section, we describe about the experimental platforms
and power meter setup used for evaluating the LV-LINPACK
benchmark.

Two compute nodes were used for the experiments named
Armor and Ice. Armor is a two quad-core Intel Xeon E5405
2.00GHz processor. It has 4GB of 667MHz DDR2 SDRAM.
Each processor has 12MB of L2 cache shared between 4
cores and 32KB L1 cache for each core. Armor was chosen
because 122 systems on the top500 list use Intel Xeon 54xx
processors [8]. Ice is a two dual-core AMD Opteron 2218
running at 2.6GHz. It has 4GB of DRAM. Each core has 1MB
L2 cache and 64KB L1 cache. We chose Ice to evaluate the
behavior of our benchmark on NUMA architectures. Finally,
we evaluate the scalability of the proposed benchmark using
mid-sized cluster named SystemG. The cluster consists of 324
Mac Pros, each with two quad-core 2.8 GHz Intel Xeon 5462
processors and 8GB of RAM. The nodes are connected over
a QDR InfiniBand interconnect technology. We use 64 nodes
for a total of 512 cores from SystemG. All the systems use
OpenMPI 1.4.1 as the communication library.

The energy consumption of the processing node which
executes the benchmark is measured using a power meter.
The power meter acts as a intermediate device between the
wall power outlet and the node as shown in Figure 3. We use
a “Watts Up? PRO ES” power meter to measure the energy
consumption. The minimum sampling rate of the power meter
is one second. The measuring machine executes the device
driver for the power meter and the client of the driver is in-
voked remotely whenever any energy measurement is required.
All the power values reported in this paper are average power
i.e. (final energy value - initial energy value)/total execution
time.

Fig. 3. Experimental Setup

VI. Experimental Evaluation
In this section we evaluate the methodologies described in

earlier sections to vary the workload of HPL. The Section
VI-A describes the investigation into effects of problem size
(N) on power. Section VI-B describes the LV-LINPACK
With Fixed PxQ, Section VI-C describes the LV-LINPACK
With Fixed NB and finally we discuss about executing LV-
LINPACK With Fixed PxQ on SystemG in Section VI-D.

A. Effects of Problem Size (N) on Power

The feature selection technique used in this paper listed
problem size (N) as the parameter which least affects perfor-
mance for both Armor and Ice. However, it is unclear as to
how N can affect power. In this section, we investigate the
effects of N on power.

In Figure 4, the power profile of Armor is shown for
different problem sizes. In each graph, the NB size is fixed and
N & PxQ is changed to investigate the power profiles. This is
done in order to find the effects of N on power at different % of
workloads (i.e. % of maximum HPL performance achieved).
For both NB=16 and NB=32, the line graphs in each plots
almost overlap indicating that there is not much effect on
power as we change N. This is a clear indication that we can
safely neglect the effects of N on power for Armor. This helps
in reducing one more dimension from our analysis. In Figure 5,
the power profile of Ice is shown for different problem size.
It is observed that the power profile of Ice is not as smooth
as Armor but effects of changing N on power is negligible as
the line graphs in each of the plots almost overlap similar to
Armor. Due to these reasons, the rest of the paper will not
discuss about the effects of N on power. The effects caused
due to the parameters NB and PxQ are discussed in detail in
the subsequent sections.

B. LV-LINPACK With Fixed PxQ

In this section, we discuss about changing the workload of
HPL by fixing PxQ and varying N & NB. To isolate and show
how each of the identified parameters affect the performance
and power of the system, we execute HPL for three different
block sizes (NB=16, 32 & 48) for three different problem sizes
by using 10 different configuration of PxQ for Armor and 8
different PxQ configurations for Ice. Such a detailed profiling
will give us insights into how the power profile of the system
behaves in certain range of workload.

