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ABSTRACT 
Local based approach is a major category of methods for spatial 
outlier detection (SOD). Currently, there is a lack of systematic 
analysis on the statistical properties of this framework. For example, 
most methods assume identical and independent normal distributions 
(i.i.d. normal) for the calculated local differences, but no 
justifications for this critical assumption have been presented. The 
methods’ detection performance on geostatistic data with linear or 
nonlinear trend is also not well studied. In addition, there is a lack of 
theoretical connections and empirical comparisons between local and 
global based SOD approaches. This paper discusses all these 
fundamental issues under the proposed generalized local statistical 
(GLS) framework. Furthermore, robust estimation and outlier 
detection methods are designed for the new GLS model. Extensive 
simulations demonstrated that the SOD method based on the GLS 
model significantly outperformed all existing approaches when the 
spatial data exhibits a linear or nonlinear trend. 

Categories and Subject Descriptors 
D.2.8 [Database Management]: Database Applications – data 
mining. I.5.3 [Pattern Recognition]: Outlier Detection.  

General Terms 
Algorithms, Theory, and Experimentation 

Keywords 
Spatial Outlier Detection, Spatial Gaussian Random Field. 

1. INTRODUCTION 
The ever-increasing volume of spatial data has greatly challenged our 
ability to exact useful but implicit knowledge from them. As an 
important branch of spatial data mining, spatial outlier detection aims 
to discover the objects whose non-spatial attribute values are 
significantly different from the values of their spatial neighbors [1]. 
In contrast to traditional outlier detection, spatial outlier detection 
must differentiate spatial and non-spatial attributes, and consider the 
spatial continuity and autocorrelation between nearby samples. By 
the first law of geography, "Everything is related to everything else, 
but nearby things are more related than distant things [3]." 

There are two main streams for spatial outlier detection (SOD): local 
and global based approaches. Local based approach [4] first 
calculates the local difference (statistic) for each object, which is the 
difference between the non-spatial attribute of the object and the 
aggregated value (e.g., average) of its spatial neighbors. By assuming 
i.i.d. normal distributions for these local differences, the local based 
approach discovers outlier objects by robust estimation of model 
parameters, such as the aggregated values, mean, and standard 
deviation. Various methods have been presented by using various 
spatial neighborhood definitions and robust estimation techniques [5-
9]. The second stream, global based, is to identify outliers using the 
robust estimator of a global kriging model which is the best linear 
unbiased estimator for geostatistical data. Particularly, Christensen et 

al. [10] proposed diagnostics to detect spatial outliers on the 
estimation of covariance function. Cerioli and Riani [11] developed a 
forward search procedure to identify spatial outliers for an ordinary 
kriging model. Militino et al. [12] further generalized the forward 
search method in [11] to a universal kriging model. This paper 
focuses on local based methods, because local based methods are 
simpler to understand and implement and can achieve better 
efficiency with minimal loss of accuracy. This will be justified by 
extensive simulations in Section 5.  

This work is primarily motivated by the current situation where there 
is still no systematic study about the statistical properties of local 
based SOD methods. For example, existing works assume i.i.d. on 
local differences, but no justifications have ever been proposed. 
Also, their performance on spatial data with linear or nonlinear 
trends has not been well studied. There is also a lack of research on 
the theoretical connections and empirical comparisons between local 
and global based SOD methods. To that end, this paper provides a 
generalized framework for local based SOD methods and 
theoretically and empirically compares it to global based SOD 
methods. The proposed framework is casted within the statistical 
abstraction of a spatial Gaussian random field which is the most 
popular model for geostatistical data [1,2]. A major reason for its 
popularity is that the optimal solution based on the Gaussian random 
field is equivalent to a best linear unbiased estimator that imposes no 
particular distributional assumption.  

A spatial Gaussian random field refers to a collection of dependent 
random variables that are associated with a set of spatial 
indexes, , , where  is a continuous fixed region. 
This family of random variables can be characterized by a joint 
Gaussian probability density or distribution. In real applications, only 
partial observations of one realization (or a partial sample of size 
one) are available: , … , . In order to make this model 
operational, the requirements for stationarity and isotropy, such as 
second-order or intrinsic stationarity, are further imposed. Imposing 
such an assumption reduces the number of model parameters 
required to be estimated. When the data is second-order stationary 
and isotropic, the spatial correlation structure is described by some 
semivariogram or covariance function, in which the correlation 
between two variables is dependent on their spatial distance. 
Statistical inferences are then performed by assuming some explicit 
forms of the covariance and mean functions.  

Our major contributions are as follows: 

• Design of a generalized local statistical framework: The 
general local statistical (GLS) model is a generalized statistical 
framework for existing local based SOD methods. It can 
effectively handle complex situations where the spatial data 
exhibits a global trend or non-negligible dependences between 
local differences.  

• Robust estimation and outlier detection methods based on 
the proposed GLS framework: Analyze contamination issues 



that cause the masking and swamping effects of outlier 
detection. Based on the analysis, two robust algorithms, GLS-
backward search and GLS-forward search, are proposed to 
estimate the parameters for the GLS model.  

• In-depth study on the connection between different SOD 
methods: Present theoretical foundations for existing local 
based SOD methods and discuss the crucial connections 
between local and global based SOD methods.  

• Comprehensive simulations to validate the effectiveness and 
efficiency of GLS. This is the first work that provides extensive 
comparisons between existing popular methods through a 
systematic simulation study. The results show that the proposed 
GLS-SOD approach significantly outperformed all existing 
methods when the spatial data exhibits a linear or nonlinear 
trend.  

The proceeding sections are organized as follows. Section 2 provides 
a brief description of spatial local statistics and survey of related 
works. Section 3 presents the generalized local statistical model and 
gives a rigorous theoretical treatment of its fundamental statistical 
properties. Section 4 introduces several robust estimation and outlier 
detection methods for the GLS model, and analyzes the connection 
between different SOD methods. Section 5 provides the simulation 
and discussion. Section 6 gives the conclusion.  

