
Exploring the Impact of Context Sensitivity on
Blended Analysis

Marc Fisher II
Virginia Tech

Blacksburg, VA, USA
fisherii@cs.vt.edu

Bruno Dufour
University of Montreal
Montreal, QC, Canada

dufour@iro.umontreal.ca

Shrutarshi Basu
Lafayette College
Easton, PA, USA

basus@lafayette.edu

Barbara G. Ryder
Virginia Tech

Blacksburg, VA, USA
ryder@cs.vt.edu

Abstract—
This paper explores the use of context sensitivity both intra-

and interprocedurally in a blended (static/dynamic) program
analysis for performance diagnosis of framework-intensive Web-
based applications. Empirical experiments with an existing
blended analysis algorithm [9] compare combinations of (i)
use of a context-insensitive call graph with a context-sensitive
calling context tree, and (ii) use (or not) of context-sensitive
code pruning within methods. These experiments demonstrate
achievable gains in scalability and performance in terms of
several metrics designed for blended escape analysis, and report
results in terms of object instances created, to allow more realistic
conclusions from the data than were possible previously.

I. INTRODUCTION

Recently, many researchers have been investigating different
combinations of static and dynamic program analyses, to
create more effective approaches to testing, performance di-
agnosis, and program understanding [3], [9], [11], [23]. There
are many choices of how to couple these analysis paradigms
in order to achieve scalabilty with acceptable precision on
programs which cannot currently be analyzed statically. For
example, the mutability analysis in [3] is a loosely coupled
combination of paired static and dynamic analyses on the
same data with feedback between them provided by using a
UNIX pipe model of interaction between analysis application
passes [3]. In contrast, blended analysis [8], [9] features
strong coupling between a dynamic trace-gathering pass that
provides an interprocedural calling structure representation,
and a subsequent static analysis that uses the representation.

There are algorithm design choices that affect the practi-
cality and/or precision of the resulting static/dynamic analy-
sis [22]. For example, a lightweight dynamic analysis may
overly restrict the amount of runtime information available
about the specific execution, while ensuring the practical time
demands of the technique. Alternatively, a higher-overhead
dynamic analysis may enable specialization of the static
technique using better runtime information. For example, in
blended analysis knowledge of object instance creations and
executed method calls can be used to prune code intraproce-
durally that is known to be unexecuted on a particular run.

This paper explores the effects of two design choices
— calling structure representation and (intraprocedural) code
pruning — in a tightly-coupled static/dynamic analysis (i.e.,
blended analysis [9]). Specifically, we are interested in how

algorithm practicality and precision are affected by (i) the
use of a context-sensitive calling structure, a calling context
tree [1], in comparison to a context-insensitive call graph, (ii)
the use (or not) of control-flow-graph code pruning enabled
by dynamic information, and (iii) the effect of combinations
of choices from (i) and (ii). Note: we can consider control-
flow-graph pruning as an application of context sensitivity, as
the code is being pruned using knowledge about a particular
invocation of the method. The comparison is accomplished
through empirical investigation of these choices using four
realistic, framework-based Web applications.

In our previous work [8], [9], we explored the use of blended
escape analysis with control-flow-graph pruning. Experiments
with the same benchmarks presented here measured the effec-
tiveness of the pruning in terms of space and time savings
as well as some aggregate precision effects. Many of the
metrics included in this study (e.g., size of temporary data
structures, number of types of constituent objects and their
capture depths) were used in this previous work. This paper
differs from our previous work both in focus (i.e., exploring
the effects of context sensitivity in blended analysis) and
content, findings from empirical comparisons of combinations
of context sensitivity (i.e., (i) and (ii) above) on blended escape
analysis. Note that the metrics here present findings in terms
of numbers of object instances rather than as numbers of
static objects (i.e., allocation sites) as in our previous work.
Reporting captured object instances is more practical in order
to prioritize areas of object churn that should be examined.
In addition, this paper contains detailed interpretations of the
observed differences between the algorithm designs.

The contributions of this paper are:

• a study comparing the effects of using context sensi-
tivity intra- and interprocedurally, on the precision and
scalability of a blended escape analysis. We believe the
study results can be generalized to inform static/dynamic
analysis design, particularly for using context sensitivity
derived from dynamic information.

• interpretations of findings obtained using a set of metrics
for measuring the precision and scalability of a blended
(escape) analysis, that illustrate (i) scalability gains pos-
sible and (ii) the complexity of assessing analysis results,
particularly in terms of sources of observed imprecision.

II. BACKGROUND

Framework-intensive applications present new challenges
for program analysis. To address some of these challenges, we
proposed blended analysis [8], a new technique that combines
static and dynamic analyses and is summarized here.

A. Blended Analysis

Blended analysis is a new analysis paradigm that aims
to achieve precision comparable to that of a fully dynamic
analysis, but at a practical runtime cost. This is accomplished
by narrowing the focus of a static analysis to a set of execu-
tions of interest. Blended analysis first collects a lightweight
profile of the application for the executions being considered.
A dynamic calling structure (e.g., call graph) is then generated
from the profile and used to trigger a static analysis for the
region(s) of interest. This ensures that only executed methods
are analyzed. A blended analysis therefore potentially analyzes
a much smaller portion of the code than a whole-program static
analysis, and thus generally uses less resources as well.

Because blended analysis only considers code that was
executed at runtime, its results are safe only for the specific
runs that were observed. In many cases, however, this limited
safety is more useful than safety over all possible executions
offered by most traditional static analyses. When trying to
diagnose a performance problem, for example, it is common
for some inputs to lead to poor performance while others make
the system behave normally. Analysis results that focus on
the problematic inputs thus are better for the task at hand,
generally more concise and easier to understand.

