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Abstract

This paper employs Fisher’s model of adaptation to understand the expected fitness

effect of fixing a mutation in a natural population. Fisher’s model in one dimension admits

a closed form solution for this expected fitness effect. A combination of different parameters,

including the distribution of mutation lengths, population sizes, and the initial state that

the population is in, are examined to see how they affect the expected fitness effect of

state transitions. The results show that the expected fitness change due to the fixation of

a mutation is always positive, regardless of the distributional shapes of mutation lengths,

effective population sizes, and the initial state that the population is in. The further away

the initial state of a population is from the optimal state, the slower the population returns

to the optimal state. Effective population size (except when very small) has little effect on

the expected fitness change due to mutation fixation. The always positive expected fitness

change suggests that small populations may not necessarily be doomed due to the runaway

process of fixation of deleterious mutations.

Key words: Fisher’s model, effective population size, compensatory mutation, generalized

Riemann zeta function, incomplete gamma function.
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1 INTRODUCTION

The statistician R. Fisher [4] proposed a geometrical model to understand the nature of adap-

tation. The basic idea of his model can be illustrated using a simple one-dimensional system.

Imagine that a trait has the optimal state at the origin, the population’s current state can be

represented by point A on the real coordinate line, and the distance between point A and the

origin O represents the fitness of the population at state A. Mutations can occur with both mag-

nitude and direction, which will drive the population either further away from the population

optimum point O, or towards the optimum point O. One can therefore model the dynamics of

mutations by tracking the movement of the population states owing to the fixation of mutations.

A BC OC’

Figure 1: Fisher’s model of adaptation in one dimension

The attractiveness of Fisher’s model lies in the fact that it nicely incorporates the nonin-

dependent nature of multiple mutations. For example, in the one-dimensional system, suppose

that the population starts at state A, that is, all the individuals in the population carry the allele

A. A mutation of a certain type will take the population to state B, where all the individuals

in the population carry the mutated type B. Similarly, from state A a mutation of a different

type will take the population to state C, where all the individuals carry the mutant type C.

Compared with the original state A, both mutations are deleterious and move the population

to states (B or C) that have lower fitness than the original state A. However, if both mutants

appear and get fixed together, the population will have a fitness gain at state C′ from the original

state A. Therefore, both mutations are deleterious and reduce the population fitness when fixed

individually. However, the joint fixation of the two leads to a fitness gain instead—the two dele-

terious mutations are compensatory. Therefore, Fisher’s model has built-in nonindependence,
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and elegantly models the nonindependent feature of mutations. Fisher’s model of adaptation

has been applied to study compensatory mutations by, e.g., Poon and Otto [9], who studied the

effect of compensatory mutations with respect to the number of character dimensions. They con-

cluded that the effects of compensatory mutations become more pronounced when the number

of character dimensions increases.

This paper examines the expected fitness cost of transition from one population state to

another, using Fisher’s model in one dimension, where closed form analytic solutions exist. In

n > 1 dimensions, analytic solutions do not exist if the distance measure is the 2-norm (Euclidean

distance). The analytic techniques employed here for n = 1 can be extended to n > 1 if the

1-norm is used for distance, but then each two cases (based on a sign) for n = 1 become 2n

cases, making the closed form expressions completely unwieldy. Note that the one-dimensional

model considered here is not so restrictive as it might appear. It has been shown that the

n-dimensional Fisher model can be reduced to two dimensions (polar coordinates), for which

the marginal distributions are one-dimensional [4, 6, 8]. Thus the one-dimensional results here

apply to the marginal distributions for the general case (n dimensions reduced to two), and are

of some interest. Assuming a gamma probability distribution for the mutation magnitude, the

present work derives analytically the mean fitness cost of a transition, and studies the effect of a

variety of parameters, including the population size and different initial states, on the next state

transition. The biological implications of the findings are discussed.

2 MATHEMATICAL DERIVATIONS

This section focuses on deriving the expected fitness effect of mutations moving the population

from one state to another. Because the comparison is between the current population state and

the next state, the fitness effect is thus the comparison of these two states. Assume that the

distance away from the optimum point (origin on real line) corresponds to the fitness w of the

state via the equations w(A) = e−|z| and w(B) = e−|z′|, where z and z′ are signed real numbers,
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representing the coordinate positions of population states A and B. Note that this definition

of w is similar to that of Waxman and Welch [13]. The standard definition [9] of the selection

coefficient of mutation from A to B is

s =
W (B)

W (A)
− 1 =

e−|z′| − e−|z|

e−|z|
= e|z|−|z′| − 1 ≈ 1 −

∣
∣
∣
∣

z′

z

∣
∣
∣
∣

(1)

for |z| ≈ |z′| and |z| ≈ 1. The first assumption, |z| ≈ |z′|, corresponds to |s| ≈ 0, a common

assumption in the literature (that |s| is large with vanishingly small probability). The second

assumption, |z| ≈ 1 for the current population state, corresponds to scaling the distance measure

z. It turns out that for s = 1 −
∣
∣
∣
z′

z

∣
∣
∣ closed form expressions can be derived and that is done

below. However, all the numerical results are for the standard s = W (B)/W (A) − 1, with the

integrals done numerically (with Mathematica).