2. SPATIAL LOCAL STATISTICS AND 
RELATED WORKS 
Given a set of observations , , … , , a local spatial 
statistic [4] is defined as 

, 

where , … ,  is a set of spatial locations, , 
 represents the value of  attribute at location ,  is the 

set of spatial neighbors of , and  represents the 
average attribute value for the neighbors of . It is assumed that the 
set of local spatial statistics , … ,  are independently and 
identically normally distributed (i.i.d. normal). Then the popular Z-
test [4] for detecting spatial outliers can be described as follows: 
Spatial statistic  Φ , where  Φ  is the 
cumulative distribution function (CDF) of a standard normal 
distribution,  refers to significance level and is usually set to 0.05, 
and  and  are the sample mean and standard deviation, 
respectively.  

Lu et al. [5] pointed out that the Z-test is susceptible to the well-
known masking and swamping effects. When multiple outliers exist 
in the data, the quantities , , and are biased 
estimates of the population means and standard deviation. As a result, 
some true outliers are "masked" as normal objects and some normal 
objects are "swamped" and misclassified as outliers. The authors 
proposed an iterative approach that detects outliers by multi-
iterations. Each iteration identifies only one outlier and modifies its 
attribute value so that it will not impact the results of subsequent 
iterations. Later, Chen et al. [6] proposed a median based approach 
that uses median estimator for the quantities  and , 
and median absolute deviation (MAD) estimator for . Hu and Sung 
[7] proposed an approach similar to [6], but using trimmed mean to 
estimate , instead of the median. Sun and Chawla [8] 
presented a spatial local outlier measure to capture the local behavior 
of data in their neighborhood. Shekhar et al. [9] employed a graph-

based method to define spatial neighborhoods ( ) and their 
method is applied to a special case of transportation network. 
Most existing local based methods assume that the set of local 
statistics , … ,  are i.i.d. normal, but no justifications for 
this assumption have been proposed. As we will discuss in 
subsequent sections, this i.i.d. assumption is only approximately true 
in certain scenarios, and the dependencies between different local 
differences (statistics) must be considered when the spatial data 
exhibit linear or nonlinear trend or the selected neighborhood size for 
each object is small. As shown in our simulations in Section 5, the 
violation of i.i.d. assumption can significantly impact the accuracies 
of the outlier detection methods.  

3. GENERALIZED LOCAL SPATIAL 
STATISTICS 
This section first introduces some preliminary background on spatial 
Gaussian random field, then presents the generalized local statistical 
(GLS) model, and finally discusses the statistical properties of the 
GLS model. Table 1 summarizes the key notations used in this paper.  

Table 1: Description of Major Symbols 
Symbol Descriptions 

 A given set of observations, where  is the 
spatial location and  is the Z attribute value.  

 is a vector of covariates of , such as the 
bases of spatial coordinates of . 

 , … ,  
 , … ,  

F Neighborhood weight matrix; See equation 4  
 A general definition of spatial neighbors of .  

 K-nearest neighbors of  . This paper considers 
 as the specification of .  

 Neighborhood size. It is the major parameter to 
define spatial neighbors . 

SOD Spatial Outlier Detection 
GLS Generalized Local Statistics Model 

, ,  The unknown parameters in the GLS model 

3.1 Generalized Local Statistic Model (GLS) 
Consider a spatial Gaussian random field ,  with 
the following form:  

, , 

where  is a fixed region, ,  is the large scale trend (mean) 
of the process,  is the smooth-scale variation that is a Gaussian 
stationary process, and  is the white noise measurement error 
with variance .  

For the large scale trend , ,  is a vector of covariates, 
and  is a vector of parameters for the trend model. We assume that 

 is a vector of the basis of spatial coordinates of , and 
,  is a linear function with  , . The 

nonlinear degree of the trend depends on the polynomials of the 
elements in . For the smooth-scale variation , we assume 
that it is an isotropic second order stationary process, which means 
the covariance Cov ,  is a function of the spatial distance 
between  and : . Various distance metrics may be 

(1) 

(2) 



selected, such as  (Euclidean distance),  (Manhattan distance), 
and graph distance [10].  

Given a set of observations , , … ,   that is a partial 
sample of a particular realization of the spatial Gaussian random 
field, let  , … , , , … , 

, … , and , … , . Then we have 

  ~  , , 

where ~ , , and ~ , .  

The vector of local spatial statistics calculated by equation (1) can be 
reformulated as the matrix form 

, 

where   is a neighborhood weight matrix with 1 
when ; , when ; and 0 otherwise.  

By equations (3) and (4), we can readily derive the generalized local 
statistical (GLS) model as 

 ~ , . 

As shown in Section 3.2, can be approximated by . It 
follows that the GLS form (5) becomes asymptotically equivalent to  

 ~ , . 

As indicated in Section 3.2 Theorem 1, when the neighborhood size 
is relatively large with 8, the component  can be further 
approximated by . This leads to a simpler form of GLS as 

 ~ , . 

This generalized local statistical model above has the unknown 
parameters ,   , and . The robust estimation of these parameters 
will be discussed in Section 4. 

3.2 Theoretical Properties of GLS 
This sub-section studies the properties of two major covariance 
components  and , and discusses the situations where 
they can be approximated by  and , respectively. As shown in 
equation 3 ,  and  are the covariance matrices of the 
random vectors  and , respectively. We focus on 
the study of their correlation structures. Because they are both 
multivariate normally distributed, the correlation structure gives 
important information about the related dependence structure (e.g., 
in-correlation implies independence). Three related theorems are 
stated as follows: 

Theorem 1: The random vector  has two major properties 

1) The variance , 1 … , 

2) The correlation , , ,   , 

where  refers to the i-th element in the vector . 

Proof: First, we prove property 1 . Recall that Var , 
where  is the neighborhood weight matrix (see Section 3.1 
equation  4  for the definition). For simplicity, we 
represent  as , , … ,  and let  denote the j-th component 
of the vector . According to the definition of ,  1; 

, if ; otherwise, 0. It implies that Var

1 ∑ 1 ,
1, … , .  This proves property 1 .  

Second, we prove property  2 . , 1, … , , the correlation 
, / ∑

∑ , , . The third component in 

this equation satisfies ∑ , , 0, , since  and  can 

only be  or zero, and the set ,   or  
,

 has at 

most  elements with value  . As to the components  
 and , we consider four different situations:  

1  , :  

It implies that . Then,  

, ∑ , ,

∑ , , . 