B. Call Graphs and Calling Context Trees

Interprocedural static analysis typically explores a program
by following calls between methods, either forward (i.e., from
caller to callee) or backward (i.e., from callee to caller).
This requires knowledge about the possible target methods at
each call site. The vast majority of static analyses obtain this
information by building a call graph (CG) from the analyzed
code. A call graph is a directed graph in which nodes represent
methods in a program, and edges represent calls between
methods. In its most basic form, a call graph comprises a single
node for each method in the program. For more complex call
graphs, multiple nodes can correspond to the same method.
Such nodes are said to represent that method in different
contexts. Examples of common contexts include the caller of
a method [13] or its associated receiver object [18]. Because
of its importance to static analysis, call graph building is a
heavily studied topic. Many call graph building algorithms
have been defined, each with particular tradeoffs between cost
and precision (e.g., [5], [14], [15], [27]).

In blended analysis, the call graph is computed from a finite
set of concrete executions. Conceptually, a full dynamic trace
can be viewed as a call tree, a call graph representation that
uses a distinct node for each dynamic invocation of a method.
Call trees are generally very large, even for relatively short
program runs. More concise representations of the calls can
easily be obtained by aggregating nodes in the call tree. For

example, a basic (context-insensitive) call graph can be derived
from a call tree by merging all nodes that represent invocations
of the same method. While this approach minimizes the size
of the resulting call graphs, it discards a lot of valuable context
information. More precise aggregation schemes are possible.
In this paper, we focus on Calling Context Trees (CCTs) [1],
a popular way to represent dynamic calls. CCTs offer a much
more precise representation of the calls in a program than a
basic call graph, but without the prohibitively high cost of
full call trees. The key idea behind CCTs is to differentiate
between calls of a method based on the full invocation stack
that resulted in the call. While techniques exist to collect CCTs
directly at runtime (e.g., [31]), it is easy to generate them from
an existing call tree by aggregating nodes that share the same
method sequence from the beginning of the trace. Note that
although they are called trees, CCTs contain cycles in the
presence of recursion.

C. Escape Analysis

Initial experiments with blended analysis focused on ob-
ject churn, a common performance problem in framework-
intensive applications caused by the excessive creation of
temporary object instances [9]. Temporary objects are costly,
not only because of memory allocation and garbage collection
costs, but mainly due to the amount of work performed
to initialize them. In some extreme cases, object churn has
been known to dominate execution time. Our first objective
therefore was to automatically identify program regions that
are responsible for significant object churn, a process which
is typically accomplished manually. Identifying temporary
objects instances through analysis requires an approximation
of object lifetime. For this purpose, we used an existing escape
analysis algorithm by Choi et. al. [4].

Escape analysis computes bounds on the dynamic scope of
static objects. It was first proposed to enable compiler opti-
mizations such as stack allocation of object instances, which
reduces heap fragmentation and garbage collection overhead
by allocating objects on the run-time stack rather than the
heap, and synchronization removal, a technique that avoids
costly synchronization operations when code can be shown to
be thread-safe. The former requires information about objects
that escape a particular method invocation; the latter neces-
sitates knowing which objects escape their allocating thread.
Escape analysis is similar to reference (i.e., points-to) analysis
in that it computes the set of static objects that may be pointed
to by each reference in the analyzed program region(s). Escape
analysis additionally associates an escape state with each static
object. The escape state of a static object at a method m
indicates if the object is only reachable during executions of
m (captured), or if it escapes m through a global reference
(globally escaping) or through parameters and return values
(argument escaping). During the analysis, a given static object
can have different escape states in different methods along
a call path in the program; however, all objects eventually
either globally escape or become captured. We refer to the
final escape state of a static object as its disposition. Objects

whose disposition is captured are of particular interest for
identifying temporaries, as they can be viewed as temporary to
the program region rooted in the method that captures them.

D. Blended Escape Analysis

Our blended escape analysis consists of three phases. In
the first phase we use an existing profiling tool (see Sec-
tion III-A2) to collect execution traces and to build a repre-
sentation of the calling structure of the execution. The profiler
collects a call tree and information about the object allocation
for a particular execution of the system. We then aggregate
the information in the call tree to construct a CG or CCT with
additional information about the dynamic instances allocated
within each context.

The second phase of our analysis is a static escape analysis.
The output of this analysis is a connection graph for each
node of the calling structure (CG or CCT). A connection graph
encodes the points-to information between the variables, static
objects, and fields visible from within the context to which it
corresponds. The escape status of each object is also included
in the connection graph.

The third phase maps the dynamic instance information
from a CCT to the static objects used in the escape analysis.
For each calling context in the CCT, the profiler we used
identifies the number of instances of each type that were
allocated, although it does not record their actual allocation
sites. Therefore, we cannot precisely match the allocated
instances to the static objects, and in many cases we map an
allocated instance to multiple static objects to ensure analysis
safety. Additionally, the profiler is unable to accurately identify
the type of arrays with arity greater than 1 or with non-
primitive base types. These limitations add imprecision to the
dynamic instance to static object mapping.1

After mapping the dynamic instances to the static objects,
reduced connection graphs are built for each context in the
CG or CCT. Reduced connection graphs are simple object-to-
object graphs that include only those static objects that were
mapped to dynamic instances.

III. STUDY

The purpose of this study is to determine the impact of
different algorithm design choices with respect to context
sensitivity on the performance and precision of blended escape
analysis.

