Priority-enabled Scheduling for Resizable
Parallel Applications

Rajesh Sudarsan, Student Member, IEEE, Calvin J. Ribbens,and Srinidhi Varadarajan, Member, IEEE

Abstract—In this paper, we illustrate the impact of dynamic resizability on parallel scheduling. Our ReSHAPE framework includes an
application scheduler that supports dynamic resizing of parallel applications. We propose and evaluate new scheduling policies made
possible by our ReSHAPE framework. The framework also provides a platform to experiment with more interesting and sophisticated
scheduling policies and scenarios for resizable parallel applications. The proposed policies support scheduling of parallel applications
with and without user assigned priorities. Experimental results show that these scheduling policies significantly improve individual

application turn around time as well as overall cluster utilization.

Index Terms—Dynamic resizing, parallel job scheduling, scheduling policies, resizable applications

1 INTRODUCTION

In the last few years, low cost commodity clusters have
emerged as a viable alternative to mainstream supercomputer
platforms. A typical size of a cluster may range from a
few hundred to thousands of processor cores. Although the
increased use of multi-core nodes means that node-counts
may rise more slowly, it is still the case that cluster sched-
ulers and cluster applications have more and more processor
cores to manage and exploit. As the sheer computational
capacity of these high-end machines grows, the challenge of
providing effective resource management grows as well—in
both importance and difficulty. A fundamental problem with
existing cluster job schedulers is that they are static, i.e.,
once a job is allocated a set of processors, it continues to
use those processors until it finishes execution. Under static
scheduling, jobs will not be scheduled for execution until
the number of processors requested by that job are available.
Even though techniques such as backfilling [1] and gang
scheduling [2], [3] try to reduce the time spent by an job in
the queue, it is common for jobs to be stuck in the queue
because they require just a few more processors than are
currently available. A more flexible and effective approach
would support dynamic resource management and scheduling,
where the set of processors allocated to jobs can be expanded
or contracted at runtime. This is the focus of our research—
dynamically reconfiguring or resizing) of parallel applications.

Dynamic resizing can improve the utilization of clusters as
well as an individual job’s turn around time. A scheduler
that supports dynamic resizing can squeeze a job that is
stuck in the queue onto the processors that are available and
possibly add more processors later. Alternatively, the scheduler

e R. Sudarsan is a student with the Department of Computer Science, Virginia
Tech, Blacksburg, VA 24060.
E-mail: sudarsar@vt.edu

o C. J. Ribbens is an Associate professor in the Department of Computer
Science, Virginia Tech.

e S. Varadarajan is an Associate professor in the Department of Computer
Science, Virginia Tech.

can add unused processors to a job so that the job finishes
earlier, thereby freeing up processors earlier for waiting jobs.
Schedulers can also expand or contract the processor allocation
for an already running application in order to accommodate
higher priority jobs, or to meet a quality of service or advance
reservation deadline. More ambitious scenarios are possible
as well, where, for example, the scheduler gathers data about
the performance of running applications in order to inform
decisions about who should get extra processors or from whom
processors should be harvested.

We have developed a software framework, ReSHAPE, to
explore the potential benefits and challenges of dynamic
resizing. In our previous paper [4] we described the design
and implementations of ReSHAPE and illustrated its potential
for individual jobs and work loads. In this paper, we explore
the potential for interesting and effective parallel scheduling
techniques, given resizable applications and a framework such
as ReSHAPE. We describe two typical scheduling policies and
explore a set of related scheduling scenarios and strategies.
Depending upon the policy, the ReSHAPE scheduler decides
which jobs to expand and which to contract. We evaluate
the scenarios using a realistic job trace and show that these
policies significantly improve overall system utilization and
application turn-around time.

Static scheduling is a classic and much studied topic.
Feitelson et al. [5], [6] give a comprehensive overview of the
recent work in this area. Though most of the recent research
on dynamic scheduling has focused on grid environments, a
few researchers have focused on cluster scheduling. Weissman
et al. [7] describe an application-aware job scheduler that
dynamically controls resource allocation among concurrently
executing jobs. The scheduler implements policies for adding
or removing resources from jobs based on performance pre-
dictions from the Prophet system [8]. The authors present sim-
ulated results based on supercomputer workload traces. Cirne
and Berman [9] describe the adaptive selection of partition
size for an application using their AppLeS application level
scheduler. In their work, the application scheduler AppLeS
selects the job with the least estimated turn-around time out of

a set of moldable jobs, based on the current state of the parallel
computer. Possible processor configurations are specified by
the user, and the number of processors assigned to a job does
not change after job-initiation time.

The rest of this paper is organized as follows. Section 2
briefly discusses the ReSHAPE framework, highlighting its
components and capabilities. Section 3 describes scheduling
policies in ReSHAPE for improving application execution
turn-around time and overall system utilization, possible sce-
narios associated with these policies, and the strategies used
to build these scenarios. Section 4 describes the experimental
setup used to evaluate these scheduling policies and scenarios
and their performance.

2 RESHAPE FRAMEWORK

The architecture of the ReSHAPE framework, shown in Fig-
ure 1, consists of two main components. The first component
is the application scheduling and monitoring module which
schedules and monitors jobs and gathers performance data in
order to make resizing decisions based on application perfor-
mance, available system resources, resources allocated to other
jobs in the system, and jobs waiting in the queue.The second
component of the framework consists of a programming model
for resizing applications. This includes a resizing library and
an API for applications to communicate with the scheduler
to send performance data and actuate resizing decisions. The
resizing library includes algorithms for mapping processor
topologies and redistributing data from one processor topology
to another. ReSHAPE targets applications that are homoge-
neous in two important ways. First, our approach is best suited
to applications where data and computations are relatively uni-
formly distributed across processors. Second, we assume that
the application is iterative, with the amount of computation
done in each iteration being roughly the same. While these
assumptions do not hold for all large-scale applications, they
do hold for a significant number of large-scale scientific sim-
ulations. The application scheduling and monitoring module
includes five components, each executed by a separate thread.
The different components are System Monitor, Application
Scheduler, Job Startup, Remap Scheduler, and Performance
Profiler. We describe each component in turn, detailing their
capabilities.

System Monitor. An application monitor is instantiated on
every compute node to monitor the status of an application
executing on the node and report the status back to the System
Monitor. If an application fails due to an internal error or
finishes its execution successfully, the application monitor
sends a job error or a job end signal to the System Monitor.
The System Monitor then deletes the job and recovers the
application’s resources. For each application, only the monitor
running on the first node of its processor set communicates
with the System Monitor.

Application Scheduler. An application is submitted to the
scheduler for execution using a command line submission
process. The scheduler enqueues the job and waits for the
requested number of processors to become available. As soon
as the resources become available, the scheduler selects the

User
Application

User User

Application Application

MPI processes

/\ Sending the

application profile
information after
every iteration

Data redistribution
information and re-
initiation for the next
iteration

Monitors individual
application
execution

ReSHAPE

Resizing library ™\

Application Redistribution
Profiler Component
New processor config.