2  ,  

It implies that 0 and . Then,  

, ∑ , ,

∑ , , . 

3  ,  

It implies that  and 0. Then,  

, ∑ , ,

∑ , , . 

4  ,  

It implies that 0. Then,  

, ∑ , ,

∑ , , . 

Therefore, we conclude that , , ,  with .       

Theorem 1 indicates that when the neighborhood size is relative large, 
the correlations between the components in  are very low (e.g., 
smaller than 0.2 when 10 ) and the variance  of each component 
is very close to . In this case, . However, for a small 
neighborhood size, as shown in simulations (Section 5), the 
dependence between the components in  must be considered.  
The next two theorems are related to the random vector . It is very 
difficult to analytically evaluate , because it is generated by an 
isotropic second order stationary process, and even when the explicit 
form of the covariance function is known, the statistical properties of 

 are still not straightforward. For this reason, several additional 
assumptions (constraints) need to be considered.  

The following are three assumptions required for Theorem 2:  

1. If , then, , , , 
their between spatial distances are approximately equivalent: 

. 
2. If , ,  , then  

. 

(3) 

(4) 

(5) 

(6) 

(7) 



3. The distance between any points that are k-nearest neighbors is 
approximately constant everywhere. 

The intuition on assumptions 1 and 2 is that, because neighbors are 
close to each other, they share similar between-distances, and also 
share similar distances to the points that are not their neighbors. The 
assumption 3 is valid when the spatial locations follow a uniform 
distribution or a grid structure. Note that, the assumption 3 holds in 
many applications [13]. The situations where assumptions 1 and 2 
are potentially violated will be discussed in Theorem 3.  

Theorem 2: If the above assumptions 1 and 2 hold, then the random 
vector  has two major properties  

1) The variance , 1 …  

2) The correlation , , if   or ; 
otherwise, , 0, 

where  refers to the average covariance value between  and its 
K-nearest neighbors, and 0  refers to the constant variance 
for each component of . Further, if the assumption 3 also holds, 
then the variance  becomes constant everywhere. 

Proof: Let Var , Var , and . Recall 
that , where  is the smooth scale variation (see Section 
3.1 equation 3 ). The covariance component Cov ,

, where  is a covariance function (e.g., exponential 
or spherical functions) that depends on the distance . 
By the covariance function  and the assumption 1, neighboring 
points must have the same covariance. For each point , we 
represent the constant covariance between  and its -nearest 
neighbors as . Let 0 . The variance for each component of 

 can be calculated as: Var Cov ,
0 , 1, … , . Then by matrix computation,  

,               ;
1

,       or  ;

0,                           Otherwise.

 

Particularly, by assumption 1, if , then ∑
.  If   and  or 

, then  ∑ 1

. For other cases, derived from the 

assumption 2, ∑ ∑

0.   

As to the covariance matrix  , by matrix 
computation we have that 

1
,        ;

1
,        or ;

0,                                    Otherwise.

 

Particularly, if  , then  ∑ ∑

. If , , 

or , then ∑

. For other 

cases, where  and , it has 
∑ 0 . We prove this statement by contradiction.  
Assume that the value  does not equal zero in this situation. Then 
there must be some  1, … ,  such that  0 . This 
means  and . According to assumption 1, 
either  or  must be true, contradiction! 
Recall that Var . The above results prove that Var

;  , / , if   or 
; and , 0, in other cases.                                        

Theorem 2 indicates that the correlations between the components in 
 are mostly zero, except for neighboring points. Particularly, the 

correlations between neighboring points are all negative, and their 
major impact factor is the neighborhood size . The greater the value 
of K, the less the neighbor points are correlated. However,  cannot 
be arbitrary large; otherwise, the assumptions made above will be 
violated. For example, suppose 200  and 10 , then only 
about 5% of pairs are correlated. For these correlated components, 
the correlations are only close to 0.1. As shown in Figure 1, 0.1 
indicates a negligible correlation.  

 
Figure 1: An example of correlation: it reflects the noise and 
direction of a linear relationship [13]. 

Theorem 2 states two approximate properties of . However, it is 
not directly known how these properties are impacted if assumptions 
1 and 2 are violated. The next Theorem 3 will delve deeper into this 
issue and provide more specific analysis on . For Theorem 3, the 
following less restrictive assumptions are employed: 

1. The spatial locations , … ,  follow a grid structure and 
2500;  

2. The spatial distance is defined by  (Euclidean) distance;  

3. The covariance function , ,  where 
, follows a popular spherical model; 

4. Consider 4 or 12-nearest neighbors as spatial neighbors for each 
object.  

Assumptions 1 and 2 are generic properties that can be readily 
applied to spatial data in general [1, 2]. In many applications, the 
total number of spatial locations is smaller than 200. Here, we 
consider a much enlarged range with 2500, for the purpose of 
generality. For assumption 3, a spherical model is defined as 

;

                                            0

1         0

0                                           ,

 

where , , 0, 0 . 0;  refers to the constant 
variance for each object , and ;  is a decreasing function on 
the distance h.  

The reason for using a spherical model as opposed to exponential or 
Gaussian models is that the spherical model leads to closed-form 
analytical results. The closed-form results will provide important 
insights into its statistical properties. As for assumption 4,  is set to 
4 or 12 due to the use of the grid structure (assumption 1). In the 

(8) 



grid, each object has four nearest objects with the same distance  
and eight next-nearest objects with the same distance 2 , where  is 
the grid cell size, and so on. Hence, we can select 4, 12, 24, … 
We select the first two values with  4 and 12 , which are 
equivalent to defining neighborhoods with radiuses of   and 2r , 
respectively.  

To make the results concise, we further set / 0 and /
0, since r/c  is usually very small (e.g., 0.1) and h c. If , then 

; 0 and will lead to zero covariance. These components are 
negligible compared to the components /  and / . 

Theorem 3: Under the above four assumptions, the random vector 
 has following properties on the correlation structure 

1) If 4, then 

a) , 0,            , 2 , 

b) , 0.4,     2   , 2 , 

c) , 0.22,  2   , 2 , 

d) , 0.05,  , 2 . 

