Visualizing the Results of a Complex Hybrid
Dynamic-Static Analysis

Marc Fisher II
Virginia Tech
Blacksburg, VA, USA
fisherii@cs.vt.edu

Abstract—Complex static or hybrid static-dynamic analyses
produce large quantities of structured data. In the past, this data
was generally intended for use by compilers or other software
tools that used the produced information to transform the ap-
plication being analyzed. However, it is becomingly increasingly
common for the results of these analyses to be used directly by
humans. For example, in our own prior work we have developed a
hybrid dynamic-static escape analysis intended to help developers
identify sources of object churn within large framework-base
applications. In order to facilitate human use of complex analysis
results, visualizations need to be developed that allow a user
to browse these results and to identify the points of interest
within these large data sets. In this paper we present HI-C, a
visualization tool for our hybrid escape analysis that has been
implemented as an Eclipse plugin. We show how HI-C can help
developers identify sources of object churn in a large framework-
based application and how we have used the tool to assist in
understanding the results of a complex analysis.

I. INTRODUCTION

Complex static analyses are used for a variety of tasks in
program optimization, software testing, and software mainte-
nance. These analyses produce lots of data that is primarily
intended for use by other tools that, for example, automatically
transform the program or produce test cases. Increasingly
the intended consumer of the static analysis results is a
programmer or software engineer, who is expected to use the
results of the analysis to inform their actions.

Since these analyses produce large quantities of data, it
is difficult for users to effectively use the analysis results.
Additionally, the type of data produced by these analyses
are poorly structured and generally span the entire body of
code, a problem exacerbated when analyzing framework-based
applications, such as web or service-oriented applications.

In order to make use of the analysis results, effective
methods of displaying, searching, and browsing the results is
necessary. Such a tool should display the results in a fashion
that allows the user to quickly focus in on the important
information and connects back to the underlying source code.

In prior work, we have developed ELUDE, a blended escape
analysis. For a particular analysis run, ELUDE can produce
hundreds of megabytes of XML data that encodes both infor-
mation about the calling relationships between methods and
the reference relationships of objects within each of these
methods. The information is intended to guide the user in
the process of identifying locations of object churn (excessive

Luke Marrs
Virginia Tech
Blacksburg, VA, USA
Imarrs@vt.edu

Barbara G. Ryder
Virginia Tech
Blacksburg, VA, USA
ryder@cs.vt.edu

creation of temporary objects) so that the corresponding code
can be optimized to reduce the number of temporary objects
being created and thereby improve performance.

Manually sifting through hundreds of megabytes of XML
is obviously infeasible, therefore in the past we have created
scripts that attempt to identify the interesting pieces of the
analysis results. These scripts filter the analysis results using
various metrics such as the number of dynamic instances
captured within a particular method context. However, even
with these results understanding how the different objects
move through the application being analyzed is difficult, time-
consuming, and error-prone.

Therefore we have developed HI-C, a tool for exploring
the results of our blended escape analysis. The visualization
consists of two main views: a representation of the calling
structure that provides a high-level view of the temporal
aspects of the execution and a representation of the the data
structures within the methods displayed in the calling structure.

This paper has the following contributions:

o A description of HI-C, a tool for the exploring the results
of a complex blended escape analysis.

e An example that demonstrates how HI-C fits into an
analysis work-flow to diagnose a source of object churn
within a large framework-based application.

o A description of our use of HI-C to understand and debug
our blended analysis.

The remainder of this paper is organized as follows. Sec-
tion [[I] describes details about HI-C and shows how it fits
into an example work-flow. Section [III] presents details about
how we have used HI-C to understand and debug the escape
analysis. Section[[V]describes related work. Section [V]presents
conclusions and future work.

II. EXAMPLE WORK-FLOW

Figure [I] presents an overview of the workflow required
to identify object churn using our tool chain. This workflow
begins when the user identifies a transaction that is performing
poorly. This transaction can be identified from log information,
from customer complaints, or through testing. The user is then
responsible for constructing an input to the application using
information from the identified problem transaction.

The second step of our workflow uses a modified version
of JINSIGHT [3], a dynamic profiling tool created by IBM.



and instance data grap

Fig. 1.