Application information
Communication Processor Mapping
——
Module Expand/shrink/

No change /

Contacting the scheduler to
receive new processor
configuration

Application
Monitor

process initiation

Termination or
message ‘

\/
System Remap Performance
Monitor Scheduler Profiler
ion for
uFreed processor information expansion/shrinking
decisions
Application Job Startup
Scheduler module Monitoring and
Application|

and procesSor imformation

Scheduling modulej

Fig. 1. Architecture of ReSHAPE

compute nodes, marks them as unavailable in the resource
pool, and sends a signal to the job startup thread to begin
execution. Different scheduling policies implemented in Re-
SHAPE are described in detail in Section 3.

Job Startup. Once the Application Scheduler allocates the
requested number of processors to a job, the job startup
thread initiates an application startup process on the set of
processors assigned to the job. The startup thread sends job
start information to the application monitor executing on the
first node of the allocated set. The application monitor sends
job error or job completion messages back to the System
Monitor.

Performance Profiler. At every resize point, the Remap
Scheduler receives performance data from a resizable applica-
tion. The performance data includes the number of processors
used, time taken to complete the previous iteration, and the
redistribution time for mapping the distributed data from one
processor set to another, if any. The Performance Profiler
maintains lists of the various processor sizes each application
has run on and the performance of the application at each
of those sizes. Note that applications can only contract to
processor configurations on which they have previously run.

Remap Scheduler. The point between two subsequent iter-
ations in an application is called a resize point. After each
iteration, a resizable application contacts the Remap Scheduler
with its latest iteration time. The Remap Scheduler contacts
the Performance Profiler to retrieve information about the
application’s past performance and decides to expand or shrink
the number of processors assigned to an application according
to the scheduling policies enforced by the particular scheduler.
The size and topology of the expanded processor set can be
problem and application dependent. In our current implemen-
tation we require that the global data be equally distributable

across the new processor set. Furthermore, at job submission
time applications can indicate (in a simple configuration file) if
they prefer a particular processor topology, e.g., a rectangular
processor grid. In the case where applications prefer “nearly-
square” topologies, additional processors are added to the
smallest row or column of the existing topology.

The ReSHAPE architecture is described in detail in Su-
darsan and Ribbens [4]. The resizing library, API and the
redistribution algorithms implemented in ReSHAPE are de-
scribed in detail in Sudarsan and Ribbens [10].

3 ScHEDULING WITH RESHAPE

We use the term scheduling policy to refer to an abstract
high-level objective that a scheduler strives to achieve when
scheduling arriving jobs. For example, one scheduling policy
might be to minimize individual application turn-around time
while keeping overall system utilization as high as possible.
Clearly, such a policy may not be achievable in a mathemati-
cally optimal sense. Rather, a policy simply gives an indication
of the approach to scheduling used on a particular parallel
resource. Given such high-level policy, a scheduling scenario
defines a specific, concrete attempt at achieving the scheduling
policy. A scenario defines a procedure that the scheduler is
configured to follow in order to achieve the objectives dictated
by the policy. In the context of the ReSHAPE framework for
dynamically resizable applications, a scheduling scenario must
answer three fundamental questions: when to resize a job,
which jobs to resize, and which direction to resize (expand
or contract). We use the term scheduling strategies to refer
to specific underlying methods or algorithms, implemented
to realize resizing decisions. These methods or strategies
define whether a job should be expanded or contracted and
by how much. For example, the ReSHAPE scheduler could
use a strategy which selects those jobs for expansion that
are predicted to have maximum benefit from an expansion.
Similarly, a strategy for harvesting processors might be to
choose those jobs that are expected to suffer the least impact
from contraction. In summary, a scheduling policy can be
implemented in multiple scenarios, each realized using a
particular collection of strategies. In the following subsections
we briefly describe some simple strategies and scenarios that
are implemented in ReSHAPE and which we use to illustrate
the power of ReSHAPE for parallel scheduling research and
development.

3.1 Calculating priority for user applications

Most commercial job schedulers (like Moab [11], PBS [12],
Maui [13]) assign an internal priority to parallel applications
submitted through them. Based on these priority values, the
scheduler determines how quickly should a job waiting in the
queue be scheduled. The priority typically depends on the
number of processors requested by the job, its walltime and
the time it has been waiting in the queue. This priority value,
generally referred to as aging priority, is used to benefit small
jobs (both in terms of processor count and walltime), keeping
them from waiting too long in the queue. ReSHAPE derives its

relation to calculate aging priority from the Moab scheduler.
The relation is as follows:

Job_priority = Q factor_weight x Q factor+
queue_time_weight x queue_time+

nnodes_weight * nnodes

where, queue_time indicates the total time the job
has been waiting in the queue and nnodes indicates the
number of nodes requested by the job. Q factor_weight,
queue_time_weight and node_weight are set as configura-
tion parameters for the scheduler. The weights determine the
impact of each variable in the final priority value. @ factor
determines the urgency of a job to get scheduled. It mainly
benefits short running jobs. It is computed as:

(queue_time)

tor =1
Qfactor + maxz(Q factorlimit, walltime)

The value of @ factorlimit is generally set to 1 to compute
Q@ factor based on walltime. In addition to aging priority, some
schedulers also allow user priority for jobs, i.e., jobs submitted
by high priority users must be given preference in scheduling
compared to others.

If a user priority is assigned to jobs, then the absolute
priority for a job is calculated as follows.

Job_priority = Q factor_weight * Q factor +

queue_time_weight * queue_time +

nnodes_weight x nnodes + user_assigned_priority
For an application that is already executing, its priority value
is updated based on how much walltime is remaining for that
application to finish its execution. An application that is closer
to finishing its execution will be assigned a higher priority than

an application that has just started its execution. Priority value
for running application is computed as follows.