Due to the uncertainty about the distribution of mutations, assume that mutation magnitude

from one state to another (i.e., |z′ − z|) is gamma distributed, which incorporates a variety of

distribution shapes (with different parameters) and thus models a rich collection of mutation

scenarios. Specifically, let the probability density function of mutation to z′ from z be

f(z′) =
|z′ − z|α−1βαe−β|z′−z|

Γ(α)
, (2)

where α and β are the shape and location parameters in the gamma distribution. The fixation

probability u(s) of the mutation state has been given by Crow and Kimura [2] as

u(s) =
1 − e−2Nes/N

1 − e−4Nes
, (3)

where Ne is the effective population size, and N is the population size. For simplicity, the

analysis here takes Ne = N .

Following Fisher’s geometrical model of adaptation, assume that the mutation magnitude
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can be used to define the relative log fitness change

log w(B) − log w(A)

− logw(A)
=

−|z′| − (−|z|)
|z| = 1 −

∣
∣
∣
∣

z′

z

∣
∣
∣
∣

of the mutation away from the optimal state, where (for the analytical derivation) the selection

coefficient s = 1 − | z′

z |, for a transition from state z to state z′. Assuming that the magnitude

of mutations has a gamma distribution, and the fitness effect of a new mutation depends on the

current state of the population mutation, then the gamma probability density function times

the fixation probability of the mutation times the fitness change s (for diploid populations, 2s

is used), integrated over all new states z′, yields the expected (relative) fitness effect of a state

transition from z:

W (z) =

∫ ∞

−∞

sf(z′)u(s)dz′

=

∫ ∞

−∞

(

1 −
∣
∣
∣
∣

z′

z

∣
∣
∣
∣

) |z′ − z|α−1βαe−β|z′−z|

Γ(α)

1 − e−2(1−| z′

z
|)

1 − e−4Ne(1−| z′

z
|)

dz′, (4)

where α > 0, β > 0, and Ne > 0. It is clear that W (z) reflects the dependency of fitness

effect on the relative location |z′ − z| of the new mutation and the current mutation location z.

Decompose W (z) as W (z) = W1(z) − W2(z) where

W1(z) =

∫ ∞

−∞

f(z′)u(s)dz′, W2(z) =

∫ ∞

−∞

∣
∣
∣
∣

z′

z

∣
∣
∣
∣
f(z′)u(s)dz′.

These integrals W1 and W2 will be expressed in terms of the gamma function Γ(α) =
∫ ∞

0 xα−1

e−xdx, the incomplete gamma function γ(α, y) =
∫ ∞

y
xα−1e−xdx, the generalized incomplete

gamma function γ̂(α, x, y) = γ(α, x) − γ(α, y), and the generalized Riemann zeta function

Z(s, a) =
∑∞

k=0
1

(k+a)s .

Because of the absolute values, doing the integrals analytically requires considering different

cases. First, consider the case when z > 0. Write the first part of the integral in equation (4) as
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W1(z) = D1 + D2 + D3, where

D1 =

∫ 0

−∞

(z − z′)α−1βαe−β(z−z′)

Γ(α)

1 − e−2(1+ z′

z
)

1 − e−4Ne(1+
z′

z
)
dz′, (5)

D2 =

∫ z

0

(z − z′)α−1βαe−β(z−z′)

Γ(α)

1 − e−2(1− z′

z
)

1 − e−4Ne(1−
z′

z
)
dz′, (6)

D3 =

∫ ∞

z

(z′ − z)α−1βαe−β(z′−z)

Γ(α)

1 − e−2(1− z′

z
)

1 − e−4Ne(1−
z′

z
)
dz′. (7)

Second, consider the case when z < 0, and write the first part of the integral in equation (4)

as W1(z) = D4 + D5 + D6, where

D4 =

∫ ∞

0

(z′ − z)α−1βαe−β(z′−z)

Γ(α)

1 − e−2(1+ z′

z
)

1 − e−4Ne(1+ z′

z
)
dz′, (8)

D5 =

∫ z

−∞

(z − z′)α−1βαe−β(z−z′)

Γ(α)

1 − e−2(1− z′

z
)

1 − e−4Ne(1− z′

z
)
dz′, (9)

D6 =

∫ 0

z

(z′ − z)α−1βαe−β(z′−z)

Γ(α)

1 − e−2(1− z′

z
)

1 − e−4Ne(1− z′

z
)
dz′. (10)

A closed form expression for each of D1, D2, . . ., D6 is derived in the appendix.