In Figure 6A and 6B, the LV-LINPACK with fixed PxQ
configurations of 1x4, 2x2, 1x6 and 2x3 for Armor is shown.
For each line graph in a plot, PxQ and N are kept constant
and only NB is varied. The Y-axis shows the power dissipated
and X-axis shows the % of Workload (i.e. % of maximum
HPL performance achieved). The power profile of runs with
various N in each graph is different. Higher N gives more or
less same performance with slightly lesser power consumption.
This is due to the fact that the power reported is average power
consumption of the system and with higher N the functional
units are idling more waiting for memory related operations
thus consuming less power in average. This causes the average



Fig. 4. Power Profile of Armor at Different Problem Sizes

Fig. 5. Power Profile of Ice at Different Problem Sizes

power consumed by the HPL execution with higher N to be
lesser. However its effects are negligible as the effects of
power lies in the range of approximately 8 watts for same
PxQ and NB configurations. It is also noticeable from the
graph that configurations 2x2 consumes less power for all
Ns while executing at more or less the same performance
as configuration 1x4 even though they use the same number
of process. This is due to the better load balance achieved
inherently by HPL due to cyclic distribution of data [2].
For configuration 1x4, a panel from the coefficient matrix
is factorized by a single process. Whereas, for configuration
2x2, a panel is factorized by two processes. Since the panel
factorization is the critical path of the overall algorithm, 2x2
performs better than 1x4.

In Figure 6B, similar configuration such as 1x6 and 2x3
execute at same performance but with slightly different power
consumption for even same N and NB sizes. There is also
degradation of performance of configuration 1x6 for certain
block sizes. For example consider the graphs for PxQ config-

uration 1x6 and 2x3, the performance of 1x6 for N = 30% of
memory has high workload variations when compared to 2x3
configurations. This is due to the effect of panel factorization
on the overall execution time as described for configurations
2x2 and 1x4.

In Figure 7A and 7B, the LV-LINPACK with fixed PxQ
for Ice is shown. We observe higher range of workload being
achieved by similar configuration such as 1x4 & 2x2 than
Armor. Such effects can be explained by the fact that each
core in Ice executes at a faster rate. When block size is
increased there is more data to be fetched to perform the panel
factorization and thus functional units wait more for data since
the operating frequency is higher. This creates the increase in
the range of workloads achieved by fixing PxQ and N and just
changing NB.

Even though we can vary the workload within in certain
range with fixed PxQ, it will not serve as a good benchmark
to profile the system at different workloads. Nevertheless, it
provides clear insights into how the variation of NB can have



Fig. 6. LV-LINPACK With Fixed PxQ On Armor, (A) Configurations 1X4 and 2x2 (B) Configurations 1x6 and 2x3

Fig. 7. LV-LINPACK With Fixed PxQ On Ice, (A) Configurations 1x2 and 2x1 (B) Configurations 1X4, 4x1 and 2x2

effects on performance and power consumption of the HPL
benchmark even with N and PxQ fixed.

C. LV-LINPACK With Fixed NB

We describe about the workload variations achieved while
using fixed NB and changing PxQ in this section. If we change
the PxQ configuration, we will be able to achieve greater
variation in the workload of HPL. So this benchmark can
be actually viewed as connecting the graphs that were shown
for LV-LINPACK with Fixed PxQ. These power profiles will
provide insights into how similar PxQ configuration can have
different workloads for the same N and NB. We investigate
these power profiles to find correlation between performance

related activities and the power consumption using PAPI.
Figure 8 shows the variation in workload on Armor for

problem size of 30% of memory while changing PxQ and
keeping block size fixed. The variation in workload for similar
configuration grows with increase in NB size. The worst effect
can be seen for 1x8 and 2x4 configuration with block size
48. Even though there is a huge variation in performance,
1x8 consumes more power than 2x4 in the same example.
We would expect the power consumption of 1x8 configuration
to be less. This is because of the fact that 1x8 configuration
achieves less performance even while using same number of
processes which means the functional units idles more waiting
for data and thus consuming less power in average. Then,



Fig. 8. LV-LINPACK With Fixed NB On Armor

Fig. 9. LV-LINPACK With Fixed NB On Ice

Fig. 10. L2 Data Cache Misses For Armor Fig. 11. L2 Data Cache Misses For Ice



why do we observe such effects on power? To investigate and
identify the cause for such behavior we use PAPI to relate
this power consumption to performance related activities. The
investigation into the power profile is discussed later in this
section.