Job_priority = (100 — pct_time_left) +
user_assigned_priority
where,

(walltime — time_elapsed) « 100

pct_time_left = -
walltime

3.2 Priority-based scheduling strategies

Scheduling strategies can be categorized into processor alloca-
tion and processor harvesting strategies. A processor allocation
strategy decides which applications to expand and by how
much whereas a processor harvesting strategy decides which
applications to contract and by how much. In our current
implementation, all allocation strategies use a simple model
to predict the performance of a given job on a candidate
processor size where that job has not yet run. Data from
previous iterations on smaller processor allocations is used to
inform contraction decisions. This combination of predictive

model and historical data is also used to predict the time
an application will take to reach its next resize point. An
application must be expanded a minimum number of times
before it is considered as a candidate for a resizing strategy.
The minimum number is indicated by remap_window_size
and its value is set by the system administrator. The expand
potential for an application at a resize point is a quantified
value of performance of an application at that resize point. It
indicates an application’s ability to benefit from more proces-
sors beyond its current resize point. The performance measure
can be any reasonable metric such as speedup, computational
rate, etc. The expand potential is calculated only after the
application has been resized remap_window_size times. In the
current implementation of ReSHAPE, the expand potential is
calculated by fitting a polynomial curve to a speedup curve of
that application at each of its last remap_window_size resize
points and computing the slope of the curve at its current resize
point. The larger the value of the expand potential, the greater
the chances that the job will benefit from a further expansion.
The scheduling policy includes a minimum threshold which
expand potential must exceed in order to warrant additional
processors for a given job. A job that has reached its sweet
spot is not eligible for additional processor allocation. (The
sweet spot is an estimate of the processor count beyond
which no performance improvement is realized for a given
job.) However, an application can be contracted below its
sweet spot. The ReSHAPE scheduler supports both aging and
user assigned priorities for scheduling parallel applications.
Once an application starts execution, the ReSHAPE scheduler
updates its priority based on the amount of walltime left for
its completion. Thus an accurate user runtime estimate will
help in better scheduling and resizing decisions.

For scheduling of priority-based applications, ReSHAPE
supports two processor harvesting strategies — Least-Impact-
Priority and FCFS-contract-priority — and one processor
allocation strategy — Max-Benefit-priority. We have also im-
plemented other scheduling strategies without priorities. These
scheduling strategies with their corresponding scenarios and
policies are described in detail in Sudarsan and Ribbens [14].
We believe that the scheduling strategies and scenarios pre-
sented in this paper depict a more realistic view in which jobs
are scheduled in a typical cluster. One of main motivations
of ReSHAPE is to provide a platform to experiment with
more interesting and sophisticated scenarios and policies for
resizable parallel applications. For the remaining part of the
discussion in this section, we assume all jobs to be resizable.
Least-Impact-Priority: In this processor harvesting strategy,
jobs are contracted in the ascending order of their expected
performance impact suffered due to contraction. At every
resize point, a list is created to indicate all the low and high
priority jobs that are running and their possible performance
impact at the next resize point. In the list all the low priority
jobs are listed above the high priority jobs. Within each set
of high and low priority jobs in the list, the jobs are sorted
in ascending order of the expected performance impact. If
there are jobs waiting to be scheduled, the list is traversed
till the required number of processors can be freed. A high
priority running job will not be contracted to schedule a lower

priority queued job. The current job is contracted to one of
its previous processor allocations if it is one of the possible
candidates in the traversed list, i.e., if it is encountered on
the list before the total number of desired processors has
been identified and has a lower priority than the first queued
job. The procedure is continued till the required number of
processors are available or till all jobs have reached their
starting processor configuration.

FCFS-Contract-Priority: In this processor harvesting strat-
egy, jobs are contracted in the order they arrive at their resize
point. A high priority job that arrives at its resize point will be
contracted only if the queued job has a higher priority than the
current job. A low priority job will be contracted to it previous
resize point irrespective of the priority of queued jobs.
Max-Benefit-Priority: In this processor allocation strategy,
idle processors are allocated to jobs arranged in the descending
order of their expand potential at their last resize point. In other
words, we allow a job to grow that is predicted to benefit
most when expanded to its next possible processor size. A
list, sorted in the descending order of job priority, is created
at every resize point for an application. Within each set of
high and low priority jobs in the list, they are again sorted
in the descending order of their expand potential at their last
resize point. A job is allowed to expand if it is the first job in
the list. If a job does not find itself at the top of the list, then
follow the steps listed below:

* For every job that has a higher priority than the current
job, count the number of processors required to expand
that job to its next possible larger size.

* If two or more jobs have the same priority, then for every
job that has a higher expand potential than the current job
and is expected to reach its resize point before the current
job’s next resize point, count the number of processors
required to expand that job to its next possible larger size.

* 1If there are still sufficient idle processors remaining after
the above “pre-allocation” steps, then assign them to the
current job, and expand.

3.3 Priority-based Scheduling policies and scenar-
ios

To illustrate the potential of ReSHAPE for priority-based
applications, we define two typical scheduling policies as
follows. The first policy aims at improving a priority appli-
cation’s turn around time and the overall system utilization
by favoring queued applications over running applications.
In this policy, a low priority job in the queue will not be
scheduled before a a high priority job. Also, a low priority
running application will not be allowed to expand unless all
the queued jobs have been scheduled. On the other hand, a
high priority application will be allowed to expand at its resize
point if all the queued jobs have a lower priority than this job.
The second policy aims at improving a priority application’s
turn around time and the overall system utilization by favoring
running applications over queued applications. In this policy,
running (high and low priority) applications are favored over
queued applications and are allowed to expand to their next
valid processor size, irrespective of the number of queued jobs.

Among running jobs, a high priority job will be favored for
expansion compared to a low priority job. To realize these
policies, we describe different scheduling scenarios. These
scenarios are implemented by combining different scheduling
strategies that support priority. Two of the these scenarios aim
to achieve the objective of the policy that favors queued jobs.
They are Performance-based-allocation with priority (PBA-
PR) and FCFS-Max-Benefit with priority (FCFS-PR). The
third scenario which aims to achieve the policy that favors
running applications is referred to as Max-benefit with priority
(Max-B-PR). All the scenarios (described in detail below)
support priority-based backfilling as part of their queuing
strategy. ReSHAPE uses a aggressive backfilling (EASY) [1],
[15] technique to move smaller jobs to the front of the queue.
In an aggressive backfilling technique, only the job at the head
of the queue has a reservation. A small job with a higher or
lower priority is allowed to move to the top of the queue as
long as it does not delay the first queued job. All jobs arriving
at the queue may or may not have equal priority. As jobs wait
in the queue, their priority changes depending on their job
size and how long they have been waiting in the queue. All
jobs are queued in the descending order of their priority and
are scheduled if the requested number of processors becomes
available.

Policy 1: Improve application turn-around time and system
utilization for applications with priority, favoring queued
applications.

Scenario 1: Performance-based allocation with pri-
ority (PBA-PR). In this scenario, jobs are expanded us-
ing the Max-Benefit-Priority processor allocation strategy
and contracted using the Least-Impact-Priority harvesting
strategy. The procedure followed to determine whether
to expand or contract a job or to maintain its current
processor set size is detailed below.

* When a job at its resize point contacts the scheduler

for remapping, check whether there are any queued
jobs with a higher priority than the current job. If
there are higher priority jobs waiting in the queue, then
contract the current job if it is selected based on the
Least-Impact-Priority processor harvesting strategy.
* If there are queued jobs but the current job is not
selected for contraction, check whether the application
has already reached its sweet spot processor configura-
tion. If it has, then maintain the current processor size
for the job.

If the application has not yet reached its sweet spot
configuration, check whether the current job benefited
from its previous expansion. If it did not then contract
the job to its immediate previous configuration and
record the application sweet spot.