Given W1(z), W2(z) =
∫ ∞

−∞

∣
∣
∣
z′

z

∣
∣
∣ f(z′)u(s)dz′ is straightforward to compute. As before, sim-

ilar to W1(z), write W2(z) = D′
1 + D′

2 + D′
3 for z > 0 and W2(z) = D′

4 + D′
5 + D′

6 for z < 0,

where

D′
1 =

∫ 0

−∞

−z′

z (z − z′)α−1βαe−β(z−z′)

Γ(α)

1 − e−2(1+ z′

z
)

1 − e−4Ne(1+
z′

z
)
dz′,

D′
2 =

∫ z

0

z′

z (z − z′)α−1βαe−β(z−z′)

Γ(α)

1 − e−2(1− z′

z
)

1 − e−4Ne(1−
z′

z
)
dz′,

D′
3 =

∫ ∞

z

z′

z (z′ − z)α−1βαe−β(z′−z)

Γ(α)

1 − e−2(1− z′

z
)

1 − e−4Ne(1−
z′

z
)
dz′,

D′
4 =

∫ ∞

0

−z′

z (z′ − z)α−1βαe−β(z′−z)

Γ(α)

1 − e−2(1+ z′

z
)

1 − e−4Ne(1+
z′

z
)
dz′,

D′
5 =

∫ z

−∞

z′

z (z − z′)α−1βαe−β(z−z′)

Γ(α)

1 − e−2(1− z′

z
)

1 − e−4Ne(1−
z′

z
)
dz′,
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D′
6 =

∫ 0

z

z′

z (z′ − z)α−1βαe−β(z′−z)

Γ(α)

1 − e−2(1− z′

z
)

1 − e−4Ne(1−
z′

z
)
dz′. (11)

Then D′
1 can be rewritten as

D′
1 =

1

z

[
∫ 0

−∞

(z − z′)(z − z′)α−1βαe−β(z−z′)

Γ(α)

1 − e−2(1+ z′

z
)

1 − e−4Ne(1+ z′

z
)
dz′

−
∫ 0

−∞

z(z − z′)α−1βαe−β(z−z′)

Γ(α)

1 − e−2(1+ z′

z
)

1 − e−4Ne(1+
z′

z
)
dz′

]

=
1

z

∫ 0

−∞

(z − z′)αβαe−β(z−z′)

Γ(α)

1 − e−2(1+ z′

z
)

1 − e−4Ne(1+
z′

z
)
dz′ − D1

=
1

z
D1,α − D1. (12)

Notice that the integral D1,α has the same integrand as D1 except for an extra factor of |z′− z|.

The effect of this is to replace every occurrence of α by α + 1 in the final integral formula for

D1,α, except for the factor βα
/

Γ(α), which remains unchanged. This same pattern holds for

all the D′
i, precisely,

D′
1 =

1

z
D1,α − D1,

D′
2 = −1

z
D2,α + D2,

D′
3 =

1

z
D3,α + D3,

D′
4 = −1

z
D4,α − D4,

D′
5 = −1

z
D5,α + D5,

D′
6 =

1

z
D6,α + D6,

where the final integral formula for Di,α differs from that for Di as just described for D1,α and

D1.

Finally, for z > 0,

W (z) = W1(z) − W2(z)
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= D1 + D2 + D3 −
(

1

z
D1,α − D1

)

−
(

−1

z
D2,α + D2

)

−
(

1

z
D3,α + D3

)

= 2D1 −
1

z
D1,α +

1

z
D2,α − 1

z
D3,α, (13)

and for z < 0,

W (z) = W1(z) − W2(z)

= D4 + D5 + D6 −
(

−1

z
D4,α − D4

)

−
(

−1

z
D5,α + D5

)

−
(

1

z
D6,α + D6

)

= 2D4 +
1

z
D4,α +

1

z
D5,α − 1

z
D6,α. (14)

3 RESULTS AND DISCUSSION

The effect of the distribution of mutation lengths

The distribution of mutation lengths in nature is unknown. However, because the gamma distri-

bution can represent a variety of distribution shapes, employing it for the analysis covers many

plausible approximations for the true distribution. In order to examine the effect of different

distributions for mutation lengths, W (z) is computed for different shapes to examine the effect

of distributional shapes on the expected fitness changes. The simplest form is exponential, which

has been used previously to approximate the distribution of the fitness effect of deleterious mu-

tations (e.g., [15]) and rare beneficial mutations [8]. Consider first the exponential distribution,

where α = 1, and β ranges within (0, 10]. Shown in Figure 2, for exponential distributions with

different decay rates β > 0, the expected fitness effect of the fixation of a new mutation is always

positive, suggesting that while mutations can take the population either to a state with lower

fitness than the current one or a state with higher fitness, the mean fitness change will be a

gain rather than a loss. In particular, for small β near zero, the expected fitness gain from the

current state z = 4 increases with β, peaks around β = 0.286 (the expected fitness effect reaches

the maximum of 0.277) and then decreases as β increases; past the peak, the larger β is, the

smaller the effect of the fixation of a new mutation on the fitness change of the population. This
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observation is easy to understand because a large β value means that most of the mutations have

a very small mutation length from the current state of the population, therefore, the fixation of

the new mutation is expected to have a small effect on the population fitness change. For very

small β ≈ 0, both large and small mutation lengths occur with high probability, and since small

mutation lengths tend to be beneficial and large mutation lengths tend to be deleterious, the

effect of deleterious mutations nearly balances out the effect of beneficial mutations (W (z) ≈ 0).

Increasing β gives the smaller beneficial mutation lengths an edge, so W (z) increases rapidly, un-

til it peaks at the crossover point in the gain/loss ratio for small length mutations. This crossover

occurs at the switch between prevalence of long length mutations (small β) and prevalence of

short length mutations (large β).