2) If 12, , 4 , then , 0 

3) If 12, 4 , then  

a) , 0.220,  , 2  

b) , 0.110,  2 , 3  

c) , 0.050,  , 3  

4) If 12, 4     

, then 

a) , 0.4741 .   /
/ .

 ,  if ,  

b) , 0.1203 ,  if , 2  

c) , 0.1719
.   /

/ .
, otherwise. 

5) If 12, 4 , ,  ,  

       , 0.1085
.   /

/ .
, 

where  refers to the grid cell size;  and   refer to the 
row and column locations of the object  in the grid structure; 

,  is the L2 (or Euclidean) distance between  and . 

Proof: The neighborhoods topologies defined by 4 and 8-nearest-
neighbors rules are shown in Figure 2. The grayed objects are the 
spatial neighbors of the black object .  The symbol  refers to the 
grid cell size.  
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Recall that  , where  is the smooth scale variation (see 
Section 3.1 equation  2 ). Let Var , Var

, and  . By assumption 3, Cov ,
;  ; ∑ ; . Given that  is a 

neighborhood weight matrix (see equation (4)), the component 
∑ . By the relation , we have that 

∑ .  The correlation ,  has the analytical form 

 , ;
1 ∑

,                                   9  

where  is constant and the same denominator  is used for 
different . Notice that the form 9  is actually the sum of  
weighted spherical functions , . This complex form makes the 
function properties not well interpretable, such as the minimum 
value, the maximum value, and the global trend with respect to the 
major parameters  and . For this reason, we further develop a 
tight upper bound function of 9  that is monotone and has a simpler 
analytical form. The development is based on five different cases as 
indicated in Theorem 3. Here we focus on two representative cases, 
the second and the fifth cases. The upper bound functions for other 
cases can be proved similarly.   

 Case 1: 12 and  , 4 . 

It has ; 0 and ; 0,  ,
. It implies that , 0.  

 Case 5: 12, c 4 , row row , and col
col . 

Based on the observations by visualization, we select a rational 
quadratic model ;  

/
 for the upper bounding 

function. The estimation of the parameters  is based on the 
following steps: 

Step 1: Let 1,2,3, … , 49 , 1,2,3, … , 49 , and 
4,5,6, … ,15, 20,40,60,80 | , 4 .  

Step 2: Solve the following optimization problem 

arg min ;  , ;
,

,

     10  

subject to  

;  , ; ,     , ,  with row row
, col  col  , and , 

where ,  and 1. 

Step 3: , , solve the following optimization problem 

 ̂ arg min
,

;  , ; ,                              11  

where ,  and 1. 

Step 4: If  , ,  it satisfies the condition ;  
, ; 1, ̂ 0, then return  as the estimated values of 

 and terminate the algorithm; Otherwise, select a larger subset (e.g., 
1,2,3, … , 100 ) of the feasible set | , 4  for the 

parameter , and go to step 2.   
Figure 2: The neighborhoods defined by 4 or 12-nearest-neighbors 
rules in gridded data, equal to those defined by radiuses and 2 . 

                       4                                            12



The objective of the above algorithm is to estimate a local optimal 
setting for  . Particularly, by assumption 1, the spatial locations 
follow a grid structure and the total number of points is smaller than 
2500. It implies that the set  includes all valid settings for the 
pair row row , col col  . The feasible set of the 
parameter  is | , 4 . At step one, we only select a 
representative subset ( ) of . The optimization problem 10  is to 
find a tight upper bound function based on the subset . Steps 2 and 
3 test if the estimated parameters  satisfy the upper bounding 
conditions that ;  , ;  for every valid settings of 
, , and . If the test is passed, then we can conclude that a feasible 

and local optimal  is obtained. Otherwise, the algorithm will start a 
new iteration based on an enlarged subset of .  

The optimization problem 10  is a nonconvex problem. A local 
optimal solution of 10  can be obtained by numerical methods, such 
as interior point method [14]. The estimated parameters  
0.1085, 0.0028, 37.6723 . A local optimal solution of 2  is 

acceptable for us, since our objective is to find a tight upper bound 
function, but not necessarily a global optimal bound.  

The optimization problem 11  is also a non-convex problem. 
Because it is a feasibility testing procedure, a global optimal solution 
must be obtained. This can be achieved by exploring the special 
structure of 11 . Particularly, first the denominator of , ;  
is  . By the equation  / 0 , it follows that / , 
where  is some scalar constant. Recall that the numerator of 

, ;  is a weighted sum of 144 spherical functions. Let 
 |  , . The set  has 

totally 144 components (scalars), which can be used to divide the 
feasible region | , 4  into 145 sub-regions. It can be 
readily derived that, in each sub-region, the absolute value of the 
correlation , ;  has the polynomial form , ;

, where , , and  are constant scalars 
depending on this sub-region. By this polynomial form, we have that  

, ;  only has one local (global) maximum in each sub-
region. By checking the maximum value in each region, we can 
obtain a global optimal solution for the problem 11 .  

 Other Cases:  

The upper bound functions can be obtained by using similar 
procedures in cases 1 and 5.  

The complete form of the estimated upper bound function is stated in 
Theorem 3. Readers are referred to Appendix for an empirical plot of 
the estimated bounds.                   

Theorem 3 implies similar patterns as drawn by Theorem 2 although 
Theorem 2 provides only approximate properties. Theorem 3 is a 
further justification of these patterns. In the following discussions, 
we consider the situation with 5. The situation with 5 will 
be discussed separately. By Theorem 3, if 5 , then ,
0.22  when  4 ; and , 0.18  when  12 . It 
indicates small absolute correlation values for different  values. 
The correlation values slightly decreases when K increases. It can 
also be shown that most correlations are negative and are close or 
equal to zero. Readers are referred to the Appendix for more detailed 
information about , . All these observations are consistent 
with the results from Theorem 2. 

We have a comparison between  and  . Consider two 
typical situations: 4  to represent a small neighborhood; and 

12 to represent a relatively large neighborhood. If 4, then 
, 0.4  and , 0.22 . If K 12 , then 
, 0.2  and , 0.18 . The impacts of these 

correlation values (degrees) are shown in Figure 1. Although both 
,  and ,  increase when the neighborhood size K 

decreases, the absolute correlation ,  increases more 
drastically. Based on these results, we will approximate  by 

 for different settings of , but will only approximate  by 
, when  is relatively large, such as 8.   