If the first queued job cannot yet be scheduled
using the processors harvested from the current job,
then schedule as many waiting jobs as possible using
priority-based backfill.

If there are no queued jobs and if the application
benefited due to expansion at its last resize point,
then expand the job using the Max-Benefit-Priority

*

3
sk

%

processor allocation strategy.

* If the job cannot be expanded due to insufficient
processors, then maintain the job’s current processor
size.

* If there are idle processors after backfill and if there
are still queued jobs, then expand the current job using
the Max-Benefit-Priority strategy.

Scenario 2: FCFS-Max-Benefit with priority (FCFS-
PR): The FCFS scenario uses the Max-Benefit-Priority
processor allocation strategy to expand jobs and the
FCFS-Contract-Priority processor harvesting strategy to
contract jobs. The procedure followed in this scenario is
identical to the steps in Scenario 1. The only difference
is that the jobs are contracted using the FCFS-contract
harvesting strategy.

Policy 2: Improve application turn-around time and system
utilization for applications with priority, favor running
applications. The scenarios implemented in this policy do not
consider the number of queued jobs in their resizing decision
and expand jobs if enough processors are available. Schedulers
implementing this policy will not contract running jobs to
schedule queued jobs.

Scenario 1: Max-benefit with priority (Max-B-PR).

* When a job contacts the scheduler at its resize point,
check whether the job benefited from expansion at its
last resize point. If it did not, then contract the job to
its previous processor size.

* If it benefited from previous expansion, then expand
the job to its next possible processor size using the
Max-Benefit-Priority processor allocation strategy.

* If the job cannot be expanded due to insufficient
processors, then maintain the job’s current processor
size.

* Schedule queued jobs using priority-based backfill to
use the idle processors available in the cluster.

4 EXPERIMENTS AND RESULTS

This section presents experimental results to demonstrate
the potential of dynamic resizing for parallel job scheduling
As mentioned above, we consider two broad categories of
scheduling policies, one that favors queued applications and
other that favors running applications. All the applications
used in the following experiments are assigned aging priorities
by the scheduler. We consider two scenarios (PBA-PR and
FCFS-PR) for the policy that favors queued applications
assigned with priorities and one scenario (Max-B-PR) for the
policy that favors running applications. All policies seek to
reduce job turn-around time while maintaining high system
utilization.

The experiments were conducted on 400 processors of a
large homogeneous cluster (System G at Virginia Tech). Each
node is a dual socket quad-core 2.8 GHz Intel Xeon processors
with 8GB of main memory. Message passing uses Open-
MPI [16], [17] over an Infiniband interconnection network.
We perform three experiments to evaluate the above described
scheduling policies. The first experiment using this setup
compares the performance of three priority-based scenarios

(PBA-PR, FCFS-PR, Max-B-PR) against static scheduling
with backfill. Although the jobs are assigned any user assigned
priority, the scheduler assigns a aging priority to all the queued
and running jobs. In the second experiment, we vary the
percentage of resizable jobs in a workload to see whether even
a small percentage of these jobs can have an impact on the
overall system utilization and on individual application’s turn-
around time. Even in this case the jobs are not assigned any
user priority but are assigned aging priority by the scheduler.
In the third experiment, we assign categorize jobs as high and
low priority user applications and evaluate the impact of user
priorities on a performance of these scheduling scenarios. The
job mix used in these experiments consists of synthetic appli-
cations which do not perform any computation. The execution
time for these synthetic applications at different processor
sizes are computed using the speedup model described in
Section 4.1. No data was redistributed at resize points as the
focus of this paper is on evaluating job scheduling policies in
ReSHAPE. Other characteristics of the experimental setup are
as follows:

1) Each workload consists of 120 jobs. The percentage
of resizable jobs in the workload varies with each
experiment.

2) Each job in the workload can be either a small, medium
or large job. The fraction of small, medium and large
jobs in the job mix is set to 1.

3) The initial number of processors, expected walltime
and the execution time for one iteration on the initial

processor allocation for different job sizes are as follows:
o Small jobs: 35 processors (32 for power-of-2 pro-
cessor topology), 156 seconds, 8 seconds/iteration
o Medium jobs: 81 processors (64 for power-of-2 pro-
cessor topology), 240 seconds, 20 seconds/iteration
o Large jobs: 136 processors (128 for power-of-2 pro-
cessor topology), 324 seconds, 32 seconds/iteration
4) Each job in the workload is assigned one of the fol-
lowing processor topologies — arbitrary, nearly-square
or power-of-2. The percentages of jobs with specific
processor topologies in the workload are as follows: 60%
arbitrary, 30% nearly-square, 10% power-of-2.
5) The arrival time of jobs is calculated using a Poisson
distribution with a mean arrival time set at 32 seconds.
6) Each job runs for 7 iterations and tries to resize after
every iteration.
The number of processors for small, medium and large jobs
(arbitrary and nearly square topology) were randomly chosen
so that following conditions are met — sum of processor set
size of two small jobs is not equal to a medium or large job,
sum of processor set sizes of a medium and small job is not
equal to a large job and finally, sum of processor set sizes of
two medium jobs is not equal to the processor set size of a
large job.

4.1 Cluster workload and parallel
speedup model

Various workload models are available to model rigid and
moldable jobs. Calzarossa and Serazzi [18] propose a model

application

for the arrival process for interactive jobs in a multi-cluster
environment. It gives arrival rate as a function of the time
of day. Leland and Ott [19] propose a model for calculat-
ing the runtime of processes for interactive jobs in a Unix
environment. Sevcik [20] proposes a model for application
speedup which is useful for jobs scheduled on varying partition
sizes. The model proposed by Feitelson [3] uses six job traces
to characterize parallel applications. This model provides a
distribution of jobs based on processor count, correlation of
runtime with parallelism and number of runs in a single
job. Downey [21], Jann et al. [22] and Lublin [23] provide
workload models for rigid jobs. For the model proposed by
Jann et al., new parameters were introduced later to evaluate
job scheduling on the ASCI Blue-Pacific machine. Cirne and
Berman [24] propose a comprehensive model to generate a
stream of rigid jobs and a model to transform them to moldable
jobs. The model proposed by Tsafrir [25], [26] generates
realistic user runtime estimates that helps schedulers to make
better backfilling decisions.

The above workload models do not support resizability or
malleability in jobs. We have developed a simple model for
application speedup for resizable applications based on four
parameters — current processor size P1, resized processor
size P2, runtime at current processor size R(P1) and node
efficiency «. The factor by which the runtime for a given
fixed computation will change at P2 is given by

.1 2 P2—P1
(“ (aux
factor = (1) P1

),0<a§1,

and the new runtime at processor set size P2 is given by

R(P2) = ZPD.
factor

Intuitively, the node efficiency measures how much useful
work we get out of the (P2 — P1) new processors. For the
experiments in this section, we use a = 0.8

We have also developed a synthetic applications framework
which uses this speedup model to generate a workload of jobs.
The framework uses a set configurable parameters such as job
size (both in terms of processor size and runtime), processor
topology, application resizability and priority.