A. Experiment Design

1) Benchmarks: We used version 6.0.1 of the Trade bench-
mark running on WebSphere 6.0.0.1 and DB2 8.2.0.2 The way
in which the Trade benchmark interfaces with the WebSphere
middleware can be configured through parameters. We exper-
imented with four configurations of Trade by varying two
of its parameters: the run-time mode and the access mode.
The run-time mode parameter controls how the benchmark

1We are working on a new profiling tool that will address these limitations.
2Trade, WebSphere and DB2 are available to academic researchers through

the IBM Academic Initiative.

accesses its backing database: the Direct configuration uses
the Java Database Connectivity (JDBC) low-level API, while
in the EJB configuration database operations are performed
via Enterprise Java Beans (EJBs).3 The access mode parameter
was set to either Standard or WebServices. The latter setting
causes the benchmark to use the WebSphere implementation
of web services (e.g., SOAP) to access transaction results. All
other parameters retained their default values. Each of the three
benchmarks was warmed up with 5000 steps of the built-
in scenario before tracing a single transaction that retrieves
a user’s portfolio information from a back-end database into
Java objects. Our analysis was applied to the portion of the
transaction that retrieves nine holdings from a database. The
warm-up phase is necessary to allow all necessary classes to
be loaded and caches to be populated. Tracing the benchmark
in a steady state is more representative of the behavior of real
Web applications.

Because the Trade application consists of a relatively small
user code that interacts with a large amount of framework and
library code, the four configurations of the same application
have very different properties and behavior in practice. There-
fore, we use these four configurations as different benchmarks,
as have other researchers [26].

2) Experimental Setup: Our blended escape analysis is built
using the WALA analysis framework.4 The IBM research pro-
totype Jinsight [6] was used to obtain execution traces includ-
ing method calls and object creations. To obtain complete call
graphs and calling context trees from the trace, all experiments
were performed with an IBM JVM version 1.4.2 with the JIT
disabled in order prevent method inlining at runtime. Note that
different JIT implementations may provide more fine-grained
control over the specific optimizations performed by the JIT,
and may allow inlining to be disabled without requiring the
JIT to be turned off completely.5

The escape analysis was run on Apple Macintosh Pros, each
powered by 2 Quad Core Intel Xeon processors running at
2.8GHz and 8GB of RAM. Each machine ran the 64-bit Linux
kernel version 2.6.27. All analyses were performed using a
64-bit Sun JVM version 1.6.0 with a maximum heap size of
7000MB.6

3) Algorithm Design Choices: There are two different
dimensions along which the blended escape analysis can be
varied: interprocedural calling structure and intraprocedural
control flow. As mentioned in Section II-B, we examined two
different interprocedural calling structures: call graphs (CGs)
and calling context trees (CCTs) built by our extension to
Jinsight.

For intraprocedural control flow we consider two different
options, unpruned and pruned control flow. Unpruned control
flow for a method uses the actual bytecode of that method.

3Trade 6 uses the EJB 2 framework.
4http://wala.sourceforge.net/
5Instrumentation-based profiling techniques generate accurate call graphs

even in the presence of inlining.
6Except for direct-ws with pruning enabled and calling context trees

where the maximum heap size was 7500MB.

http://wala.sourceforge.net/

TABLE I
CALLING STRUCTURE STATS

CG CCT
Nodes Edges Nodes Edges

direct-std 710 1,116 1,473 1,473
direct-ws 3,308 6,361 18,267 18,363
ejb-std 1,978 3,454 8,089 8,113
ejb-ws 4,480 8,597 25,012 25,135

TABLE II
RUNNING TIMES

CG CCT
unpruned pruned unpruned pruned

direct-std 4.8s 5.4s 7.8s 4.4s
direct-ws 40m 54.4s 3m 59.4s 2m 3.3s *1m 2.9s
ejb-std 27.8s 13.4s 40.5s 18.1s
ejb-ws N/A 4h 21m 8.5s N/A 15m 50.0s

Recall that to prune control flow, we use the information
collected by Jinsight about method calls and object allocations
to remove paths from the control flow graphs that we can prove
did not execute on the run of interest. When the interprocedural
calling structure is a CCT, we prune the control flow of each
different context independently.

B. Scalability Findings

The first question we need to answer is whether or not
our analysis will scale to the potentially larger CCT calling
structure. When we previously analyzed these benchmarks
using CGs with and without pruning [7], we were able
to analyze all with pruning enabled, and all but one with
pruning disabled. However, as shown in Table I, the CCTs
for these benchmarks are significantly larger than the CGs,
with between 2 and 5.6 times as many nodes and 1.3 and 2.9
times as many edges.

Table II presents the running times for each of the runs.
Our analysis was able to complete using CCTs in all the
cases that completed using CGs. Furthermore, on all runs that
took longer than a minute to complete when using a CG, the
corresponding CCT run was faster, sometimes significantly
faster.

As mentioned earlier, the pruned CCT run for direct-ws
used a larger maximum heap size setting than the other runs. In
general, the ability of the algorithm to complete is sensitive to
the order in which nodes in the calling structure are processed.
This is due to the fact that our escape analysis is not a strictly
monotonic dataflow analysis. Due to the use of a hash-based
data structure for storing and iterating through calling structure
nodes, an easy method to permute the order in which the nodes
are processed is to change the maximum heap size, thereby
changing the allocation address for some of the objects. In the
case of direct-ws when the heap size was set to 7000MB,
the analysis would get stuck in an infinite cycle. By changing it
to 7500MB, we were able to perturb the algorithm sufficiently
to allow it to complete on this benchmark. Because of this
change in heap size, the timings for the pruned CCT run of
direct-ws are not directly comparable to the other timings
in the table, but are consistent with them.