The LV-LINPACK with fixed NB for Ice is shown in
Figure 9. Similar to Armor, identical configuration have dif-
ferent power and performance profile. The worst effect on
performance can be seen with NB = 48. In all the graphs
shown 1xY always performs worse than Yx1 and this is
due to the way the data is distributed to each process in
HPL algorithm. By using configuration 1xY, a panel from the
original coefficient matrix is factorized by a single process
but in case of Yx1 the factorization is divided between Y
processes. As observed even in these plots, though identical
configurations of PxQ achieve different performance, they
consume more or less the same power which should not be
the case.

To investigate into these power profiles, we profiled the
benchmark for data cache misses as they can be directly corre-
lated to the performance loss. Figure 10 and 11 shows the L2
data cache misses for the power profiles of the LV-LINPACK
with fixed NB shown earlier. It would be expected that the
configuration which achieves less performance consumes less
power in average as they use same number of processes. When
compared with 2x4 configuration, 1x8 configuration should
dissipate less power in average as more time by the functional
units is spent idling but the data movement caused due to the
large number of L2 data cache misses results in higher average
power consumption. The L2 data cache misses and thus the
memory access due to these misses consume power (power
consumption due to the data movement) and also degrades
the performance of that execution. Consumption of greater
power for configuration which achieves less performance can
be directly correlated to L2 data cache misses. For example,
consider data points between 55 to 70 percent workload for
NB = 48 in Figure 8. All of these executions consumes
greater power than the 2x4 configuration which achieves
100% workload and the power consumption can be directly
correlated to the difference in L2 data cache misses (Figure 10)
which is about a order of magnitude. Such behavior can also
be seen with Ice. Consider the LV-LINPACK with NB=32 in
Figure 9, there is a difference in the power consumed between
configurations 1x3 and 3x1 even though 1x3 achieves far less
performance. Like Armor, there is a order magnitude in the L2
data cache misses (Figure 11) for these configurations. Clearly
the behavior of the power profile has a strong correlation with
the data movement from memory due to L2 data cache misses
which suggests that power consumption due to data movement
can have significant effect on the power profile of the system
at different workloads.

Another interesting observation from the graphs is that the
systems are more power efficient at higher workloads. For
example consider the graph with NB=16 from Figure 8, the
difference in power consumption for workloads from 75%
to 100% is about 10 watts whereas the difference in power

consumption for workloads from 12% to 40% is greater than
20 watts. The dynamic power range of Armor is about 70
watts, so the increase in system power consumption is 1/7
of the dynamic power to go from 75% to 100% but 2/7 of
the dynamic power to move from 12% to 40%. This indicates
that these systems are not power proportional with respect to
percentage of workload achieved ( i.e. the power consumed at
different workloads is non-linear with respect to performance
achieved). These observations stresses on the need for energy
proportional design of system [9]. Such insights into the power
profile of the system cannot be derived from a benchmark
which executes only at 100% workload.

The LV-LINPACK with fixed NB serves as a good bench-
mark as we are able to achieve various workloads between
0-100% . We will be able to achieve our primary goal, i.e.
to identify the power efficient system at different workloads,
with this benchmark.

D. LV-LINPACK on SystemG

In this section, we present the results for executing the LV-
LINPACK with fixed PxQ on 64 compute nodes of SystemG.
The is done in order to evaluate the scalability of our bench-
mark. Figure 12 shows the results for executing LV-LINPACK
with fixed PxQ. All the results shown use 512 cores in the
system i.e, P ∗ Q = 512. The results show anomalies in
power consumption similar to Ice and Armor. We are par-
ticularly interested in the power consumed while executing at
performances less than Rmax. We used performance counters
to identify whether there is any correlation between power
consumed and performance related activities and the results
are shown in Figure 13.