Theorem 3 also indicates that when  is small e. g. , 5 , some 
correlations are relatively high (e.g., , 0.4 if 4,
1 , and , ). In this case, an important observation is that 
the correlation matrix of  exhibits similar structure as that of . 
Particularly, if , these two correlation matrices become 
identical. In this situation, it is still reasonable to approximate the 
correlation matrix of  as identity or unit matrix, since the lost 
structure information by this approximation will be recovered while 
estimating the parameter  for the vector , because of the similar 
structure between the covariance matrices Var  and Var . For 
example, suppose  and the constant variance for each 
component of  is , then we have that Var , and 
Var Var . By the equation (5), the true 
distribution model is:  ~ ,

, . If we approximate  as  instead, 
then by the equation 6  the approximate model 
becomes   ~ , . By robust parameter 
estimation, the approximate model can still completely recover the 
true distribution, ex., by setting the estimated parameters 0 
and . 

4. ESTIMATION AND INFERENCES 
Spatial outlier detection (SOD) is usually coupled with a robust 
estimation process for the related statistical model. This section 
introduces ordinary estimation methods for the GLS model, then 
presents two robust estimation and outlier detection methods to 
reduce the masking and swamping effects, and discusses the 
connection between the proposed GLS-SOD methods with existing 
representative methods, such as kriging-based and Z-test SOD 
methods. 

4.1 Generalized Least Squares Regression 
Given a set of observations , , … ,  , the objective is 
to estimate the parameters , , and  for the proposed GLS model. 
We consider mean squared error (MSE) as the score function which 
is the most popular error function in spatial statistics [11]. This leads 
to a generalized least square problem and can be formulated as: 

arg min
, ,

,          12  

subject to  1 and , 0.                                

Note that we scale σ   and   by a factor  with /  and 
/ , such that  1 . Without this constraint, the 

objective function in (12) will always be minimized by setting 
∞ , and  to any value. For simplicity, we directly use the 

original symbols   and , rather than  and . As shown in 
Theorem 4, the problem 12  is a convex optimization problem 
which can be solved efficiently by numerical optimization methods 
such as interior point method [14]. Note that when the neighborhood 
size (i.e., )  is large, the following holds:  (see 
Section 3.2). Then (12) reduces to a regular least squares regression 



problem and an explicit solution is available 
with  , and /

1 , where  is the size of the vector . For the purpose of 
outlier detection, it is unnecessary to further derive the explicit forms 
of   and σ . 

Theorem 4: The problem (12) is a convex optimization problem. 

Proof Sketch: Suppose  and  are the eigenvalues and 
corresponding (orthonormal) eigenvectors of the matrix . It can 
be readily shown that the problem (12) is equivalent to  

arg min , , ∑ , s. t.   , 0        

Let   , It suffices to prove that  is a convex 

function, or equivalently 0, , , . 

0.              

When the parameters , , and  are estimated by generalized least 
squares, we can calculate the standard residuals and use standard 
statistic test procedure to identify the outliers. This method works 
well for sample data with small data contamination, but is susceptible 
to the well-known masking and swamping effects when multiple 
outliers exist. For the GLS model, the masking and swamping effects 
originate from two phases of the estimation process:  

1) Phase I contamination occurs in the process of calculating local 
differences . For example, suppose we define neighbors by the K-
nearest-neighbor rule. Consider an outlier object 

, where  is the normal value but it is contaminated by a large 
error  , and suppose only one of its neighbors is an outlier 
with , where   is the error. The local difference 
diff ∑ . If , 
then the error is marginalized and we obtain a normal local 
difference for a outlier object  which will be identified as a 
normal object. If  is a normal object with ζ 0 , then the 
related local difference is contaminated by the error 

K
. This leads 

to the swamping effect where the normal object  may be 
misclassified as an outlier. For a relatively large  (e.g., 8), it can be 
readily shown that Phase I contamination is more significant for a 
spatial sample with clusters of outliers than a spatial sample with 
isolated outliers. Another important observation is that the masking 
and swamping effects will not completely distort the ordering of true 
outliers. The top ranking outliers are still usually a subset of the true 
outliers. This observation motivates the backward algorithm 
presented in Section 4.3. 2) Phase II contamination occurs in the 
generalized regression process, where we regard  as the 
pseudo "observed" values. The masking and swamping effects in this 
phase are the same effects occurred in a general least squares 
regression process. This is consequence of the biased estimates of the 
regression parameters (e.g., , , and ) due to abnormal 
observations in .  

Drawbacks of existing robust estimation techniques:  

Most existing robust regression techniques are designed to reduce the 
effect of Phase II contamination. There are two major categories of 
estimators [13]. The first category (also called M-estimators) is to 
replace the MSE function by more robust score function such as L1 

norm and Huber penalty function. The second category is to estimate 
parameters based on a robustly selected subset of data, such as least 
median of square (LMS), least trimmed square (LTS), and the 
recently proposed forward search (FS) method. Unfortunately, all 
these robust techniques cannot be directly applied to address both 
Phase I and Phase II contaminations concurrently. As with the M-
estimators, the application of robust penalty function (e.g., L1) will 
lead to a non-convex optimization problem where local optimal 
solution may be found. With the second type of estimators based on 
subset selection, the estimation results are highly sensitive to the 
selected objects which can detrimentally impact neighborhood 
quality. The next sub-section will adapt existing robust methods to 
the problem of concurrently handling Phase I and Phase II 
contaminations.  

4.2 GLS-Backward Search Algorithm 
As discussed above, the existing methods only address the Phase II 
contamination. The motivation for our proposed backward search 
algorithm is to address both Phase I and Phase II contaminations 
concurrently. The algorithm is described as follows: 

Algorithm 1 (Backward search algorithm) Given a spatial data 
set  , … ,  , the covariate vectors , … , , the 
value of K for defining K-nearest neighbors, and the confidence 
interval 0,1 , 

1. Set , … ,  , , … , ,  and 
 be an empty set. 

2. Estimate the parameters , ,  of the GLS model by solving the 
generalized least squares regression problem 12 .  

3. Calculate the absolute values of standard estimated residuals 

, … , | |  

4. Set max | |.  

If Φ /2 , where Φ is the CDF of the standard normal 
distribution, then update , 

, and , and go to Step 2.  