We looked more deeply at the structure of the CCTs and
CGs that were being used and developed several hypothe-
ses about the reasons for the improved performance. We
knew from observation that the analysis spends significant
amounts of time iterating around strongly connected compo-
nents (SCCs) in the calling structure. Since CCTs are more

tree-like than CGs,7 it seemed likely that there would be fewer
non-trivial SCCs8 in the CCTs than in the CGs. However, this
turned out not to be true, and, in fact, due to duplication of
SCCs observed in the CG on different calling paths in the
CCTs, there were more non-trivial SCCs in the CCTs than in
the CGs.

Our second hypothesis was that the savings were achieved
through a decrease in the in-degree of nodes in the calling
structure. Since our analysis propagates information back-
wards through the calling structure, that information needs
to be replicated along each incoming edge of a node. On
direct-ws we found that the CCT had only one node with
in-degree greater than 1 (out of 1473 nodes total), while the
CG had 156 nodes with in-degree greater than 1 (out 710
nodes total), including nodes with in-degree as high as 38.
We found similar results on the other three benchmarks. These
results support our hypothesis that lower in-degree is a likely
reason for the improved performance of the CCTs.

In addition to looking at the running times, we also looked at
the pruning differences between the CGs and CCTs. Although
our pruning algorithm removes basic blocks from the control
flow graphs for methods, we also include information on the
statements removed to give some indication of the size of
the pruned basic blocks. Table III shows the total number
of statements and basic blocks, the number of statements
and basic blocks remaining after pruning, and the percent
removed by pruning for each of our benchmarks with both
CGs and CCTs. Since the CCT may contain several nodes (i.e.,
contexts) for each method node in the CG, with more specific
information on these nodes about the allocated objects and
called methods, we can guarantee that the control flow graph
for a CCT node will have at least as many basic blocks pruned
as the corresponding CG node. This led us to expect that
the percentage of pruned statements and basic blocks would
increase when using a CCT; however, our data contradict that
expectation. In fact, we found that the percentage of pruned
basic blocks (with respect to the total number of basic blocks
in the calling structure) decreased when using the CCT. This is
likely because the methods that are replicated most frequently
within the CCT are small methods (e.g., getter and setter
methods are likely to be called often from a variety of contexts)
where pruning is generally less effective. The increase in the
number of instances of these methods then would account for
the decrease in the effectiveness of pruning.

7As mentioned in Section II-B, in spite of being called trees, CCTs are not
in fact trees and can contain cycles.

8An SCC with more than one node

TABLE III
PRUNING STATISTICS

CG CCT
Total Remaining % Savings Total Remaining % Savings

direct-std
basic blocks 16,450 9,118 44.6% 25,170 15,710 37.6%
statements 17,864 9,268 48.1% 26,803 15,640 41.6%

direct-ws
basic blocks 65,692 39,453 39.9% 238,114 163,932 31.2%
statements 69,220 38,651 44.2% 234,200 150,593 35.7%

ejb-std
basic blocks 43,992 23,456 46.7% 118,362 69,599 41.2%
statements 47,388 23,138 51.2% 124,122 67,207 45.9%

ejb-ws
basic blocks 93,285 53,666 42.5% 350,178 229,798 34.4%
statements 98,666 52,338 47.0% 352,649 215,347 38.9%

TABLE IV
DISPOSITION IMPROVEMENT

(a) unpruned CG vs. pruned CG
unpruned pruned direct-std direct-ws ejb-std

unchanged 186 5258 1743
captured escaped - 14 1
indeterminate escaped - 97 -
escaped captured - 153 2
escaped indeterminate - - 5

(b) unpruned CCT vs. pruned CCT
unpruned pruned direct-std direct-ws ejb-std

unchanged 186 5418 1749
captured escaped - 25 2
indeterminate escaped - 51 -
escaped captured - 28 -

(c) unpruned CG vs. unpruned CCT
CG CCT direct-std direct-ws ejb-std

unchanged 185 4791 1590
indeterminate captured - 46 -
indeterminate escaped - 7 -
escaped captured 1 676 66
escaped indeterminate - 2 95

(d) pruned CG vs. pruned CCT
CG CCT direct-std direct-ws ejb-std ejb-ws

unchanged 185 4919 1598 6351
captured escaped - 4 - 4
indeterminate escaped - 7 - 7
escaped captured 1 590 63 722
escaped indeterminate - 2 90 4

C. Precision Findings

1) Disposition: The simplest measure of precision improve-
ment is a comparison of the disposition of the dynamic
instances. Although our static analysis calculates a unique
disposition of captured or escaping for each static object,
due to imprecision in mapping those static objects to their
corresponding dynamic instances, it is possible that sometimes
a dynamic instance can map to two different static objects,
one that is escaping and one that is captured. Therefore, the
disposition for a given instance, (i.e., the final escape state of
that instance), may be: captured, escaping, or indeterminate.

Table IV shows the change in disposition of instances
on our benchmarks for all 4 combinations of CG versus
CCT with pruned or unpruned code. This allows us to to
examine the effects both of pruning and of CGs versus CCTs
independently. Table IV(a) reaffirms our prior results that
pruning has limited effect on the precision of the analysis when
using call graphs. 9

9We observe an anomaly in the results from Table IV(a) and Table IV(b)
where some dynamic instances fall in the captured → escaped category. This
data asserts that some dynamic instances were found to be captured by the
analysis without pruning on CG, but as escaped by the analysis with pruning.
This loss of precision should not occur; on inspection it is explained by an
infrequent ’corner case’ bug we found in the mapping of parameters from
callees to callers when some calls are pruned. (We are working on fixing this
bug for the final paper.)