JINSIGHT is able to collect a trace of an execution that includes
method calls and returns and object allocations. Conceptually,
this dynamic trace can be viewed as a call tree, a graph
representation that uses a node for each dynamic invocation
of a method with edges between nodes that indicate the
calling relationships between these invocations . Call trees
are generally very large, even for relatively short program
runs. More concise representations of the calls can easily
be obtained by aggregating nodes in the call tree. For our
analysis we use Calling Context Trees (CCTs) [1], a popular
way to represent dynamic calls. CCTs offer a much more
precise representation of the calls in a program than a basic
call graph, but without the prohibitively high cost of full call
trees. The key idea behind CCTs is to differentiate between
calls of a method based on the full invocation stack that
resulted in the call. While techniques exist to collect CCTs
directly at runtime (e.g., [10]]), it is easy to generate them
from an existing call tree by aggregating nodes that share
the same method sequence from the beginning of the trace.
Our extension to JINSIGHT produces a CCT with additional
information about object allocations within the nodes of the
graph. We then execute the application on the user created
input while collecting profiling information with JINSIGHT
and output the results of that execution to a CCT file.

The third step of our workflow uses ELUDE [4], [5] to
perform a blended escape analysis. ELUDE is based on an
escape analysis algorithm developed by Choi et. al. [2]. Their
escape analysis is similar to reference (i.e., points-to) analysis
in that it computes the set of static objects that may be
pointed to by each reference in the analyzed program region(s).
Escape analysis additionally associates an escape state with
each static object. The escape state of a static object at a
method m indicates if the object is only reachable during
executions of m (captured), or if it escapes m through a
global reference (globally escaping) or through parameters and
return values (argument escaping). The escape analysis within
ELUDE differs from the static escape analysis of Choi et. al. in
that is implemented as a blended analysis. A blended analysis
is a static analysis that is focused on a set of executions of
interest. In ELUDE this set of executions is represented by the
dynamic CCT constructed by JINSIGHT.

As output, ELUDE produces a connection graph for each
node in the CCT. The connection graphs show the reference
relationships between the the objects visible within the context
of a CCT node. Additionally, for each object in the connection
graph, it shows the objects escape state within that CCT node.

CHURNI, the fourth step of the workflow, matches the

connection graphs

Escape Analysis Workflow

dynamic instance data collected by Jinsight to the results of
the static analysis performed by ELUDE. After mapping the
dynamic instances to the static objects, reduced connection
graphs are built for each context in the CCT. Reduced connec-
tion graphs are simple object-to-object graphs that include only
those static objects that were mapped to dynamic instances.
Additionally, a reduced CCT is also constructed by removing
nodes that do not have any captured or escaping instances.

The final step of the workflow is HI-C. HI-C is imple-
mented as an Eclipse plugin. When started Hi-C displays the
reduced CCT produced by CHURNI as shown in Figure 2(a)]
Within the CCT, the nodes are color coded to indicate the
relative number of dynamic instances captured within the
node, with red indicating the node captures large numbers of
dynamic instances, orange or yellow an intermediate number
of captured instances, and green few or no captured instances.

As can be seen in Figure the CCT generally includes
too many nodes to effectively navigate and identify the con-
texts of interest. Therefore, the user presses a button to limit
the display to only those nodes that capture large numbers
of dynamic instances as shown in Figure 2(b)] Prior research
has shown that, in most cases, relatively few contexts are
responsible for explaining the majority of captured instances
[, [Z]. In this case, there are 10 high capturing nodes.
Tooltips over the nodes in the CCT indicate the method that
each node corresponds to.

When the user selects node 11583,
DateSerializer.getValueAsString (), in the CCT,
the corresponding reduced connection graph is displayed in
another pane as shown in Figure Within the reduced
connection graph, the nodes are color coded to indicate the
local and final escape status of corresponding static object.
Specifically, the square within the node indicates the local
escape status, with red indicating captured within this method
(e.g., node 1046), blue indicating argument escaping (e.g.,
node 191) and green indicating globally escaping. Similarly,
the color of the rest of the node body indicates the final
escape status, either red for captured (e.g., node 1021) or
green for escaping (e.g., node 191).