The jobs in the workload for the experiments in this exper-
imental setup were generated using our synthetic applications
framework. A synthetic job in the workload has one of
following job size — small, medium or large. Similarly, these
jobs support one of the following processor topologies —
arbitrary, nearly-square or power-of-2. An application with
arbitrary processor topology does not have any restrictions
on the possible processor expansion sizes. A job with nearly-
square processor topology will expand to a processor size so
that the nearest square processor topology is maintained. A
job with power-of-2 processor topology will expand only to
processor sizes that are powers of 2.

Figure 2 shows the speedup curve for a job scaled from
a initial value of P_0 = 400. P varies from 400 to 2000
processors with a step size of 20 processors. The initial
runtime (7p) was set at 200 seconds and o = 0.75. The new

Application speedup curve (starting proc size = 400)

25 ‘ ‘ :
Speedup ~

.
15 | :

05 r]

Speedup (TO/Tp)(in secs)

o 1 1 1 1 1 1 1 1 1
0O 05 1 15 2 25 3 35 4 45 5

Processor ratio (P/P0Q)

Fig. 2. Speedup curve.

runtimes are calculated using the above described model. This
model provides a realistic view of the speedup characteristics
of a typical parallel application running on a cluster. A simpler
model with a linear speedup for applications can significantly
improve the overall utilization of a cluster but such a model is
scientifically uninteresting and does not depict a realistic view
of a typical workload in a cluster. In our model, depending on
the initial processor set size an application may or may not be
able to detect its execution sweet spot.

4.2 Workloads with 100% resizable jobs

The goal of this experiment is to demonstrate the potential of
different scheduling scenarios in ReSHAPE using workloads
where all jobs are resizable. We compare the performance of
FCFS-PR, Max-B-PR and PBA-PR scenarios with a baseline
scheduling scenario — static scheduling with backfill. The
results are averaged across seven different runs. Each run
or job mix represents a random arrival order for jobs with
random inter-job arrival times. In this experiment we make
the following claims.

We claim that scheduling a workload of resizable jobs
using ReSHAPE improves the overall completion time for
all jobs. Figure 3 shows the average completion time for
the four scheduling scenarios. From the graph, we see that
FCFS-PR improves the average job completion time by 15.5%
compared to static. The jobs scheduled using PBA-PR and
Max-B-PR scenario show an improvement of 11.1% and 6.4%
respectively. The relatively small improvement in average
completion time for the Max-B-PR scenario is because most
of the jobs experience a high queue wait time. FCFS-PR has
the highest standard deviation compared to PBA-PR and Max-
B-PR for improvement in average job completion time across
7 runs at 57.40. The standard deviation for Max-B-PR and
PBA-PR are 43.31 and 48.80 respectively. The reason for high
standard deviation for average completion time is due to the
large variation in queue wait times across different runs.

Since the scenarios are designed to achieve a specific
objective, ReSHAPE provides the flexibility of choosing a
scenario based on the scheduling policy set for a particular
queue or for the entire system. For example, if the objective

Average completion time for scheduling scenarios
700 f

hl

|
I | | | J

FCFS-PR Max-B-PR PBA-PR static
Scheduling scenarios

600

500 r

400

300

Time (in secs)

200

100 r

Fig. 3. Average completion time for various scheduling
scenarios.

is to only improve the execution time of all the jobs without
being concerned about their queue wait time, then Max-B-
PR scenario emerges as the best scenario. Figure 4 compares

Average execution time for scheduling scenarios
160 ¢

hl

140

FCFS-PR Max-B-PR PBA-PR static
Schedulina scenarios

120
100
80
60

Time (in secs)

40 r

20

Fig. 4. Average execution time for various scheduling
scenarios.

the average execution time for jobs scheduled using static
scheduling and with ReSHAPE. From the figure, we see that
Max-B-PR improves average execution time by 9.2% com-
pared to static scheduling. This is because it favors expansion
of running applications over queued applications. PBA-PR
improves the average execution time by 7.2%. Jobs scheduled
using FCFS-PR show a small improvement of just 2.08% over
static scheduling. This is because the running jobs are always
contracted (if they were expanded earlier) to schedule queued
jobs. Analogously, for a policy set to improve the overall queue
time, FCFS-PR performs better compared to PBA-PR and
Max-B-PR scenarios. Figure 5 shows the average queue wait
time for different ReSHAPE scenarios. FCFS-PR reduces the
average queue wait time for jobs by 20.3% whereas PBA-PR
reduces it by 13.13%. Average queue wait time is reduced by
8.6% with Max-B-PR. The average queue wait time depends
on the order in which the large jobs arrive in the trace. Job
arrival order in the workload results in large variations in
the queue wait times across multiple runs, resulting in high

Average queue time for scheduling scenarios
600 \ .

FCFS-PR Max-B-PR PBA-PR static
Scheduling scenarios

500 r

400 r

300

Time (in secs)

200 r

100

Fig. 5. Average queue time for various scheduling sce-
narios.

standard deviation.

If a policy is set to improve the overall utilization of
the system, then all three ReSHAPE scenarios significantly
improve the utilization compared to static scheduling. Figure 6

Average utilization for scheduling scenarios

FCFS-PR Max-B-PR PBA-PR static
Scheduling scenarios

0.9
0.8
0.7 r
0.6 -
05 r
04
03 r
0.2
0.1

Time (in secs)

Fig. 6. Average system utilization for various scheduling
scenarios.

compares the overall system utilization between ReSHAPE
scheduling scenarios and static scheduling. Max-B-PR has
the highest average system utilization of 93.6% compared to
83.6% for static scheduling. PBA-PR and FCFS-PR improve
the system utilization to 92% and 87% respectively.

If a scheduling policy dictates favoring of small jobs in
the system, then FCFS-PR emerges as the best scenario for
improving the queue time for small jobs and Max-B-PR
as the best scenario for improving their execution time.
Figure 7 and Figure 8 show the average queue wait time
and execution time for large, medium, and small sized jobs
for various ReSHAPE scheduling scenarios. FCFS-PR has the
biggest impact in reducing the queue wait time for small
jobs. It reduces the average queue wait time for small jobs
by 61.9% compared to static scheduling. The reason for
large improvement in queue time is because all previously
expanded running jobs will be contracted to one of their

Average queue time - grouped by job size

== Medium]obs - émalljobs -

700 | = Larg‘e jobs

600

500

400

300

Time (in secs)

200

100

FCFS-PR Max-B-PR PBA-PR
Scheduling scenarios

static

Fig. 7. Average queue wait time by job size for various
scheduling scenarios.