2 4 6 8 10
Β

0.2

0.4

0.6

0.8

WHzL

Figure 2: The effect of the distributional shapes of mutation lengths on the expected fitness change of
a new mutation with z = 4 and Ne = 1000 for all the curves, but with different α: α = 0.8 (black),
α = 1 (dotdashed), α = 2 (dashed), and α = 4 (dotted).

Figure 2 also shows the effect of the distribution of mutation lengths for different αs. For

small β ≈ 0, the expected fitness gain due to fixation of a new mutation tends to be lower for

larger α, while for β ≫ 1, tends to be higher for larger α. With the current parameter settings,

for example, when β = 2, the expected fitness gain is much larger for large α than for small α.

10



In general, larger αs tend to have a wider range of β within which the expected fitness gains are

large owing to the fixation of a new mutation than smaller αs. Moreover, for all different values

of α and β, fixing one, there is always a maximum expected fitness gain with respect to the

other, which can be obtained by setting the partial derivatives ∂W
∂α or ∂W

∂β to zero and solving

for α or β.

Previous studies have shown that large coefficients of variation in the fitness effect of both

deleterious and beneficial mutations enable small populations to persist [17, 18]. This effect is

explored here by varying the coefficient of variation of mutation lengths to see what effect it has

on the expected fitness change of a population. Since the coefficient of variation of a gamma

distribution (with shape parameter α, scale parameter β, mean α/β, variance α/β2) is equal to

1/
√

α, consider the relationship between W (z) and α for different initial states (i.e., different z)

with the same scale factor β, shown in Figure 3. Interestingly, for a specific initial state (e.g.,

z = 4), the expected fitness gain increases with α, reaches a maximum, and then approaches

zero asymptotically as α → ∞. This shows that under the Fisher geometric adaptation model,

the expected fitness gain is not a simple linear (or even monotone) function of the coefficient

of variation of mutation lengths; since α → 0 implies the coefficient of variation 1/
√

α → ∞, a

larger coefficient of variation for mutation lengths does not necessarily lead to higher expected

fitness gains. Given the definition of fitness effect s = |z|−|z′|
|z| , there might appear to be a strong

correlation between the coefficient of variation of s and that of the mutation length |z′ − z|,

but the above observation indicates otherwise. Biologically, it is tempting to think that the

coefficient of variation for mutation lengths should be positively correlated with the coefficient

of variation for fitness effect, but one can imagine the counter-effect can also happen.

The effect of the initial state

Consider next the effect on W (z) of changing the initial state z. Figure 4 shows that the

starting state does affect the expected relative fitness change due to the fixation of a mutation.
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Α

0.5

1.0

1.5

2.0

WHzL

Figure 3: The effect of the distributional shapes of mutation lengths on the expected fitness change
of a new mutation with β = 1 and Ne = 100 for all the curves, but with different initial states: z = 1
(black), z = 4 (dotdashed), z = 8 (dashed), and z = 10 (dotted).

For the same distribution of mutation lengths, the expected fitness gain for mutation fixation

increases with the distance from the “optimal” state (the origin), and approaches a constant

asymptotically as |z| → ∞. The asymptotic value of W (z) decreases with increasing β. It was

discovered, though not shown in Figure 4, that when β ≤ 1, the expected fitness gain W (z) → ∞

as z → ∞. This can be seen mathematically by noting that the maximum of the integrand in

(4) occurs at z′ = 0, where the exponential term e|z| overwhelms the exponential term e−β|z|,

causing the integrand (and integral) to increase without limit as z → ∞. This has no biological

interpretation, since distributions with β < 1 correspond to large mutation lengths |z′ − z|

occurring with probability ≫ 0, which is generally not true biologically.

The effect of effective population sizes

Population size and especially the effective population size is an important parameter in various

evolutionary models, and plays an important role in determining the evolutionary trajectory of

small populations and in determining the evolutionary fates of newly arising mutations. The
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0.5

1.0

1.5

2.0

2.5

WHzL

Figure 4: The effect of the initial state on the expected fitness change of a new mutation with α = 2
and Ne = 100 for all the curves, but with different β: β = 2 (black), β = 3 (dotdashed), β = 4 (dashed),
and β = 6 (dotted).

effective population sizes of various species in nature can be difficult to measure. The mathe-

matical derivations earlier were simplified by assuming that Ne = N . However, existing studies

show, in several species surveyed, the effective population size (Ne) is usually much less than

the census population size (N), with an estimated fraction of Ne = 0.1N . The derivation for

Ne 6= N of the analytic expression for W (z) follows along the lines of the derivation for Ne = N

and is omitted here.

Consider the effect of Ne on the expected fitness change from one population state to another.

From (3), it is clear that changing the effective population size Ne should have little effect on the

expected fitness change due to the fixation of a new mutation, since unless Ne is really small,

u(s) ≈ 1 − e−2sNe/N . Changing the ratio Ne

N has only a small effect on the final results for

Ne

N > 1 (Figure 5). Therefore, it appears that under Fisher’s model, the expected fitness change

due to the fixation of a new mutation in a population does not depend much on the effective

population size. Though mathematically explicable, it is nevertheless biologically surprising

since the effective population size of a population is thought to be important in determining the
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fate of the population. One way to understand this is to realize that the expected fitness change

can be different from one observed outcome in nature.