The user hovers over node 1046 in the connection graph to
view information about the corresponding object, including the
type (java.util.GregorianCalendar), the number of
dynamic instances (9), and the maximum capture depth (2).
In addition, if the node is the root of a data structure in
the context, additional information about the data structure is
displayed including the number of types in the data structure
(4) and the number of different methods within which the



B8 Caling Context Tres £2 =g

8] Caling Context Tree &2

2442

2442 12514 4209 14752
14840 |

(a) Full CCT
8] Reduced Connection Graph &2
« dose,
Object #1046

Dynamic Instances {node): 9

lax Capt Depth:2

Type: java.util.GregorianCalendar
ind: OBJECT

pFtate: CAPTURED

Pisposition: CAPTURED

Data Structure:

#Types: 4

#alloc Methods: 3
Height: 1

Max Capturing Depth: 4

=0

4070 9369 8279

2979 14840

pateserializer. get¥alueasString(Object; SerializationContext; )|

(b) High Concentration Nodes

8] Caling Context Tree 52 =B

4899

p—

(c) Reduced Connection Graph

Fig. 2.

the objects in the data structure are allocated (3). In total
9 java.util.GregorianCalendar instances were al-
located, which resulted in an additional 108 allocated object
instances, mostly boolean and int arrays.

When the user selects node 1046 in the connection graph,
the CCT display changes to show the contexts where the
corresponding object is visible as shown in Figure 2(d)] In this
reduced CCT, the context that allocated the selected object are
black (node 11227), the contexts that capture the object are
red (node 11583), and any contexts where the object globally
escapes are colored green.

In this example, the information shown in HI-C and an
understanding of the java.util.GregorianCalendar
allows the user to determine that by caching the calendar
object in the DateSerializer.getValueAsString()
method they can significantly reduce the number of allocated
object instances.

(d) CCT for Data Structure

Example Use of Visualizer

III. OUR USAGE OF VISUALIZER

In recent work we extended ELUDE and CHURNI to use
CCTs as input instead of context-insensitive call graphs (CGs)
[7]. The goal of this change was to make the analysis more
precise. Additionally, in the process of doing this, we found
that although the potential worst case running time of ELUDE
was greater for CCTs than CGs, in practice the simpler
structure of the CCTs actually improved the running times.
However, as we tested these changes and attempted to measure
the impact of the changes on the precision of ELUDE, we
found several anomalies.

These anomalies were primarily cases where we expected
precision to increase or stay the same with a change to
the algorithm, but instead it decreased. For example, in one
case some dynamic objects had their disposition change from
captured to escaped (a decrease in precision) when an op-
timization called pruning was enabled. While the use of a
dynamic calling structure in blended analysis allows us to
focus on a subset of the interprocedural control flows, the
analysis still processes all intraprocedural control flows, even



though some of these control flows can be shown to not have
executed on the run of interest. Pruning allows us to remove
some of these intraprocedural control flows by identifying
method dispatches with out matching calling structure edges
and new statements without matching dynamic instances.
For each of these identified statements, pruning removes the
smallest enclosing basic block and any control flow edges that
lead to that basic block.

With the way pruning was implemented, it should always
be the case that any dynamic instance that was identified as
captured by an unpruned run should also be identified as
captured by a pruned run. However, on a small number of
instances we found this to not be the case. We attempted to
use HI-C to diagnose this problem. As shown in Figure 2(a)
the full CCT tends to be very large. For the particular case
we were looking at, the reduced CCTs produced by CHURNI
have approximately 2140 nodes. This means that if the node
of interest is not one of the high capturing nodes, identifying a
specific node in the CCT is very time consuming and difficult.

IV. RELATED WORK

There is a large body of visualization work that could
be potentially related to our work on HI-C. For example,
many people have visualized data structures or algorithms
for pedagogical purposes (e.g. [6]) or created visualizations
to identify specific types of problems in programs (e.g. [8]]).
However there has been relatively little work on providing
visualizations of complex static or dynamic analyses targetted
toward application developers.

Pheng and Verbrugge’s work on dynamic data structure
analysis visualizes the changes to the heap during execution
as a series of snapshots [9]]. These snapshots show the objects
on the heap as nodes in a graph with the references between
the objects shown as edges in the graph. Within the graphs
they show different information about the objects, including
age, type, origin (library vs. application code) and reachability,
using shapes, colors and labels. This visualization shows infor-
mation similar to that presented by HI-C. The transitions from
one snapshot to the next represent the temporal component of
the execution, while we use a CCT as an abstraction for the
same thing. The graphs displayed within the snapshots are
similar to the connection graphs that HI-C shows. However,
the underlying source of the information is somewhat different;
Hi1-C display connection graphs based on a blended analysis
that approximates the actual state of the heap during execution
while Pheng and Verbrugge’s visualization has access to the
precise state of the heap from the execution.