Otherwise, stop the algorithm and return   as the ordered 
set of candidate outliers.  

In the above algorithm, the confidence interval  can be set to 0.001, 
0.01, and 0.05. In step 2, we apply interior point [14] method to solve 
the optimization problem (12). When the neighborhood size is large, 
we may approximate  as . The parameters , ,  can be 
efficiently estimated by least squares regression: 

, and /
1 , where  is the size of the vector .  

This backward search algorithm’s design is based on the observation 
that top ranked outliers identified by the regular least squares method 
are still true outliers (in most cases) under both Phase I and II 
contaminations. Suppose a true outlier  is removed after the first 
iteration, then both Phase I and Phase II contaminations in the next 
iteration will be reduced. To illustrate this process, we use the same 
example in Section 4. Recall that an outlier object  is 
decomposed into two additive components , where 

 represents the normal value and  represents the contamination 
error. Suppose  is the only outlier neighbor of an object  that 
happens to be an outlier. Then the local difference diff

∑   will be marked as normal if 
. Suppose now that the true outlier  is removed and 

(13) 



the newly replaced neighbor for  is normal, then diff
∑ . This local difference becomes an 

abnormal value and the masking effect is removed. Similarly, 
suppose  is a normal object, then its local difference is 
contaminated (swamped) by the error  , because of its outlier 

neighbor . The removal of  will make 0 and therefore 
reducing the swamping effect. For Phase II contamination, the 
removal of  leads to the removal of an abnormal difference 
diff . The set of remaining local differences will therefore 
have less contamination. The center of the distribution is less 
attracted by outliers, and the distributional shape becomes less 
distorted. As a result, outliers tend to be more separated and normal 
objects tend to be closer together. The masking and swamping effects 
are therefore reduced. 

4.3 GLS-Forward Search Algorithm 
This section adapts the popular Forward Search (FR) algorithm [13] 
to the GLS parameters estimation problem. There are several 
restrictions to apply FR here. As discussed in Section 4.1, FR starts 
from a robustly select subset of sample, but GLS is a statistical model 
based on neighborhood aggregations. Considering only a subset of 
the observations , … ,  will significantly impact the 
quality of the calculated local differences. To apply FR algorithm, 
we make the assumption that Phase I contamination is negligible 
compared to Phase II contamination. As discussed in Section 4.1, this 
is reasonable for the case of isolated outliers. Based on this 
assumption, we consider the local differences 
diff , … , diff  as pseudo “observations”, and then 

apply FR algorithm to estimate the model parameters. By 
simulations, we also noticed that in this case there is no significant 
difference between applying generalized least squares regression and 
regular least squares regression. For the sake of efficiency, we only 
apply regular least squares regression to estimate the 
parameters , , and . The FR algorithm is described as follows: 

Algorithm 2 (Forward Search algorithm) Given a spatial data 
set , … ,  , the covariate vectors , … , , and 
the value of K for defining K-nearest neighbors, 

1. Calculate the local differences: , and set  be 
an empty set.  

2. Set , . . , ; Set , … ,  
and , … ,  =  as the vector of pseudo 
“observations” and pseudo “covariates”.  

3. Apply least trimmed squares (LTS) [13] to find a robust subset of 
, defined as , and set . The size of the subset  
 is 1 /2  by default.  

4. Estimate the parameter  based on  and . Then 
calculate the absolute standard residuals of  as 

1 | |/ .  

5. Find the minimal residual of the test set : 

min .  

6. Update , ,
. If  is not empty, go to step 4; otherwise, 

output the ordered set  and terminate the algorithm. 

The proposed FR algorithm provides an ordering of objects based on 
their agreements with the GLS model. To identify outliers, it plots 

and monitors the change of the minimal residual with the increasing 
size of the normal set . A drastic drop implies that an outlier was 
added to . This plot could also help identify masked or swamped 
objects. Readers are referred to [13] for details. A direct method for 
calculating the local differences can be achieved via robust mean 
functions such as median and trimmed mean. However, as indicated 
by our simulation study, this direct approach will deteriorate the 
performance of GLS. Recall that the statistical model of GLS: 

 ~ ,  . If we replace the left hand side 
 by medians or trimmed means, the right side will 

remain unchanged and thus still employs the average matrix . The 
increased bias caused by this inconsistency is much larger than the 
reduction of contamination effects achieved through robust means.  

4.4 Connections with Existing Methods 
This section studies the connection between global (kriging) based 
[11, 12, 13], local spatial statistics (LS) based methods [4-10], and 
the proposed GLS based SOD approach. First, we review the first two 
approaches: Kriging-SOD and LS-SOD. The basic idea of Kriging-
SOD is to first apply robust methods to estimate the parameters of a 
global kriging model. The method uses the estimated statistical 
model to predict the  attribute of each sample location , denoted 
as , based on the  values of other locations. The standardized 
residual /  follows a standard normal distribution, 
where  is the estimated standard deviation. If a residual is outside 
the range  Φ /2 , Φ /2 , the corresponding object is 
reported as an outlier, where Φ is the CDF and  is usually set 0.05. 
The LS-SOD approach assumes that ~ , . The set of 
components in  can be regarded as an i.i.d. sample of a 
univariate normal distribution  , . Robust techniques are 
designed to estimate   and . The remaining steps are similar to 
Kriging-SOD. 

Theorem 5: Suppose that  and the parameters of 
Kriging-SOD and GLS-SOD are correctly calculated by robust 
estimation, then Kriging-SOD and GLS-SOD are equivalent. 

Proof: For Kriging-SOD, we consider a universal kriging model [1], 
since other kriging models (e.g., ordinary kriging) are simply special 
cases. It suffices to prove that the standardized residuals calculated 
by Kriging-SOD and GLS-SOD are identical. Without loss of 
generality, we test the standardized residual of one particular sample 
point . Let , … ,  and ,

T
. 

By Section 3.1 equation (3), ~ , , where  

, Var , Cov , , and Var

.  