Average execution time - grouped by job size
250

1

] Larg‘ejobs = Medium]obs -— émalljobs

200

150

100

Time (in secs)

FCFS-PR Max-B-PR PBA-PR
Scheduling scenarios

static

Fig. 8. Average execution time by job size for various
scheduling scenarios.

previous resize points in the order they arrive at their resize
point to schedule queued jobs. As a result contracting medium
and large jobs releases idle processors giving more room to
the scheduler to backfill small jobs. PBA-PR and Max-B-PR
reduce the average queue wait time for small jobs by 34.01%
and 11.9% respectively. For improving the average execution
time, Max-B-PR shows a maximum improvement of 16.45%
for over static. This is because small jobs have relatively
smaller processor requirements for expansion and arrive at
their resize points more frequently compared to medium and
large jobs. As a result they are able to expand more often
thereby improving their execution time. PBA-PR and FCFS-
PR improve the performance of small jobs by 10.4% and 1.9%
respectively.

Even in the case of large jobs, FCFS-PR and Max-B-
PR perform better than other scenarios for improving an
application’s queue wait and execution time. FCFS-PR, PBA-
PR and Max-B-PR reduce the average queue wait time for
large jobs by 9.5%, 7.9% and 7% respectively. For medium
size jobs, the scheduling scenarios show almost identical
improvements in queue wait time, which is 6.0%, 6.3% and
7.0%. Similarly, Max-B-PR improves the execution time for

large jobs by 7.5% compared to 6.7% improvement with PBA-
PR and 2.5% improvement with FCFS-PR. For medium size
jobs, Max-B-PR improves execution time by 9.2% compare to
6.8% improvement with PBA-PR and 2% improvement with
FCFS-PR.

Table 1 summarizes our results for job completion time and
job execution time. Since Max-B-PR favors running applica-
tions, it does best in terms of reducing execution time and
maximizing utilization, but at the expense of higher average
queue times and hence higher total job completion times.
FCFS-PR on the other hand focuses mostly on getting queued
jobs scheduled, which results in a significant improvement in
queue waiting time, but not much gain in execution time or
utilization. PBA-PR is a compromise, in some sense, as it
improves execution time for individual jobs and utilization
to almost the same extent that Max-B-PR does, but it also
achieves greater than 10% improvement in job completion
time.

Another important point is that job arrival order and inter-
arrival times can influence queue wait times substantially.
Table 2 below shows that ReSHAPE scheduling policies
reduce this variability substantially. While this variability due
to different job orders is substantial, it is important to note that
the improvements due to ReSHAPE scheduling are substantial
when comparing one job mix with static scheduling to that
same job mix with one of the ReSHAPE policies.

TABLE 3
Summary of job completion time for individual runs. Time
in seconds

Case Static | FCFS-PR | Max-B-PR | PBA-PR
1 783.2 657.8 731.0 675.4

2 475.0 423.9 500.1 469.2

3 752.2 600.8 710.3 632.0

4 604.7 529.8 571.2 527.4

5 774.1 631.0 660.4 645.4

6 381.8 375.2 370.5 356.0

7 762.4 608.6 697.7 721.0
Mean | 647.6 546.7 605.9 575.2
St.Dev. | 163.7 108.8 132.8 129.8

Table 3 shows the full data set for job completion time,
for all seven job mixes tested. We see that the average job
completion time for both FCFS-PR and PBA-PR (546.7 and
575.2 seconds, respectively) is significantly smaller compared
to static and is nearly five times the standard deviation for
those cases (108.8 and 129.8, respectively).

4.3 Workloads with varying percentages of resizabil-
ity

The goal of this experiment is to demonstrate the potential
of ReSHAPE scheduling scenarios even when the percentage
of resizable jobs in the workload is less than 100%. In
this experiment, we selected PBA-PR because it performs
better than FCFS-PR and Max-B with respect to both system
utilization and overall completion time. We compared the

performance of PBA-PR with static scheduling for the cases
when 25%, 50% and 75% of the workloads are resizable.
The results are averaged across five individual runs. Job order
varied from run to run, but for a given job order we randomly
select the desired percentage of jobs that would be resizable.
The percentage of resizable jobs was enforced withing job
types as well, e.g., for the 50% resizable case, we ensured
that 50% of the “(large, nearly-square)” jobs were resizable,
50% of the “(small, power-of-2)” jobs were resizable, etc. All
workload jobs have the same user priority.

ReSHAPE provides substantial improvements in overall
completion and average utilization even for workloads that
have small percentage of resizable jobs. Figure 9 shows aver-
age completion time for workloads with varying percentages of
resizable jobs. PBA-PR improves the average job completion

Average completion time - by resizability
640 ‘

‘ ‘ mm PBA-PR
0% (Static) 25% 50% 75% 100%
Percentage of Resizable Jobs

620

600

580

560

Time (in secs)

540

520

Fig. 9. Average completion time for workloads with vary-
ing percentage of resizable jobs.

time by about 5.5% for a workload with only 25% resizable
jobs. The improvement increases as the percentage of resizable
jobs increase in the workload. For workloads with 50%, 75%
and 100% resizability, PBA-PR improves average completion
time by 10.6%, 14.6%, and 16.56% respectively. As we
have seen, variations in job arrival order can result in large
variations in average completion time.

Figure 10 shows overall system utilization for different
workloads. The improvement in utilization is the least with
a workload that has 25% resizable jobs and increases as the
percentage of resizable jobs increase in the workload. PBA-
PR improves the system utilization by 2.3%, 4%, 6.5% and
8.4% for workloads with 25%, 50%, 75% and 100% resizable
jobs respectively. The absolute values of system utilization
for different workloads scheduled using PBA-PR are 85.4%,
87.1%, 89.5% and 91.4%. The system utilization using static
scheduling is 83%.

Figure 11 shows the improvement in average completion
grouped by job size. With ReSHAPE, the small jobs benefit
the most with a maximum improvement of 37% for a 100%
resizable workload. The performance improvement for small
jobs is much greater than the average improvement in com-
pletion for all the jobs. The performance improvements for
large, medium and small jobs increase as the percentage of

TABLE 1
Summary of job completion time and job execution time for various scenarios.

Scenarios Cluster | Job completion time Execution time
utilization | Average| % Improv.| Average| % Improv.
Static 83.6 647.6 — 141.7 —
FCFS-PR 87.0 546.7 15.6 138.8 2.1
Max-B-PR 93.7 605.9 6.4 128.6 9.3
PBA-PR 92.0 572.2 11.2 131.5 7.2
TABLE 2
Queue wait time for various scenarios.
Scenario | Average | Std. Dev Max | Min | Range
Static 529.3 177.7 | 67527 | 240.1 | 435.2
FCFS-PR 421.5 114.0 | 548.17 | 235.0 | 313.2
Max-B-PR 483.9 133.0 | 600.26 | 243.4 | 356.9
PBA-PR 459.8 133.0 | 603.94 | 2332 | 370.8
Average utilization expand and contract, giving more opportunities to the schedule
092 o oo queued jobs at an earlier time. as the number of resizable
jobs increase, more small jobs are backfilled thereby reducing
09 their queue wait time. The improvement in average completion
7 oss time for large and medium jobs does not vary significantly
§ when the resizability in the workload is varied from 25% to
£ 086 100%. In addition to this, the large and medium jobs are rarely
° allowed to expand, since PBA-PR favors scheduling of queued
'E 0.84 application over resizing of running applications. As a result,
increasing the percentage of resizable jobs from 25% to 100%
0.82 I yields only a 5.2% improvement in average completion time
08)))) ‘ for large jobs. The corresponding improvement for medium
0% (Static) 25% 50% 75% 100% jobs is 3.7%. An interesting point to note here is that even

Percentage of Resizable Jobs

Fig. 10. Average system utilization for workload with
varying percentages of resizable jobs.