When we compare unpruned versus pruned control flow
graphs for CCTs in Table IV(b), we obtain similar results to
the comparison on CGs. However, when we begin to compare
the CCTs to CGs we see bigger differences than observable
from pruning alone. When comparing the use of CCTs to
CGs with pruning disabled (Table IV(c)), we find that on
direct-ws, 676 instances (> 12% of all of the dynamic
instances) that were classified as escaped with the CG were
classified as captured with the CCT. Similarly, looking at use
of the pruned CCTs versus CGs, a large number of instances
for both direct-ws and ejb-ws that were classified as
escaped with a CG are classified as captured with a CCT.
(Table IV(d)). By identifying additional static objects (and thus
their instances) as captured, our analysis can help developers
identify additional areas of object churn that can be examined.
Therefore, intra- and interprocedural context sensitivity here
leads to improvements in analysis results having ramifications
in practice.

2) Capture depth: A second metric we examined when
comparing precision between different algorithm design
choices is the change in the capture depth of instances. The
capture depth of an instance is the distance between the node
in the calling structure where the instance was allocated and
the node where the instance was captured. Instances with a
large capture depth are more difficult for developers to identify

TABLE V
INTERESTING METHODS

Captured Count Percentile
CG CCT CG CCT

Method Name unpruned pruned unpruned pruned unpruned pruned unpruned pruned
direct-ws

SAXParser.parse 0 0 216 216 0 0 97 98
P2DConverter.flush 91 0 316 180 95 0 98 97
ChannelTargetImpl.getCFEndPoint 8 103 104 103 64 95 94 94
SOAPElement.addTextNode 0 45 0 45 0 88 0 86
HTTPSender.invoke 7 7 8 20 63 63 63 81
ClusterServiceImpl.matchEndPoints 20 13 20 13 83 79 82 76

ejb-std
GeneratedMethodAccessor38.invoke 8 14 122 122 50 65 92 92
GeneratedMethodAccessor32.invoke 7 12 102 102 45 63 90 90

ejb-ws
SAXParser.parse N/A 0 N/A 216 N/A 0 N/A 98
P2DConverter.flush N/A 0 N/A 180 N/A 0 N/A 97
ChannelTargetImpl.getCFEndPoint N/A 7 N/A 103 N/A 60 N/A 95
OneRowResultCollectionImpl.processOneRowToCacheEntry N/A 9 N/A 27 N/A 64 N/A 82

as object churn because they involve tracing manually through
long call chains in the code. Our previous work showed that
the capture depth within these programs can be quite large,
in some cases as many as 14 calls. By using a more precise
algorithm to compute the capturing locations for instances,
we expect to provide better information to developers for
identifying object churn.

However, our results show that the capture depth of the vast
majority of dynamic instances did not change either when
transitioning from unpruned control flow to pruned control
flow or when transitioning from CGs to CCTs. Specifically,
we saw no change in the capture depth for any dynamic
instances on direct-std or ejb-std. On direct-ws
the captured depth of 47 dynamic instances (of 5,522 total
dynamic instances) changed when transitioning from the un-
pruned CCT algorithm to the pruned CCT algorithm. On the
other comparisons of direct-ws and ejb-ws the capture
depth of only one to three dynamic instances changed. These
results show that the algorithm choice had nearly no effect on
the capture depth.

3) Concentration: Since the goal of this analysis is to
identify locations within the application where object churn
can be removed, we also wanted to look at how algorithm
design choices differed in identifying the methods where
large numbers of temporaries are being captured. Previously,
we focused on a metric called concentration to identify the
percentage of captured instances that were captured by the top
x% of capturing methods. This work showed that the top 20%
of the capturing methods accounted for the majority of the
captured instances. When applied to the CCT data, we found
similar results; however, the set of methods that appeared in
the top 20% shifted.

Table V shows the methods that had interesting shifts with
respect to (i) the number of captured instances and (ii) the
method rank within the list of capturing methods. The captured
count columns show the number of instances identified as
captured by the method, when using the specified design
choices. The percentile columns show what percentage of

all of the capturing methods captured fewer instances than
the method in the table. For example, on direct-ws, the
pruned CCT run identified 216 instances as being captured in
SAXParser.parse and found that SAXParser.parse
captured more dynamic instances than 98% of the identified
capturing methods for that run. We identified a method as
interesting for purposes of this table if it captured different
numbers of dynamic instances for different design choices and
if the percentile crossed the 80%, 90% or 95% boundary for
some pair of choices.

As can be seen in Table V, changes to both the inter- and
intraprocedural context sensitivity have significant effects on
the relative ranking of capturing methods for three of the
four benchmarks (on direct-std there were no methods
that met our criteria). A more precise algorithm can both
indicate new methods that the user should consider (e.g.,
SAXParser.parse on both the wsruns) as well as those
that should be avoided because they may be less fruitful to con-
sider (e.g., ClusterServiceImple.matchEndPoints
on direct-ws).
P2DConverter.flush on direct-ws is an interesting

case. Adding intraprocedural pruning allows the algorithm
to identify fewer captured instances, but adding interproce-
dural context sensitivity results in the identification of more
captured instances. The reduction in captured instances from
pruning is caused primarily by 91 StringBuffer instances.
The flush method includes 6 different StringBuffer
allocation sites. Due to our mapping of dynamic instances
to static objects, the 91 StringBuffer instances must be
mapped to each of these allocation sites. Of these 6 allocation
sites, the instances allocated at 5 of them are shown to be
captured by the escape analysis. However, after pruning, all
5 of the captured sites are removed (the removed allocations
all relate to debugging output that is disabled), leaving only
the escaping allocation site. This results in some instances no
longer matching captured static objects, decreasing the number
of captured instances, and therefore, the rank of the flush
method in the list of capturing methods.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

#" (" $" %")" &" *"

!"
#$
%
"
&'
#(

)*+'(

(a) direct-ws

!"

