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Abstract. Large scale, multidisciplinary, engineering
designs are always difficult due to the complexity and
dimensionality of these problems. Direct coupling
between the analysis codes and the optimization
routines can be prohibitively time consuming due to
the complexity of the underlying simulation codes.
One way of tackling this problem is by constructing
computationally cheap(er) approximations of the
expensive simulations, that mimic the behavior of
the simulation model as closely as possible. This
paper presents a data driven, surrogate based
optimization algorithm that uses a trust region
based sequential approximate optimization (SAO)
framework and a statistical sampling approach based
on design of experiment (DOE) arrays. The
algorithm is implemented using techniques from
two packages—SURFPACK and SHEPPACK that
provide a collection of approximation algorithms
to build the surrogates and three different DOE
techniques—full factorial (FF), Latin hypercube
sampling (LHS), and central composite design
(CCD)—are used to train the surrogates. The
results are compared with the optimization results
obtained by directly coupling an optimizer with the
simulation code. The biggest concern in using the
SAO framework based on statistical sampling is the
generation of the required database. As the number
of design variables grows, the computational cost
of generating the required database grows rapidly.
A data driven approach is proposed to tackle this
situation, where the trick is to run the expensive
simulation if and only if a nearby data point does not
exist in the cumulatively growing database. Over
time the database matures and is enriched as more
and more optimizations are performed. Results show
that the proposed methodology dramatically reduces
the total number of calls to the expensive simulation
runs during the optimization process.

Keywords. Problem solving environment;
Wood-based composite materials; Visualization;
Optimization; Surrogate; Response surface
approximation; Sequential approximate optimization;
Experiment management; Trust region strategy

1. Introduction

Large scale, multidisciplinary, engineering design
problems require physical experiments and/or
simulations to evaluate a design objective as a
function of design parameters. For many real world
problems, however, a single simulation can take
several minutes, hours, or even days to complete. As
a result, routine tasks such as design optimization,
design space exploration, and sensitivity analysis
could become almost impossible since they might
require hundreds or even thousands of simulations.
One way of tackling this problem is by constructing
computationally cheap(er) approximations of the
expensive simulations, that mimic the behavior of
the simulation model as closely as possible. These
approximations are known as surrogates, response
surface approximations (RSAs), metamodels, or
emulators.

This paper discusses a data driven, surrogate based
optimization algorithm illustrated by a scientific
problem solving environment (PSE), WBCSim,
which increases the productivity of wood scientists
conducting research on wood-based composite (WBC)
materials. WBCSim integrates legacy FORTRAN
77 and new Fortran 90 simulation codes with a
Web-based graphical front end, an optimization
tool, an experiment management component, a
computational steering capability, and various
visualization tools. As discussed in [31], WBCSim has
evolved steadily from a prototype PSE, intended as a
research tool and a Web interface for legacy Fortran
programs, to a commercial quality PSE. The current
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version of WBCSim has enhanced visualization and
simulation capabilities, more realistically modeling
manufacture. The more advanced models in
WBCSim, such as the hot pressing Fortran 90
code or its visualization/optimization tools, can
take hours to run on a fast (DEC AXP 21064 or
SUN Sparc) workstation. Nonlinear optimization
algorithms cannot be applied directly to these
complex simulation models, as it can be prohibitively
time consuming and cost ineffective. The solution
discussed here is to provide a computationally
inexpensive representation of the underlying system.
A strong motivation behind the implementation
of a data driven, surrogate based optimization
algorithm for WBCSim is the availability of a
sophisticated experiment management component,
which efficiently manages the simulation execution
and experiment data, providing a systematic way
to automatically store and retrieve the simulation
data [29]. The existing simulation run data can be
retrieved to construct a surrogate function for the
entire simulation or parts of it, thereby replacing
costly simulation executions with cheap(er) surrogate
function evaluations.

As discussed in [20],[21] the surrogate models
can be integrated within optimization tools in two
ways: 1) using global approximations, where a RSA
is developed over the entire design space, or 2)
using local approximations, where RSAs are built
within a local region around the current design.
The global approximations require a more complex
model to mimic the underlying system, consequently,
the cost of developing a global surrogate model is
higher than for local approximations. In general,
a single optimization is performed while employing
global approximations, whereas local approximations
require a series of optimizations, each one performed
within a local region around the current design.
When using local RSAs, a sequential approximate
optimization (SAO) methodology can be used. The
basic concept of the SAO framework is to apply
nonlinear optimization to an approximation at the
current design point subject to local move limits.
The design space is sampled around the current
design point at the beginning of each SAO iteration
to generate the dataset required for constructing a
surrogate model using regression analysis.

The implementation here is based on the second
approach using the SAO framework and a statistical
sampling approach based on design of experiment
(DOE) arrays as reported by Rodŕıgues et al. in [25],
[24]. At each SAO iteration, a DOE array is used to
select a set of design points for sampling. Each design

point is evaluated either by retrieving a previously
stored simulation run or by running the simulation
code at the design point, if it does not exist in the
database. The resulting dataset is used to build a
surrogate model. An optimization is performed using
this approximation model within local move limits.
The surrogate and move limits are updated after
every iteration using a trust region strategy until
convergence is achieved.