2 4 6 8 10
���������
Ne

N

0.1

0.2

0.3

0.4

0.5

WHzL

Figure 5: The effect of the ratio Ne

N
on the expected fitness change of a new mutation with β = 1,

z = 3, and Ne = 1000 for all the curves, but with different α: α = 0.5 (black), α = 1 (dotdashed), α = 2
(long-dashed), α = 5 (dotted), and α = 10 (short-dashed). Notice the nonmonotone behavior of W (z)
with respect to α for a fixed Ne

N
.

The always positive expected fitness change

Since populations do go to extinction, one might expect W (z) to be negative for some distribution

parameters α > 0, β > 0 and initial state z. A rigorous proof that W (z) > 0 for all α > 0,

β > 0, and z 6= 0 appears to be difficult, but there is overwhelming computational evidence that

this is so. There are several possible explanations for this. One explanation is purely technical.

Observe that the fixation probability u(s) is strictly increasing with u(−∞) = 0, u(0) = 1/(2N),

and u(∞) = 1. Furthermore, u(s) is hugely skewed in favor of beneficial mutations (fitness effect

s > 0). For example, with Ne = 100, N = 1000,

u(−0.1) = 10−19, u(0.1) = 0.020, u(−0.5) = 10−88, u(0.5) = 0.095.
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Thus, in this case, the integrand in (4) is essentially zero for s = (|z| − |z′|)/|z| < −0.1, which is

most of the interval −∞ < z′ < ∞, positive for s > 0, and negative and nonnegligible only for

−0.1 < s < 0. Because of the shape of u(s), the positive integral
∫ 1

0 (·)ds is larger in magnitude

than the negative integral
∫ 0

−0.1(·)ds, giving W (z) > 0.

Another explanation recalls the definition of W (z) as the expected fitness effect of a mutation

from the initial population state z. Thus while the expected fitness effect is positive, deleterious

mutations can occur and fix in the population, driving the population to extinction with positive

probability—this is just not the expected (or average) outcome.

Another explanation is that the model here is not correct. Fitness effects may not be so

simply related to mutation distances. The particular definition of fitness effect s used here may

be invalid (W (A) = e−|z|). The choice of the function representing the relationship between

mutation lengths and fitness effect can influence the outcome of the model. A previous study

used W (A) = e−σ|z|2 (σ is the common nonnegative intensity of selection on all traits) to define

the relationship [13]. These two functions are a simplification of nature, where fitness effect of

mutation and mutation lengths can have a multitude of different relationships. Additionally, the

fixation probability u(s) used here may be incorrect or invalid for the particular definition of s

used here. The assumed gamma distribution of mutation lengths |z′ − z| may not correspond

to nature. While each component of the model here is an accepted model from the literature, a

model is only as good as its weakest submodel or assumption.

Nevertheless, under Fisher’s geometric adaptation model, with the current assumptions sim-

ilar to those in the literature (e.g., the assumption of a gamma distribution for the distribution

of mutation lengths [9]), results show that the expected fitness change due to the fixation of

a mutation is positive. This suggests that if one follows through a population, fixation of mu-

tations over the long term is expected to lead to fitness gains for the population, regardless of

the effective population size of the population. Thus, small populations may not necessarily be

doomed due to the runaway process of fixation of deleterious mutations. It has been shown that
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incorporating the effect of sexual selection [15] or reverse mutations [7] into theoretical models

can greatly reduce the risk of small population extinction. Note that the current results focus

on character distribution in one dimension. In reality, there might be many characteristics that

interact together to determine the final fitness cost of a mutation [12]. It has been shown that

increasing the number of dimensions that contribute to the fitness effect (pleiotropy) of muta-

tions reduces the mutation load of populations and thus the risk of a small population going to

extinction [9]. However, all the cited theoretical studies rely on theoretical assumptions, inferred

from empirical studies, and understanding of mutational effect on the fitness [13]. An increasing

number of studies suggest that one mutation can have different effects on different traits, and

mutations themselves can compensate for each other’s deleterious effect (compensatory muta-

tions, e.g. [1, 10]). This poses a challenge for how to model the complex interactions between

mutations and their fitness effect (e.g. [5, 14]). At the same time, because of a dearth of empirical

data on the fitness effect of a mutation, further studies should put more emphasis on somehow

measuring the fitness effect of a mutation empirically and understanding how the fitness effect

of a mutation is determined by the interaction of different genetic components of a population.

The present study focuses on understanding the expected fitness cost of a mutation using

the one-dimensional Fisher model, and applies to species with low mutation rates. For species

with high mutation rates, multiple mutations may exist at the same time in the population,

requiring consideration of the effect of the fixation of multiple mutations. Work has been done

to understand the effect of multiple mutations on populations that have high mutation rates

(e.g., [3, 11, 16]). Future work will consider the fixation of multiple mutations and also higher

dimensions (e.g. [5, 14]).