Average completion time - grouped by job size

1000

= La{rgejobs " == Medium jobs‘- Sma{lljobs

900

800

700

600

500

Time (in secs)

400

300

200
0% (Static) 25% 50% 75% 100%

Percentage of resizable jobs

Fig. 11. Average completion time for small, medium and
large jobs.

resizable jobs increase in the workload. This is because with
more number of resizable jobs the workload is more flexible to

with 50% resizable workload, the ReSHAPE scenarios can
provide close to 2/3 of the maximum improvement that you
would get with a 100% resizable workload.

We know that ReSHAPE scenarios can reduce the sensitiv-
ity of job arrival order and inter-arrival times on queue wait
times for a 100% resizable workload. Table 4 shows that even
with a smaller percentage of resizable jobs in the workload,
ReSHAPE scenarios can reduce the influence of these factors
on the overall jobs queue wait time.

4.4 Workloads with user assigned priority

In this experiment we aim to show that ReSHAPE can
provide quality of service to jobs based on their priority.
A high priority job will be serviced better with ReSHAPE
compared to static scheduling. Also low priority jobs benefit
with ReSHAPE in that they can experience better individual
turn-around time. The jobs in the workloads used in this
experiment are assigned either gold or platinum user priority.
ReSHAPE gives platinum user jobs a higher priority compared
to gold user jobs. We compare the performance of PBA-PR
and static scheduling scenarios. The results are averaged over
five individual runs. To reduce variability in the results due
to job order, we select the workload with 50% resizable jobs
and reuse the five workloads from the previous experiment.
The rationale behind selecting a workload with 50% resizable

TABLE 4
Queue wait time for various percentages of resizable workload.

Resizable | Average | Std. Dev Max Min | Range
workload
Static 521.06 81.5 | 601.93 | 410.29 | 191.64
25% 478.43 103.6 | 570.53 | 320.33 | 250.2
50% 451.7 82.88 | 551.39 | 325.32 | 226.07
75% 421.71 74.06 | 513.45 | 313.04 | 200.41
100% 412.53 77.83 | 479.83 | 300.7 | 179.13

jobs is that ReSHAPE provides substantial improvements in
overall queue wait times and completion times even when only
half of the jobs are resizable. We randomly assign platinum
(high) priority to 50% of the jobs and gold (low) priority to the
remaining 50%. Again, we make sure that the corresponding
percentage of each job type (size and topology) is given
platinum and gold priority.

Average completion time - grouped by priorities

mmmm Gold jobs === Platinum jobs

1000

800
600

, Iﬂ I

400
200
PBA-PR static
Scheduling scenarios

Time (in secs)

Fig. 12. Average completion time by priority.

With priority-based scheduling, ReSHAPE benefits not only
the high priority jobs but also the low priority jobs. Figure 12
shows improvement in average completion time grouped by
job priority. From the graph we see that although static
scheduling provides a good service to high priority jobs,
ReSHAPE still improves it by a small percentage. In addition
to this, even the low priority (gold) jobs benefit significantly
from ReSHAPE. PBA-PR improves the overall average job
completion time for gold jobs by 8% compared to static. The
platinum jobs benefit by 3.5% in their average completion
time. The high improvement for low priority jobs with Re-
SHAPE is due to the reason that when a high priority job
cannot be scheduled, a low priority jobs are allowed to backfill
thereby improving their queue wait time. The small benefit for
high priority jobs is due to the reason that high priority running
jobs are expanded before any low priority queued or running
jobs and contracted after all the low priority jobs have been
contracted to their starting processor set size.

Within each group of high and low priority jobs, ReSHAPE
significantly improves the average queue wait time for low
priority small jobs. This is because low priority small jobs are
backfilled when a high priority job at the top of the queue

Average queue time - grouped by job size (gold user)
1400

= |arge jobs = Mediumjobs‘- Small jobs

1200

1000

800

600

Time (in secs)

400

200

0
PBA-PR static

Scheduling scenarios

Fig. 13. Average queue wait time for large, medium and
small sized jobs for low priority (gold) users.

Average execution time - grouped by job size (gold user)
240

220
200
180
160
140
120
100

80

60

40

— Largejobé — Medium]obs— Small jbbs

Time (in secs)

PBA-PR static
Scheduling scenarios

Fig. 14. Average execution wait time for large, medium
and small sized jobs for low priority (gold) users.

cannot be scheduled. The low priority jobs are backfilled after
backfilling other high priority jobs. ReSHAPE also improves
the average execution time for low priority jobs by expanding
them at their resize points when no other high priority jobs
can scheduled or expanded. Figure 13 and Figure 14 show the
average queue wait time and execution time for low priority
jobs grouped by job size. The small jobs show an improvement
of 43.1% in average queue wait time over static. The medium
and large jobs show an improvement of 5.6% and 6.5% over
static. Similarly, the average execution time improved by 6%,

TABLE 5
Average completion time for jobs with and without priority
(50% resizable jobs, 50% high priority jobs)

Scenarios Overall ave. Gold | Platinum

completion time | jobs jobs
Static w/o priority 639.5 645.7 633.2
Static w/ priority 581.4 968.6 194.2
PBA-PR w/o priority 571.2 565.1 577.3
PBA-PR w priority 535.8 884.2 187.5

5% and 5.5% for large, medium and small jobs respectively.

Table 5 summarizes the improvement in average completion
time for jobs with and without priority using PBA-PR and
static scheduling scenarios. The overall average completion
time for gold and platinum jobs for the static scheduling
without priority scenario is computed by selecting the exact
same set of jobs from the workload which are assigned priority
for the static scheduling with priority scenario. A similar
procedure is followed for computing average completion time
for gold and platinum jobs for PBA-PR without priority
scenario. From the table, we see that not only do the platinum
jobs benefit due to resizing, but the low priority jobs also
improve their completion time by 8.7% compared to static.
The platinum jobs improve their average completion time by
3.5%. When a static job with no priority is made resizable and
assigned platinum priority, then PBA-PR improves its average
completion time by 70.4% compared to 69.3% by static.
Similarly, when a static job with no priority is ReSHAPE-
enabled and assigned gold priority, then PBA-PR with priority
scenario improves the average completion time by 13% more
than static scheduling.