Then, the standard residual by Kriging-SOD is  

StdRsd  

The standard residual by LS-SOD is  

StdRsd diff  

The following will prove that  

StdRsd StdRsd diff  

The condition  implies that 
. Then, 



. It follows that 

. 

Further, given that , it can be readily shown that   

, 

where  and .  

Then, 

/ . 

The above indicates that 

StdRsd StdRsd diff , 

We conclude that Kriging-SOD and GLS-SOD are equivalent.           

Theorem 6. If , , the parameters of GLS-
SOD and LS-SOD are correctly calculated by robust estimation, and 
one of the following conditions is true, then GLS-SOD becomes 
equivalent  to LS-SOD. 

(1)  has a constant trend (mean): c , where c is a 
constant value.  

(2)  is a linear trend of spatial coordinates, and each point s is 
the geometric center (or centroid) of its neighbors. 

Proof: For either condition (1) or (2), it can be readily derived 
that  . By conditions  and , we 
have ~ 0,  which is consistent with the i.i.d. 
assumption in LS-SOD. If we use the same robust methods to 
estimate the parameters, such as using median and median absolute 
deviation (MAD) to estimate the mean and standard deviation , then 
GLS-SOD becomes equivalent to LS-SOD.                                         

Discussion: By Theorem 6, LS-SOD is a special form of GLS-SOD. 
LS-SOD assumes Var  for some constant , but no 
justifications are presented. From this perspective, GLS-SOD actually 
provides a theoretical foundation for LS-SOD. Section 3.1 discusses 
the situations where Var  can be approximated by 

. Furthermore, under the conditions of Theorem 6, LS-SOD is 
equivalent to GLS-SOD and since the conditions also include 
“ ”, then by Theorem 4 we have that GLS-SOD is 
equivalent to Kriging-SOD. Therefore, LS-SOD becomes equivalent 
to Kriging-SOD in this situation. Hence, it can be seen that the 
proposed GLS framework can be parameterized to become instances 
of LS-SOD or Kriging-SOD. Further study on various outlier 
detection methods can be greatly enhanced under the lens of this 
unifying GLS framework. 

As discussed in Section 3.1,  can be reasonably approximated 
by . From Theorem 5, the major difference between Kriging-
SOD and GLS-SOD is for which approach the related model 
parameters can be estimated more accurately and efficiently. From 
this perspective, GLS-SOD is superior to Kriging--SOD based on 
three major reasons: First, GLS-SOD has less uncertainty than 

Kriging--SOD, since Kriging--SOD needs to further assume a 
semivariogram model. If the semivariogram model is not selected 
properly, the performance may be significantly impacted. Second, 
GLS-SOD is a convex optimization problem and therefore a global 
optimal solution exists. However, Kriging--SOD is a non-convex 
optimization problem and relies on an iteratively reweighted 
generalized least square (IRWGLS) approach [12] to determine a 
local solution. Finally, as shown in Section 5 simulations, GLS-SOD 
runtime performance is superior to Kriging-SOD.  

5. SIMULATIONS 
This section conducts extensive simulations to compare the 
performance between the proposed GLS based SOD methods and 
other related SOD methods. The experimental study follows the 
standard statistical approach for evaluating the performance of spatial 
outlier detection methods found in [11, 12, 1, 2].  

5.1 Simulation Settings 
Data set: The simulation data are generated based on the following 
statistical model:  

,                                (See Section 3.1) 

where  is a Gaussian random field with covariogram model 
; .  

We consider two popular covariogram models: spherical model and 
exponential model. See equation (8) in Section 3.2 for the definition 
of a spherical model. The exponential model is defined as  

;
                                          0

1 exp         0
0                                        ,

 

These two models have the same parameters  and . Recall that  is 
also the constant variance for each .  

For the trend component  , we define   
1, , , , ,  , where  and  be 

the X and Y coordinates of the location .  This implies that the trend 
 is a polynomial of order two. The nonlinearity of the trend is 

decided on the regression parameters . For example, if 
1,0,0,0,0,0 ,then the trend is constant; if 1,1,1,0,0,0 , then 

the trend is linear trend. 

For the white noise component, we employ the following standard 
model [1]: 

~
0,    with probability 1        

 0,    with probability                
 

There are three related parameters ,  and .  is the variance of 
a normal white noise,  is the variance of contaminated error that 
generates outliers, and  is used to control the number of outliers. 
Note that it is possible that the distribution 0,  will also 
generate some normal white noises. All true outliers must be only 
identified based on standard statistical test by calculating the 
conditional mean and standard deviation for each observation [2]. 
We also consider the case of clustered outliers. This can be simulated 
by constraining that the noises of a random cluster of  points 
follow 0, . In the simulations, we tested several representative 
settings for each parameter, which are summarized in Table 2.  

 
 

(14) 



Table 2: Combination of Parameter settings 

Variable Settings 

 100, 200 . Randomly generate  spatial 
locations  in the range 0,25 0,25 .  

,  5; 5,15,25 
 For constant trend, ~ 0,1  and 0,

2, … ,5 ; For linear trend, , , 0,1 , 
0, 4,5,6; For nonlinear trend, 

0,1 .  
,  2, 10; 20 

 0.05, 0.10, 0.15. 
 4, 8 

Covariance 
model Exponential, spherical 

Outlier type Isolated, Clustered 

Outlier detection methods: We compared our methods with the 
state of the art local and global based SOD methods, including Z-test 
[4], Median Z-test [6], Iterative Z-test [5], trimmed Z-test [7], SLOM-
test [8], and universal kriging (UK) based forward search [11,12] 
(noted as UK-forward). Our proposed methods are identified as GLS-
backward-G, GLS-backward-R, and GLS-forward-R. GLS-backward-
G refers to the GLS backward algorithm using generalized least 
squares regression. GLS-backward-R refers to the GLS backward 
algorithm using regular least square regression (See section 4.2). The 
implementations of all existing methods are based on their published 
algorithm descriptions. 