#!"

$!"

%!"

&!"

'!"

(!"

$" %" (")" *" +" #$"

!"
#$
%
"
&'
#(

)*+'(

(b) ejb-std

Fig. 1. Size of Data Structures

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

#" (" $")" %"

!"
#$
%
"
&
'
#(

)*+'#(

(a) direct-ws

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

$" %" '" ("

!"
#$
%
"
&
'
#(

)*+'#(

(b) ejb-std

Fig. 2. Number of Types in Data Structures

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

#" $" %" &" (" *" #!" #$" #&" #'" #("

!"
#$
%
"
&'
#(

)%*+,-,(.%/$-0'(1'/$2(

(a) direct-ws

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

$" %" &" '" #" (" $!" $'" $#"

!"
#$
%
"
&'
#(

)%*+,-,(.%/$-0'(1'/$2(

(b) ejb-std

Fig. 3. Capture Depths of Data Structures

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

#" (" $" %")" &" *"

!"
#$
%
"
&'
#(

)*+'(

+,-.+,/0"12" -.+,/0"12" +,-.+,/0"113" -.+,/0"113"

The increase in captured instances when moving from
a CG to a CCT is primarily due to the reclassification
of a data structure rooted at a SOAPBuilder instance
from escaping to captured. SOAPBuilder objects are allo-
cated in a method, SOAPBuilder.onStartChild, that
is called directly from flush and transitively though a call
to DEventProcessor.onSimpleChild from flush.
The SOAPBuilder objects that are returned from the di-
rect call eventually are able to escape from flush (via an
assignment to a field), while the objects that are returned
transitively through onSimpleChild do not escape from
the flush method. When using a CG, the analysis is not
able to distinguish between the objects from the separate calls
to onStartChild and therefore must indicate that all of
theSOAPBuilder objects that are returned to flush could
potentially escape from flush, while the CCT allows these
two kinds of SOAPBuilder objects to be disambiguated.

4) Data structures: We hypothesized that when trying to fix
object churn problems, it might be useful to focus on areas
where large data structures are captured. We define a captured
data structure as a captured root object and all captured objects
that are reachable from that root. Note that a root can be
a single captured object or a strongly connected component
of captured objects with no incoming reference edges in the
reduced connection graph. For a data structure with a single
static object root, we use the number of dynamic instances
that mapped to that static object as the number of instances of
that data structure. If a data structure has an SCC consisting of
multiple static objects as its root, we identify the static object
in that SCC with the fewest dynamic instances mapped to it
and use that as the number of instances of that data structure.
We only include data structures with at least two static objects
in our investigations. We only talk about data structures in
direct-ws and ejb-std here, because the data structures
in direct-std were relatively uninteresting and those in
ejb-ws were similar to the results below.

Figure 1 shows how many instances of each size of data
structure were captured. Since we cannot know the actual
number of instances within each data structure at runtime,
we use the number of static objects within the captured data
structure as an approximation of the size of the data structure.
On direct-ws we see that pruning has minimal effect on
the size of the captured data structures, but that using a
CCT significantly increased the number of captured small data
structures without significantly changing the number of larger
captured data structures. This indicates that the additional data
instances identified as captured when using a CCT were not
part of already captured data structures.

On ejb-std we see that the use of pruning significantly
impacts the number of captured data structures of size 2 and 3,
increasing the number of size 2 data structures and decreasing
the number of size 3 data structures. This is most likely due to
the pruning of allocation sites that were identified as captured
in the unpruned analysis. Additionally on ejb-std we see
significantly more large captured data structures and fewer
small captured data structures when moving from a CG to

CCT. This suggests that unlike the case with direct-ws,
the additional captured objects were part of existing data
structures, thereby increasing the size of many data structures.

We also looked at the number of types within the data struc-
tures. Figure 2 shows the number of data structure instances
that had a particular number of types. For direct-ws the
distribution of number of types within the data structure is
similar to the distribution of the sizes of the data structures.
However, on ejb-std, we see that much of the variation
we saw in the size of data structures was removed when we
just consider the number of types within the data structures.
In particular there is almost no difference between unpruned
and pruned for the CCT runs, and the differences between
unpruned and pruned in the CG runs were significantly
reduced. This supports our hypothesis that the variance in
size was a result of pruning of allocation sites within the
control flow graphs. Additionally, the difference in number of
types between the CG and CCT runs mostly disappears. This
indicates that the additional static objects that were included
in the data structures were of the same types as objects already
in the data structures.

For each data structure we compute a maximum capture
depth as the largest distance within the calling structure be-
tween an allocation site in the data structure and the capturing
method for that data structure. Figure 3 shows the number of
data structures with each maximum capture depth. In general
the use of pruning had only small effects on the capture depth
of data structures. The use of a CCT tends increase the number
of data structures captured at several depths. When coupled
with the small changes in capture depths found for instances,
these increases probably mostly correspond to instances that
were identified as captured with CCTs but as escaping with
CGs.