PCC =
�n

i=1(Xi − X̄)(Yi − Ȳ )
(n− 1)SXSX

(4)

There is a strong correlation between L2 data cache misses
and the power consumed at certain workload. We used Pearson
Correlation Coefficient (PCC) to further quantify the statistical
significance of this correlation. PCC is commonly used to
understand the degree of dependence (correlation) between
two variables. The value of correlation coefficient lie between
−1 and +1 where − and + imply the negative and positive
correlation of the variables respectively. PCC can be calculated
by using Equation 4 where Xi & Yi are the data samples,
X̄ & Ȳ are the respective means, SX & SY are the standard
deviations and n is the number of samples. Our analysis shows
that the PCC for power consumed and number of L2 data
cache misses are high. The PCC for executing LV-LINPACK
with N = 10% of memory and NB as 16 & 48 are 0.94 and 0.97
respectively and for executing LV-LINPACK with N = 20% of
memory and NB as 16 & 48 are 0.95 and 0.93 respectively.
PCC being above 0.9 in all cases indicates a strong correlation.
These results motivate the need for optimizing data movement
in a scientific applications as a mechanism to conserve energy.
It is also observed that the correlation between the power
consumed and L2 data cache misses decreases as we move
towards 100% workload. This is expected as more computation



Fig. 12. LV-LINPACK with Fixed PxQ on SystemG

Fig. 13. L2 Data Cache Misses on SystemG

results in higher dynamic dissipation from the CPU and thus
CPU contributes relatively more to the power dissipation than
data movement.

VII. Related Work

To the best of our knowledge, the only load-varying bench-
mark currently in use is the SPECpower benchmark [6]. The
SPECpower benchmark provides a methodology to profile
the power of a single server at varying workload. However,
as discussed earlier, the workload used in the benchmark
is a Java-based transaction workload which is not a good
representative of a typical scientific applications and has very

limited relevance to the HEC. In this paper we propose a load-
varying benchmark for HEC. By using HPL as the benchmark,
we not only have a workload relevant to HEC but can have
a good estimate of the peak power dissipated at varying
workload [16].

In [18], several data mining approaches such as linear
regression, M5P, multilayer perceptron and support vector
machine have been applied to tune the performance of HPL.
The authors use various feature selection techniques to de-
termine the parameters that influence performance and study
methodologies which automatically tune the performance of
HPL. In this paper, we use principal component analysis



to identify the parameters which has the most variance and
feature selection to the find their influence on the performance
of HPL. We then use these parameters to create the LV-
LINPACK benchmark.

There have only been few detailed studies of HPC appli-
cation characteristics and its impact on power and energy
consumption of the system. In [12], a detailed study of the
power and energy profiles of the NAS parallel benchmarks
(NPB) [4] is presented. They provide a component-level
power profile analysis for executing the benchmark. Their
results show that the energy efficiency has a direct correlation
with parameters corresponding to performance efficiency. In
another work [17], a functional and component-level study of
the HPCC benchmarks [3] by using PowerPack [13] software
is provided which indicates a correlation between the memory
access rate and the power consumption of the system. The
power consumption of large-scale HEC systems for executing
benchmarks such as HPL and NPB is reported in [16]. In this
paper we focus on power profile of the system at different
workload to understand its trends which is not addressed
in [12], [16]. In [17], the focus is on analyzing energy and
power profiles of the HPCC benchmarks.

In Hsu et al. [14], a detailed of study of existing benchmark
metrics for evaluating energy-efficiency is presented. Metrics
like Energy Delay Product (EDP) and Performance/Power
(FLOPS/watt) ratio are analyzed for suitability and the authors
conclude that Performance/Power ratio metric is best for
evaluating the energy efficiency. In this paper, we focus on
creating a new benchmark to evaluate the energy efficiency in
HEC.

VIII. Conclusion and Future Work
In this paper we created a load-varying benchmark from

HPL. We first identified the parameters that influence the
performance of HPL. We then presented LV-LINPACK bench-
mark (A load-varying version of the HPL) which is achieved
by calibrating the parameters such as PxQ and NB. The power
profiles of the LV-LINPACK with fixed NB was investigated
and we found that there is a correlation between power and
performance related activity such as L2 data cache miss at
a certain workload and proposed the relation between data
movement and the power profiles of the system. Finally we
showed the scalability of our benchmark on SystemG and
verified the statistical significance of correlation between the
L2 data cache misses and the power profile of the system.
As a future work, we would like to execute the LV-LINPACK
benchmark on a heterogeneous cluster and incorporate load
variation in benchmarks from the HPCC benchmark suite.
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