Bohnet and Ddéllner have created visualizations for explor-
ing the dynamic call graph corresponding to the implemen-
tation of particular feature. These visualizations group the
functions according to the system architecture of the appli-
cation and attempt to identify the functions that are important
with respect to the feature the user is trying to understand.
The dynamic call graphs being visualized are similar to our
CCTs, and in both cases, due to the size of the graphs, it
was important to provide mechanisms to identify interesting

nodes in the graphs. However, the criteria used to identify
these methods or functions was different due to the different
goals of the visualization.

V. CONCLUSIONS AND FUTURE WORK

Complex static analyses produce large amounts of complex,
poorly structured data. Extracting the relevant information
from this data is difficult, time-consuming, and error-proned.
Therefore tool support is required to ease the burden of using
these types of analyses. In this paper, we presented HI-C, an
Eclipse plugin for visually exploring the results of a complex
hybrid static-dynamic escape analysis. We showed how this
tool could be used to help developers identify object churn
within their applications. We also show how we have used
Hi1-C in our own work debugging the escape analysis.

While using the tool, we have found a number of ways
in which the tool can be improved and have learned some
general lessons that we feel can be applied to these types of
tools. First, the current version of the tool has only limited
interactions with the Eclipse IDE, primarily using Eclipse for
selecting files and as a basic visualization platform. Increasing
the level of interaction with Eclipse, in particular linking the
contexts in the CCT view to the corresponding methods in
a project and connecting the static objects in the connection
graphs to the corresponding allocation sites within the Java
source or byte code would make understanding the results of
the analysis quicker and easier.

Second, HI-C was designed with the goal of diagnosing
object churn in mind, and as such has browsing tools focused
on identifying the sources of significant temporary usage.
However, when using the tool to debug the escape analysis,
it was often the case that problem areas of the analysis lied
in corner cases that did not occur frequently, and therefore
did not correspond to significant object churn. Adding more
robust search features to the tool would have aided in its use
in exploring these uncommon cases.

We have several actions that produce reduced version of the
CCTs or connection graphs. For these, we selected the set of
nodes of interest and displayed only edges that connected these
nodes. Unfortunately this had the effect of making it difficult
to contextualize the information being displayed as it did not
readily map back to the full CCT or connection graph. These
reduced displays could be improved by providing additional
contextual information.

REFERENCES

[11 G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 1997, pp. 85-96.

[2] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff,
“Stack allocation and synchronization optimizations for Java using
escape analysis,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 25, no. 6, pp. 876-910, 2003.

[3] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and
J. Yang, “Visualizing the execution of Java programs,” in Software
Visualization, ser. LNCS, 2002, vol. 2269, pp. 151-162.



—

[4] B. Dufour, B. G. Ryder, and G. Sevitsky, “Blended analysis for perfor-

mance understanding of framework-based applications,” in Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and
Analalysis (ISSTA), 2007, pp. 118-128.

——, “A scalable technique for characterizing the usage of temporaries
in framework-intensive Java applications,” in Proceedings of the Inter-
national Symposium on the Foundations of Software Engineering (FSE),
2008.

A. S. Erkan, T. J. VanSlyke, and T. M. Scaffidi, “Data structure
visualization with latex and prefuse,” ACM SIGCSE Bulletin, vol. 39,
no. 3, pp. 301-305, 2007.

M. Fisher II, B. Dufour, S. Basu, and B. G. Ryder, “Exploring the impact
of context sensitivity on blended analysis,” Virginia Polytechnic Institute

and State University, Tech. Rep. TR-10-06, April 2010, submitted to
ICSM 2010.

C. Parnin, C. Gorg, and O. Nnadi, “A catalogue of lightweight visualiza-
tions to support code smell inspection,” in Proceedings of the Symposium
on Software Visualisation (SoftVis), September 2008, pp. 77-86.

S. Pheng and C. Verbrugge, “Dynamic data structure analysis for Java
programs,” in Proceedings of the International Conference on Program
Comprehension (ICPC), 2006.

X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi, “Accurate,
efficient, and adaptive calling context profiling,” in Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2006, pp. 263-271.



	I Introduction
	II Example work-flow
	III Our Usage of Visualizer
	IV Related Work
	V Conclusions and Future Work
	References