IV. RELATED WORK

A number of previous studies have investigated the im-
pact of context sensitivity on the results of static analyses.
Liang et. al. [16] performed a set of empirical studies to
evaluate the effect of context sensitivity on the precision of
Andersen’s points-to analysis. They compared call string and
object sensitive variants of the analysis to data obtained by
dynamic analysis, and show that context sensitivity can lead to
significant precision improvements. Lhoták and Hendren [15]
performed a similar study of the impact of context sensitivity
using a BDD-based implementation. They analyzed a large
number of benchmarks to determine the impact of context
sensitivity on the characteristics of the points-to sets as well
as on the precision of client analyses such as devirtualisation
of calls and cast removal. Their results show that context
sensitivity almost always achieves better precision than a
context-insensitive analysis (and is never worse), with object
sensitivity surpassing other types of context sensitivity in all
cases. Liang et. al. [17] performed a complementary study
of the impact of various object abstractions on the precision
of analyses for concurrency. Their object abstractions use
call stack, object recency, and heap connectivity information.

Similarly to previous studies, their results show that context
sensitivity is instrumental in achieving high precision. They
observe that the effectiveness of a given heap representation
is client-dependent, and correlates heavily with properties of
the analysis under consideration. While we share the goal
of evaluating the impact of context sensitivity with these
previous studies, our work differs on two main points: (i)
we use dynamic call information rather than statically derived
call graphs and (ii) we focus our study on specific blended
analyses, in particular blended escape analysis.

More generally, our work aims to effectively character-
ize the behavior of framework-intensive applications. Several
previous analyses have also used dynamic analysis to un-
derstand the behavior of these large systems, for example
to diagnose performance problems or to understand the data
structures used. Ammons et. al. [2] used execution profiles
to find performance bottlenecks by identifying expensive call
sequences. Srinivas et. al. [26] designed a dynamic analysis
technique that identifies method invocations that account for
a specified cumulative percentage of execution cost in large,
commercial Java applications. Mitchell et. al. have designed
tools to identify memory leaks in long-running applications
[19] and to identify key data structures in a heap snapshot
[20]. Zhao et. al. [30] have studied the impact of excessive
object allocations on the scalability of a number of Java
benchmarks to a high number of CPU cores. Specifically,
they were concerned with the bus write traffic caused by
the garbage collected memory management strategy. Recent
work by Shankar et. al. [24] addresses the identification and
removal of temporary objects in the context of a production
just-in-time (JIT) compiler. They use sampling profiles of
object lifetimes to identify program regions, churn scopes,
that encapsulate the lifetime of many objects. Xu et. al. [29]
have designed a new runtime technique that identifies bloat in
framework-intensive applications caused by excessive copying
of data between objects. Performance defects were found and
fixed in a number of benchmarks with great success, with
the resulting runtime improvements reaching up to 30% for
some benchmarks. Tripp et. al. [28] have devised a static
taint analysis algorithm for Java that specifically targets web
applications. Their analysis uses a variety of models that are
tailored to the applications under study, e.g., for reflective
calls, Enterprise Java Beans (EJBs), Java Server Pages (JSPs),
and other popular frameworks.

In an early paper, Ernst [10] discussed various ways in
which both static and dynamic techniques can complement
each other. Our work uses a combination of static and dynamic
analysis techniques where the dynamic information is used to
augment a static analysis. Other uses of dynamic analysis to
improve a static analysis have been used to solve a wide variety
of well-known problems, including program slicing (e.g.,
[12]), change-impact analysis (e.g., [21]) and symbolic anal-
ysis (e.g., [11]). Artzi et. al. [3] described various pipelined
combinations of static and dynamic mutability analyses for
Java method parameters, and showed that it can exceed the
accuracy of a more complex static analysis. In contrast, our

approach is more tightly coupled than the pipelined approach,
in which results from analysis are only used as input to
the next one. Sinha et. al. [25] described a technique for
fault localization and repair that uses stack traces from faulty
concrete executions to guide a static dataflow analysis. The
dynamic information here serves a similar purpose as with
our use of blended analysis, but it defines the program region
to be analyzed more loosely since the faulty statements do
not necessarily belong to methods that appear in the provided
stack trace.

V. CONCLUSION

Blended analysis is a powerful technique for scaling ex-
isting static analyses to large programs such as framework-
based Web applications, for problems solvable on a set of
interesting executions. We have used blended escape analysis
for performance diagnosis to identify areas of object churn.

This paper has presented the first detailed study of the
impact of various algorithm design decisions on the scalability
and precision of a blended analysis. We have explored the
use of context sensitivity with respect to calling structure
representation (i.e., CGs vs. CCTs) and control-flow pruning
within a method. Control-flow pruning was enabled using
knowledge of unexecuted calls and object allocations on a
particular run.

The most surprising finding of our study was that the
use of CCTs on complex Web applications is both possible
and practical, although CCTs clearly are larger than CGs
in number of nodes and statements. The execution times
reported on CCTs were less than 15 minutes, even for our
most realistic (and complicated) benchmark, ejb-ws. The
significant analysis speedups demonstrated on the CCTs occur
because paths in a CCT are less ambiguous than those in a
CG, resulting in faster propagation of a smaller, more accurate
dataflow solution. Important timing savings were realized by
using pruning on CGs (shown in our previous work) and on
CCTs, although there was little change in precision due to
pruning in either case. Thus, precision gains mostly were due
to the context-sensitive calling structure representation. For
example, significant differences in the number of static objects
in captured data structures were observed. By focusing our
metrics more on the dynamic instances rather than the static
objects used in the analysis, we also were able to identify
improvements to precision more important to a developer.
These improvements can direct a developer more effectively to
the key capturing methods for temporary objects, thus aiding in
focusing attention on the right parts of the program to examine.

Therefore, this study demonstrates the significant impact of
context sensitivity on both algorithm scalability and precision,
both of which affect the practicality of blended analysis on
real programs. Moreover, the non-intuitive result that a larger,
context-sensitive calling structure representation is scalable,
and results in a faster, more precise analysis is significant in
highlighting a key difference between whole-program static
analysis and blended analysis.