Finally, since considerable effort went into deriving the approximation for W (z) based on

s = 1 − |z′/z|, why was that approximation not compared to the “true” W (z)? First, the

analytical study was motivated by the question of what, if anything, could be done analytically

with W (z) based on s = e|z|−|z′| − 1. The answer is probably nothing, since the derivation here
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with the simplification s = 1− |z′/z| is highly nontrivial, requiring generalized gamma and zeta

functions. Second, suppose an analytic form of W (z), in terms of special functions, did exist. It

turns out that numerically evaluating these special functions, and infinite series in them, is at

least as expensive as directly evaluating numerically the integral in (4). So, embarrassingly (but

well known to numerical analysts!), even if one had an analytical form for W (z), it probably

would not be used in practice.
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Appendix: Derivation of W1(z)

A closed form expression for each of D1, D2, . . ., D6 will be derived in turn. One would like to

write

D1 =

∫ 0

−∞

(z − z′)α−1βαe−β(z−z′)

Γ(α)

1 − e−2(1+ z′

z
)

1 − e−4Ne(1+ z′

z
)
dz′

=
βα

Γ(α)








∫ 0

−∞

(z − z′)α−1e−β(z−z′)

1 − e−4Ne(1+
z′

z
)

dz′

︸ ︷︷ ︸

A0

−
∫ 0

−∞

(z − z′)e−β(z−z′)e−2(1+ z′

z
)

1 − e−4Ne(1+
z′

z
)

dz′

︸ ︷︷ ︸

B0








,

however, this is mathematically invalid since the integrals A0 and B0 do not exist; for instance,

A0 contains the improper integral

∫ −z

−z−ǫ

1

z + z′
dz′ = −∞

for small ǫ > 0. (Near z′ = −z, the numerator of A0 is integrable and positive, and the

denominator expands to 4Ne

z (z + z′) + o(z + z′).) The technical difficulty is that while the

fixation probability u(s) is analytic for all s, it can be split apart as

u(s) =
1 − e−2s

1 − e−4Nes
=

1

1 − e−4Nes
− e−2s

1 − e−4Nes

only for s 6= 0. Thus D1 must be written as

D1 =

∫ 0

−∞

=

∫ −z−ǫ

−∞

+

∫ −z+ǫ

−z−ǫ

+

∫ 0

−z+ǫ
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for some 0 < ǫ ≪ 1. u(s) can be split apart in the first and last integrals, but not the middle

one, which approaches 0 as ǫ → 0. Thus, D1 must be decomposed as

D1 =
βα

Γ(α)

[

A0,1 + B0,1 +

∫ −z+ǫ

−z−ǫ

+ A0,2 + B0,2

]

,

where the small integral
∫ −z+ǫ

−z−ǫ is either dropped or approximated numerically, and the remaining

terms are given exactly by

A0,1 =

∫ −z−ǫ

−∞

(z − z′)α−1e−β(z−z′)e4Ne(1+
z′

z
)

e4Ne(1+ z′

z
) − 1

dz′

= −
∫ −z−ǫ

−∞

(z − z′)α−1e−βz+βz′+4Ne+4Ne
z′

z

1 − e4Ne(1+ z′

z
)

dz′

= −zα−1

∫ −z−ǫ

−∞

(1 − z′

z
)α−1e−βz+βz′+4Ne+4Ne

z′

z

∞∑

t=0

e4Net(1+ z′

z
) dz′

= −zα−1
∞∑

t=0

∫ −z−ǫ

−∞

(

1 − z′

z

)α−1

e−βz+βz′+4Ne+4Ne
z′

z
+4Net+4Net z′

z dz′

= −
∞∑

t=0

e8Ne+8Netzα−1

∫ −z−ǫ

−∞

(

1 − z′

z

)α−1

e−(4Ne+4Net+βz)(1− z′

z
)dz′

= −
∞∑

t=0

zαe8Ne+8Net

∫ ∞

2+ǫ/z

sα−1e−(4Ne+4Net+βz)sds (with s = 1 − z′

z )

= −
∞∑

t=0

zαe8Ne+8Netγ(α, (2 + ǫ/z)(4Ne + 4Net + βz))

(4Ne + 4Net + βz)α
(15)

(with x = (4Ne + 4Net + βz)s),

A0,2 =

∫ 0

−z+ǫ

(z − z′)α−1e−β(z−z′)
∞∑

t=0

e−4Net(1+ z′

z
)dz′

=

∞∑

t=0

zα−1

∫ 0

−z+ǫ

(1 − z′

z
)α−1e−(1− z′

z
)(−4Net+βz)−8Netdz′

=

∞∑

t=0

zαe−8Net

∫ 2−ǫ/z

1

sα−1e−s(βz−4Net)ds (with s = 1 − z′

z )

=

⌊ βz
4Ne

⌋
∑

t=0

zαe−8Net

(βz − 4Net)α
γ̂(α, βz − 4Net, (2 − ǫ/z)(βz − 4Net))