Performance metric: We tested the performance of all methods for 
every combination of parameter setting in Table 2. For each specific 
combination, we run the experiments six times and then calculate the 
mean and standard deviation of accuracy for each method. To 
compare the accuracies of each method, we use the standard ROC 
curves. We further collected accuracies of top 10, 15, and 20 ranked 
outlier candidates for each method, and then the counts of winners 
are shown in Table 3. To calculate these winning counts, we use as 
an example of the GLS-backward-R result in the top left cell of table 
4: “47, 47, 45”. This column refers to the constant trend cases. If 
within this particular case, we only consider the true accuracy of the 
top 10 candidate outliers, then the GLS-backward-R has “won” 47 
times over all combination of parameters against all other methods. 
A win is given to the method that exhibits the highest accuracy. 
Consequently, if we consider the true accuracy of the top 20 
candidate outliers, then the GLS-backward-R has won 45 times.  

All the simulations are conducted in a PC with Intel (R) Core (TM) 
Duo CPU, CPU 2.80 GHz, and 2.00 GB memory. The development 
tool is MATLAB 2008.  

5.2 Detection Accuracy 
We compared the outlier detection accuracies of different methods 
based on different combinations of parameter settings as shown in 
Table 2. Six representative results are displayed in Figure 4. First we 
considered the detection performance between local based methods. 
For a constant trend, our methods were competitive with existing 
techniques. For data sets exhibiting linear trends, our GLS algorithms 
achieved on average 10% improvement over existing local based 
methods. However, for data sets with nonlinear trends, our GLS 
algorithms exhibited more significant improvement (approximately 
50% increase) over existing local methods. For the other 
combination of parameter settings in Table 2, the winning statistics 

for each method are displayed in Table 3. These results further 
justify the preceding performance results.  

We also compared our GLS algorithms against the global based 
method UK-forward. Overall, our methods were comparable to UK-
forward. Particularly, GLS-backward-G attained better accuracy than 
UK-forward on about half of the data sets. For the remaining data 
sets, the GLS-backward-G is still competitive to the UK-forward. 
Additionally, as shown in Section 5.3, the UK-forward incurs a 
significantly much higher computational cost than the GLS 
algorithms.  

As discussed in section 4.1, when K is small, the effects of  
must be considered and a generalized least regression is necessary. 
The theorems indicate that GLS-backward-G should perform better 
then GLS-backward-R, this was justified in Figure 4 c).  

Table 3: Competition statistics for different combinations of 
parameter settings. Each cell contains three values, representing the 
win times for the related method based on the accuracies of top 10, 
15, and 20 ranked outlier candidates for all methods. 

Algorithm Constant 
Trend 

Linear Trend Nonlinear 
Trend 

GLS-backward-R 47, 47, 45 79, 72, 82 76, 81, 77 

GLS-backward-G 88, 86, 89 114, 102, 120 141,144, 138 

GLS-forward-R 13, 11, 14 22, 25, 27 40, 36, 47 

Z-test 47, 35, 40 29, 30, 13 0, 0, 0 

Iterative Z-test 35, 46, 63 16, 20, 21 0, 0, 0 

Median Z-test 20, 23, 29 1, 7, 8 0, 0, 0 

Trimmed Z-test 15, 23, 32 5, 13, 13 0, 0, 0 

SLOM-test 0,0, 0 0, 0, 0 0, 0, 0 

5.3 Computational Cost 
The comparison on computational cost is shown in Figure 3. The 
results indicate that the time cost of UK-forward is much higher than 
other methods. Even the second slowest method GLS-backward-G, is 
still three times faster than UK-forward. The other local methods are 
approximately equal and hence much faster than UK-forward.  

From the comparisons of both the accuracy and computational cost, 
it can be seen that our proposed GLS SOD algorithms (especially 
GLS-backward-G) is significantly more accurate than existing local 
based algorithms when the spatial data exhibits either a linear or 
nonlinear spatial trend. Our GLS algorithms are comparable to the 
global based method UK-forward on accuracy, but significantly 
faster than UK-forward.  
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Figure 3: Comparison on computational cost (setting: Linear trend, 
isolated outliers, 0.1, 2, 15, 8, 200) 



 
 
 
 
 
 
 
 
  

a) Constant trend, isolated outliers, 0.1, 2, 15, 4  b) Linear trend, isolated outliers, 0.1, 2, 15, 8  

c) Nonlinear trend, isolated outliers, 0.15, 10, 15, 4  d) Constant trend, clustered outliers, 0.1, 2, 25, 4  

e) Linear trend, clustered outliers, 0.15, 2, 25, 8  f) Nonlinear trend, clustered outliers, 0.15, 10, 5, 8  
Figure 4: Outlier ROC Curve Comparison (the same setting: 200, 5, 20)  



6. CONCLUSTION AND FUTURE WORK 
This paper presents a generalized local statistical (GLS) framework 
for existing local based methods. This generalized statistical 
framework not only provides theoretical foundations for local based 
methods, but can significantly enhance spatial outlier detection 
methods. This is the first paper to present the theoretical connection 
between local and global based SOD methods under the GLS 
framework. As future work we will design other algorithms to 
further the efficiency of the GLS backward and forward methods. 
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8. Appendix 
Theorem 3 presents an upper bound of the absolute correlation 
function  , ; .  The properties of this upper bound 
function are demonstrated in Figures 5-9, where we consider five 
representative cases with  c 6, 11, 15, 2, 40,  respectively. The  
axis refers to the row difference between  and  : row
row . The  axis refers to the column difference between  

and  : col col . The  axis refers to the absolute 
correlation value. Each figure includes two surfaces. The surface 
with colored (yellow to red) map refers to the surface calculated by 
the estimated upper bound function. The surface in gray color scale 
refers to the surface calculated by the true correlation function (see 
equation 9 ). These results demonstrate that the estimated upper 
bound function is a tight upper bound of the true absolute 
correlation function , ; . 
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Figure 5: The comparison between the true correlation , ;  and the estimated bound function. Here, 12, 6. 



   
Figure 6: The comparison between the true correlation , ;  and the estimated bound function. Here, 12, 11. 

 

Figure 7: The comparison between the true correlation , ;  and the estimated bound function. Here, 12, 15. 
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Figure 8: The comparison between the true correlation , ;  and the estimated bound function. Here, 12, 20. 

 

Figure 9: The comparison between the true correlation , ;  and the estimated bound function. Here, 12, 40. 
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