REFERENCES

[1] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation, 1997, pp. 85–96.

[2] G. Ammons, J.-D. Choi, M. Gupta, and N. Swamy, “Finding and
removing performance bottlenecks in large systems,” in Proceedings of
the European Conference on Object-Oriented Programming, 2004.

[3] S. Artzi, M. D. Ernst, D. Glasser, and A. Kiezun, “Combined static
and dynamic mutability analysis,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, 2007, pp.
104–113.

[4] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff,
“Stack allocation and synchronization optimizations for Java using
escape analysis,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 25, no. 6, pp. 876–910, 2003.

[5] D. David Grove and C. Chambers, “A framework for call graph con-
struction algorithms,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 23, no. 6, pp. 685–746, 2001.

[6] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and
J. Yang, “Visualizing the execution of Java programs,” in Software
Visualization, ser. LNCS, 2002, vol. 2269, pp. 151–162.

[7] B. Dufour, “Practical analysis of framework-based applications,” Ph.D.,
Rutgers, The State University of New Jersey, December 2009.

[8] B. Dufour, B. G. Ryder, and G. Sevitsky, “Blended analysis for perfor-
mance understanding of framework-based applications,” in Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and
Analalysis, 2007, pp. 118–128.

[9] ——, “A scalable technique for characterizing the usage of temporaries
in framework-intensive Java applications,” in Proceedings of the Inter-
national Symposium on the Foundations of Software Engineering, 2008.

[10] M. Ernst, “Static and dynamic analysis: Synergy and duality,” in
Proceedings of the International Workshop on Dynamic Analysis, 2003.

[11] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2005.

[12] A. Groce and R. Joshi, “Exploiting traces in program analysis,” in
Proceedings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, 2006.

[13] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph construc-
tion in object-oriented languages,” in Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and
Applications, 1997, pp. 108–124.

[14] O. Lhoták and L. Hendren, “Scaling Java points-to analysis using
Spark,” in Proceedings of the International Conference on Compiler
Construction, ser. LNCS, vol. 2622, April 2003, pp. 153–169.

[15] ——, “Context-sensitive points-to analysis: is it worth it?” in Proceed-
ings of the International Conference on Compiler Construction, ser.
LNCS, vol. 3923, March 2006, pp. 47–64.

[16] D. Liang, M. Pennings, and M. J. Harrold, “Evaluating the impact
of context-sensitivity on Andersen’s algorithm for Java programs,” in
Proceedings of the Workshop on Program Analysis for Software Tools
and Engineering, 2005, pp. 6–12.

[17] P. Liang, O. Tripp, M. Naik, and M. Sagiv, “A dynamic evaluation
of the precision of static heap abstractions.” [Online]. Available:
http://berkeley.intel-research.net/mnaik/pubs/

[18] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object sen-
sitivity for points-to analysis for Java,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 14, no. 1, pp. 1–41, 2005.

[19] N. Mitchell and G. Sevitsky, “LeakBot: An automated and lightweight
tool for diagnosing memory leaks in large Java applications,” in Pro-
ceedings of the European Conference on Object-Oriented Programming,
2003.

[20] N. Mitchell, G. Sevitsky, and H. Srinivasan, “Modeling runtime behavior
in framework-based applications,” in Proceedings of the European
Conference on Object-Oriented Programming, 2006.

[21] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging field
data for impact analysis and regression testing,” in Proceedings of the
International Symposium on the Foundations of Software Engineering,
2003.

[22] B. G. Ryder, “Dimensions of precision in reference analysis of object-
oriented programming languages,” in Proceedings of the International
Conference on Compiler Construction, ser. LNCS, vol. 2622, April 2003,
pp. 126–137.

[23] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the International Symposium on the
Foundations of Software Engineering, 2005.

[24] A. Shankar, M. Arnold, and R. Bodik, “JOLT: Lightweight dynamic
analysis and removal of object churn,” in Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications, 2008.

[25] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J. Harrold, “Fault
localization and repair for Java runtime exceptions,” in Proceedings of
the ACM SIGSOFT International Symposium on Software Testing and
Analalysis, 2009, pp. 153–164.

[26] K. Srinivas and H. Srinivasan, “Summarizing application performance
from a components perspective,” in Proceedings of the International
Symposium on the Foundations of Software Engineering, September
2005, pp. 136–145.

[27] F. Tip and J. Palsberg, “Scalable propagation-based call graph construc-
tion algorithms,” in Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications,
2000, pp. 281–293.

[28] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “TAJ:
effective taint analysis of web applications,” in Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2009, pp. 87–97.

[29] G. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky, “Go
with the flow: profiling copies to find runtime bloat,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2009.

[30] Y. Zhao, J. Shi, K. Zheng, H. Wang, H. Lin, and L. Shao, “Allocation
wall: a limiting factor of Java applications on emerging multi-core
platforms,” in Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications, 2009, pp.
361–376.

[31] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi, “Accurate,
efficient, and adaptive calling context profiling,” in Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2006, pp. 263–271.

http://berkeley.intel-research.net/mnaik/pubs/

	I Introduction
	II Background
	II-A Blended Analysis
	II-B Call Graphs and Calling Context Trees
	II-C Escape Analysis
	II-D Blended Escape Analysis

	III Study
	III-A Experiment Design
	III-A1 Benchmarks
	III-A2 Experimental Setup
	III-A3 Algorithm Design Choices

	III-B Scalability Findings
	III-C Precision Findings
	III-C1 Disposition
	III-C2 Capture depth
	III-C3 Concentration
	III-C4 Data structures

	IV Related Work
	V Conclusion
	References