20



+
∞∑

t=⌊ βz

4Ne
⌋+1

zαe−8Net

∫ 2−ǫ/z

1

sα−1e−s(βz−4Net)ds

=

⌊ βz
4Ne

⌋
∑

t=0

zαe−8Netγ̂(α, βz − 4Net, (2 − ǫ/z)(βz − 4Net))

(βz − 4Net)α

+

∞∑

t=⌊ βz

4Ne
⌋+1

zαe−8Net
∞∑

k=0

((2 − ǫ/z)k+α − 1)(4Net − βz)k

k!(k + α)
. (16)

B0,1 = −
∫ −z−ǫ

−∞

(z − z′)α−1e−βz+βz′−2−2 z′

z
+4Ne+4Ne

z′

z

∞∑

t=0

e4Net(1+ z′

z
)

= −zα−1
∞∑

t=0

e8Ne+8Net−4

∫ −z−ǫ

−∞

(1 − z′

z
)α−1e−(1− z′

z
)(4Ne+4Net−2+βz)dz′

= −
∞∑

t=0

zαe8Ne+8Net−4γ(α, (2 + ǫ/z)(4Ne + 4Net − 2 + βz))

(4Ne + 4Net − 2 + βz)α
, (17)

and

B0,2 = zα−1
∞∑

t=0

∫ 0

−z+ǫ

(1 − z′

z
)α−1e−(1− z′

z
)(βz−2−4Net)−4−8Netdz′

=

⌊ βz+2

4Ne
⌋

∑

t=0

zαe−4−8Netγ̂(α, βz − 2 − 4Net, 2(βz − 2 − 4Net))

(βz − 2 − 4Net)α

+

∞∑

t=⌊βz+2

4Ne
⌋+1

zαe−4−8Net
∞∑

k=0

((2 − ǫ/z)k+α − 1)(2 + 4Net − βz)k

k!(k + α)
. (18)

D2 and D3 are somewhat easier to compute than D1. As with D1, care must be taken to

avoid infinite integrals. Converting the denominator of u(s) to a geometric series yields

D2 −
∫ z

z−ǫ

f(z′)u(s)dz′

=

∫ z−ǫ

0

βα(z − z′)α−1e−β(z−z′)

Γ(α)
(1 − e−2(1− z′

z
))

∞∑

t=0

e−4Net(1− z′

z
)dz′

=
zα−1βα

Γ(α)

∞∑

t=0

∫ z−ǫ

0

(

1 − z′

z

)α−1

e
−βz

“

1− z′

z

” (

1 − e−2(1− z′

z
)
)

e−4Net(1− z′

z
)dz′
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=
zα−1βα

Γ(α)

∞∑

t=0








∫ z−ǫ

0

(

1 − z′

z

)α−1

e
−βz

“

1− z′

z

”

−4Net
“

1− z′

z

”

dz′

︸ ︷︷ ︸

D2,1

−
∫ z−ǫ

0

(

1 − z′

z

)α−1

e−βz(1− z′

z
)−2(1− z′

z
)−4Net(1− z′

z
)dz′

︸ ︷︷ ︸

D2,2








. (19)

Now working on the integrals D2,1 and D2,2,

D2,1 =

∫ z−ǫ

0

(

1 − z′

z

)α−1

e−(βz+4Net)(1− z′

z
)dz′

= z

∫ 1

ǫ/z

sα−1e−(βz+4Net)sds (with s = 1 − z′

z )

= z(βz + 4Net)
−α

∫ 1

ǫ/z

[(βz + 4Net)s]
α−1e−(βz+4Net)sd(βz + 4Net)s

=
z

(βz + 4Net)α

∫ βz+4Net

ǫ/z(βz+4Net)

xα−1e−xdx (with x = (βz + 4Net)s)

=
zγ̂(α, ǫ/z(βz + 4Net), βz + 4Net)

(βz + 4Net)α
, (20)

and

D2,2 =

∫ z−ǫ

0

(

1 − z′

z

)

e−βz(1− z′

z
)−2(1− z′

z
)−4Net(1− z′

z
)dz′

= z

∫ 1

ǫ/z

sα−1e−βzs−2s−4Netsds (with s = 1 − z′

z )

=
zγ̂(α, (ǫ/z)(βz + 4Net + 2), βz + 4Net + 2)

(βz + 4Net + 2)α
. (21)

Combining the expressions for the integrals D2,1 and D2,2 yields

D2 −
∫ z

z−ǫ

f(z′)u(s)dz′

=
zα−1βα

Γ(α)

∞∑

t=0

[
zγ̂(α, ǫ/z(βz + 4Net), βz + 4Net)

(βz + 4Net)α

−zγ̂(α, (ǫ/z)(βz + 4Net + 2), βz + 4Net + 2)

(βz + 4Net + 2)α

]
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=
(βz)α

(4Ne)αΓ(α)

∞∑

t=0

[

γ̂(α, ǫ/z(βz + 4Net), βz + 4Net)

(t + βz
4Ne

)α

− γ̂(α, (ǫ/z)(βz + 4Net + 2), βz + 4Net + 2)

(t + βz+2
4Ne

)α

]

. (22)

Using now the substitutions s = z′

z − 1 and x = (βz + 4Ne + 4Net − 2)s,

D3 −
∫ z+ǫ

z

f(z′)u(s)dz′

=
βα

Γ(α)