5 CONCLUSIONS AND FUTURE WORK

In this paper we explore the potential of dynamically resizable
applications for scheduling on large parallel clusters. We
introduce new policies and strategies for scheduling resizable
applications using the ReSHAPE framework. A scheduling
policy is viewed as an abstract high-level objective that the
scheduler strives to achieve. The scheduling scenarios pro-
vide a more concrete and implementable representation of
the policy. Scheduling scenarios, in turn, are implemented
using scheduling strategies which are methods responsible
for actuating the resizing decisions. The scheduling policies
discussed in this paper improve overall cluster utilization as
well an individual application turn around time. The policies
were evaluated using the five scenarios.

The current implementation of the ReSHAPE framework
uses a common performance model for all resizable applica-
tions. The scheduling strategies use this predicted performance
value in their resizing decisions for an application. More
sophisticated prediction models and policies are certainly pos-
sible. Indeed, a primary motivation for ReSHAPE is to serve
as a platform for research into more sophisticated resizing
and scheduling strategies. Experimental results show that the
proposed scheduling policies and scenarios outperform con-
ventional scheduling policies with respect to average execution

time, average job completion time and overall system utiliza-
tion. Results also show that a job mix which includes only
25%resizable job can still realize good performance improve-
ments with ReSHAPE. ReSHAPE also supports scheduling of
priority-based jobs. Instead of preempting low priority jobs,
ReSHAPE contracts them to a smaller processor allocation to
schedule high priority jobs.

We are currently working on including more sophisticated
scheduling policies in the ReSHAPE framework. Some of
these policies include improving application turn-around time
and system utilization using an adaptive partitioning strategy,
and supporting advanced reservation services. We also plan
to add more accurate and sophisticated performance models
to better predict application performance. We plan to make
ReSHAPE more extensible so that job-specific performance
models and new scheduling policies or strategies can be added
to the framework.

REFERENCES

[1] A. Mu’alem and D. Feitelson, “Utilization, Predictability, Workloads,
and User Runtime Estimates in Scheduling the IBM SP2 with Back-
filling,” IEEE Transactions on Parallel and Distributed Systems, pp.
529-543, 2001.

[2] D. Feitelson and M. Jette, “Improved Utilization and Responsiveness
with Gang Scheduling,” Lecture Notes in Computer Science, vol. 1291,
pp. 238-261, 1997.

[3] D. Feitelson, “Packing Schemes for Gang Scheduling,” Lecture Notes
in Computer Science, vol. 1162, pp. 89-111, 1996.

[4] R. Sudarsan and C. Ribbens, “ReSHAPE: A Framework for Dynamic
Resizing and Scheduling of Homogeneous Applications in a Parallel
Environment,” in Proceedings of the 2007 International Conference on
Parallel Processing (ICPP), XiAn, China, September 10-14, 2007, p. 44.

[5] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong, “Theory and practice in parallel job scheduling,” in IPPS '97:
Proceedings of the Job Scheduling Strategies for Parallel Processing.
London, UK: Springer-Verlag, 1997, pp. 1-34.

[6] D. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job
scheduling—a status report,” Lecture Notes in Computer Science, vol.
32717, pp. 1-16, 2005.

[7]1 J. B. Weissman, L. Rao, and D. England, “Integrated Scheduling: The
Best of Both Worlds,” Journal of Parallel and Distributed Computing,
vol. 63, no. 6, pp. 649-668, 2003.

[8] J. B. Weissman, “Prophet: Automated scheduling of SPMD programs in
workstation networks,” Concurrency: Practice and Experience, vol. 11,
no. 6, pp. 301-321, 1999.

[91 W. Cirne and F. Berman, “Adaptive Selection of Partition Size for

Supercomputer Requests,” Lecture Notes in Computer Science, pp. 187—

208, 2000.

R. Sudarsan and C. Ribbens, “Efficient Multidimensional Data Redis-

tribution for Resizable Parallel Computations,” in Proceedings of the

International Symposium of Parallel and Distributed Processing and

Applications (ISPA "07), Niagara falls, ON, Canada, August 29-31, 2007,

pp. 182-194.

“Moab scheduler,” URL: http://www.clusterresources.com/products-

/moab-cluster-suite.php.

URL: http://www.pbsgridworks.com.

“Maui cluster scheduler,” URL: http://www.clusterresources.com/pro-

ducts-/maui-cluster-scheduler.php.

R. Sudarsan and C. J. Ribbens, “Scheduling resizable parallel applica-

tions,” Parallel and Distributed Processing Symposium, International,

vol. 0, pp. 1-10, 2009.

[15] J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The easy-loadleveler api

project,” Lecture Notes in Computer Science, pp. 41-47, 1996.

“Open MPI v1.3.3,” 2008, URL: http://www.open-mpi.org.

R. Graham, T. Woodall, and J. Squyres, “Open MPI: A Flexible High

Performance MPL,” Lecture Notes in Computer Science, vol. 3911, p.

228, 2006.

M. Calzarossa and G. Serazzi, “A characterization of the variation in

time of workload arrival patterns,” IEEE Transactions on Computers,

vol. 100, no. 34, pp. 156-162, 1985.

[10]

[11]

[12]
[13]

[14]

[16]
[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

W. Leland and T. Ott, “Load-balancing heuristics and process behavior,”
ACM SIGMETRICS Performance Evaluation Review, vol. 14, no. 1, pp.
54-69, 1986.

K. C. Sevcik, “Application scheduling and processor allocation in mul-
tiprogrammed parallel processing systems,” Performance Evaluation,
vol. 19, no. 2-3, pp. 107-140, Mar 1994.

A. B. Downey, “A parallel workload model and its implications for
processor allocation,” Cluster Computing, vol. 1, no. 1, pp. 133-145,
1998.

J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan,
“Modeling of workload in MPPs,” in Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph, Eds. Springer
Verlag, 1997, pp. 95-116, lect. Notes Comput. Sci. vol. 1291.

U. Lublin and D. G. Feitelson, “The workload on parallel supercomput-
ers: Modeling the characteristics of rigid jobs,” J. Parallel & Distributed
Comput., vol. 63, no. 11, pp. 1105-1122, Nov 2003.

W. Cirne and F. Berman, “A Model for Moldable Supercomputer
Jobs,” in Proceedings of the 15th International Parallel and Distributed
Processing Symposium, April 2001.

D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling user runtime
estimates,” in Job Scheduling Strategies for Parallel Processing, D. G.
Feitelson, E. Frachtenberg, L. Rudolph, and U. Schwiegelshohn, Eds.
Springer Verlag, 2005, pp. 1-35, lect. Notes Comput. Sci. vol. 3834.
“A model/utility to generate wuser runtime estimates and
append them to a standard workload file,” 2005, URL:
http://www.cs.huji.ac.il/labs/parallel/workload/m_tsafrir05.