∫ ∞

z+ǫ

(z′ − z)α−1e−β(z′−z) e
4Ne(1− z′

z
)(e−2(1− z′

z
) − 1)

1 − e4Ne(1− z′

z
)

dz′

=
βα

Γ(α)

∞∑

t=0

∫ ∞

z+ǫ

(z′ − z)α−1e−β(z′−z)+4Ne(1− z′

z
)+4Net(1− z′

z
)
(

e−2(1− z′

z
) − 1

)

dz′

=
βα

Γ(α)

∞∑

t=0

(
zαγ(α, ǫ/z(βz + 4Ne + 4Net − 2))

(βz + 4Ne + 4Net − 2)α
− zαγ(α, ǫ/z(βz + 4Ne + 4Net))

(βz + 4Ne + 4Net)α

)

=

(
βz

4Ne

)α
1

Γ(α)

∞∑

t=0

[

γ(α, ǫ/z(βz + 4Ne + 4Net − 2))

(t + βz+4Ne−2
4Ne

)α

−γ(α, ǫ/z(βz + 4Ne + 4Net))

(t + βz+4Ne

4Ne
)α

]

. (23)

This completes the analysis of W1(z) for z > 0. Now turn to z < 0 where W1(z) = D4+D5+D6.

As earlier, it is necessary to write

D4 =

∫ ∞

0

=

∫ −z−ǫ

0

+

∫ −z+ǫ

−z−ǫ

+

∫ ∞

−z+ǫ

= D4,1 +

∫ −z+ǫ

−z−ǫ

+D4,2,

where

D4,1 =
βα

Γ(x)

∫ −z−ǫ

0

(z′ − z)α−1e−β(z′−z)(1 − e−2(1+ z′

z
))

1 − e−4Ne(1+ z′

z
)

dz′

=

⌊−βz

4Ne
⌋

∑

t=0

(−z)αe−8Netγ̂(α, (−4Net − βz), (2 + ǫ/z)(−4Net − βz))

(−4Net − βz)α

+

∞∑

t=⌊−βz

4Ne
⌋+1

(−z)αe−8Net
∞∑

k=0

(4Net + βz)k((2 + ǫ/z)k+α − 1)

k!(k + α)

−
⌊ βz+2

−4Ne
⌋

∑

t=0

(−z)αe−4−8Netγ̂(α, (−2 − 4Net − βz), (2 + ǫ/z)(−2− 4Net − βz))

(−2 − 4Net − βz)α
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−
∞∑

t=⌊ βz+2

−4Ne
⌋+1

(−z)αe−4−8Net
∞∑

k=0

(2 + 4Net + βz)k((2 + ǫ/z)k+α − 1)

k!(k + α)
, (24)

D4,2 =
βα

Γ(x)

∫ ∞

−z+ǫ

(z′ − z)α−1e−β(z′−z)(1 − e−2(1+ z′

z
))

1 − e−4Ne(1+
z′

z
)

dz′

=

∞∑

t=0

(−z)αe8Ne+8Net

[
e−4γ(α, (2 − ǫ/z)(4Ne + 4Net − βz − 2))

(4Ne + 4Net − βz − 2)α

−γ(α, (2 − ǫ/z)(4Ne + 4Net − βz))

(4Ne + 4Net − βz)α

]

. (25)

Writing D5 −
∫ z

z−ǫ f(z′)u(s)dz′ = D5,1 + D5,2 and using the variable substitution s = z′

z − 1

leads to

D5,1 =
−βα

Γ(α)

∞∑

t=0

∫ z−ǫ

−∞

(z − z′)α−1e−βz+βz′+4Ne(1− z′

z
)+4Net(1− z′

z
)dz′,

=
−(−βz)α

Γ(α)

∞∑

t=0

∫ ∞

−ǫ/z

sα−1e−s(4Ne+4Net−βz)ds

=
−(−βz)α

Γ(α)

∞∑

t=0

γ(α,−ǫ/z(4Ne + 4Net − βz))

(4Ne + 4Net − βz)α
,

D5,2 =
βα

Γ(α)

∞∑

t=0

∫ z−ǫ

−∞

(z − z′)α−1e−βz+βz′−2(1− z′

z
)+4Ne(1− z′

z
)+4Net(1− z′

z
)dz′

=
(−βz)α

Γ(α)

∞∑

t=0

γ(α,−ǫ/z(4Ne + 4Net − βz − 2))

(4Ne + 4Net − βz − 2)α
. (26)

Similarly,

D6 −
∫ z+ǫ

z

f(z′)u(s)dz′ =
(−βz)α

Γ(α)

[
∞∑

t=0

(
γ̂(α,−ǫ/z(4Net − βz), 4Net − βz)

(4Net − βz)α

)

−
∞∑

t=0

(
γ̂(α,−ǫ/z(4Net + 2 − βz), 4Net + 2 − βz)

(4Net + 2 − βz)α

)]

. (27)

This completes the calculation of W1(z) for all z 6= 0 (it is assumed that the current population

state is not at its optimum z = 0).
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