The organization of the paper is as follows:
Section 2 reviews related work in PSEs and
WBCSim in particular, describes the surrogate based
optimization and SAO framework, and discusses
database support within the context of PSEs. Section
3 describes the proposed surrogate based optimization
methodology in detail, and presents a pseudocode
for the optimization algorithm. The experimental
results are discussed in Section 4, and Section 5 offers
concluding remarks.

2. Background

2.1. Problem Solving Environment and

WBCSim

A problem solving environment (PSE) is a system
that provides a complete, usable, and integrated
set of high level facilities for solving problems from
a prescribed domain [9], [15]. A PSE commonly
addresses various issues: Internet accessibility to
legacy codes, visualization, experiment management
(EM), multidisciplinary support, recommender
systems, collaboration support, optimization, high
performance computing, preservation of expert
knowledge, design extensibility, and pedagogical
uses [40]. PSEs were first introduced in the
simpler problem domains such as partial differential
equations (ELLPACK [10] and its descendants [5],
for solving two and three-dimensional elliptic partial
differential equations) and linear algebra (Linear
System Analyzer [4] for manipulating and solving
large-scale sparse linear systems of equations). Since
then, many PSEs have been introduced to address
problems in diverse domains, such as: Gismo [3],
created at Washington University, for modeling all
aspects of a satellite’s design and performance; a PSE
developed by Chen et al. [6], to simulate physically
realistic, complex dust behaviors useful in interactive
graphics applications for education, entertainment,
or training; Expresso [32], a microarray experiment
management PSE, designed to assist biologists in
planning, executing, and interpreting microarray
experiments; L2W [7], a PSE for land use change
analysis; JigCell model builder [1], [38], [39], a PSE
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to define chemical kinetic models as a set of reaction
equations, and many more. Watson et al. [40]
provide a thorough summary of the key attributes of
a PSE, and also a comparative study of a PSE with
other similar computing environments: a decision
support system (DSS) and a geographical information
system (GIS).

The review here is focused on the work regarding
multidisciplinary optimization support provided by
PSEs. A number of PSEs have been introduced that
combine analysis codes with optimization methods
in a flexible manner, along with a visualization tool
for viewing the optimization results. iSIGHT [35]
is a PSE that provides a generic shell environment
for multidisciplinary optimization. LMS optimus
[11] is a system that provides a front end to set
up a problem, select a method suitable to the
problem, and analyze the results. DAKOTA [8] is a
framework that provides a flexible, object-oriented,
and extensible PSE with an integrated interface for a
variety of optimization methods. S4W [33], [19] is
a collaborative PSE for the design and analysis of
wideband wireless communication systems. VizCraft
[12] is a PSE that provides a graphical user interface
to a widely used suite of analysis and optimization
codes to aid aircraft designers during conceptual
design of a high-speed civil transport. WBCSim
(discussed next) is a prototype PSE for wood based
composites manufacturing that provides support for
a sophisticated optimization component along with
various visualization tools. Among these PSEs, S4W
uses surrogate functions for its WCDMA simulator to
estimate the bit error rates [19].

WBCSim is a prototype PSE for wood based
composites simulations that integrates a set of high
level components for making both legacy and new
Fortran codes widely accessible. WBCSim qualifies as
a PSE because it provides Internet access to Fortran
codes via the Web, is equipped with visualization and
optimization tools, has a sophisticated experiment
management (EM) component, a computational
steering capability, and has support for collaboration
and high performance computing being added.
WBCSim currently supports five simulation models:

1. Composite material analysis (CMA). The CMA
model was developed to assess the stress-strain
behavior and strength properties of laminated
fiber-reinforced materials (e.g., plywood) [31].

2. Oriented strand board mat formation (OSB).
The mat formation model [44] creates a
three-dimensional spatial structure of a layered
wood-based composite (e.g., oriented strand board
and waferboard) and also calculates certain mat

properties by superimposing a mesh on the mat
structure.

3. Hot compression (HC). The hot compression
model simulates the hot pressing of a flake
mat, created by the mat formation model, in
a batch press, using two-dimensional heat and
mass transfer theory. It calculates the internal
environmental conditions such as the temperature,
moisture content, and pressure changes, as well
as adhesive cure during the mat consolidation
process [44], [45].

4. Radio-frequency pressing (RFP). This model
simulates heat and mass transfer in wood,
resulting in the consolidation of wood veneer into
a laminated composite, when subject to power
input by an alternating electric field [26].

5. Rotary dryer simulation (RDS). The RDS model
was developed as a tool that assists in the design
and operation of a rotary drying system for wood
particles [16], [17].

Goel et al. first described the three tiered
software architecture for WBCSim in [10]. The
current implementation of WBCSim follows the
same architecture with the addition of an EM
component and support for XML datasheets [30],
and a computational steering capability. The three
tiers in the architecture correspond to (1) the client
layer—user front end, (2) the server layer—a Web
server and a PHP module, and (3) the developer
layer—the Fortran code and various visualization and
optimization tools running on the server.

The current implementation of WBCSim supports
the optimization package DOT (Design Optimization
Tool) [37] based on sequential quadratic programming
and the method of feasible directions. WBCSim
supports two models, RDS and RFP, that are linked
to DOT. This paper describes a computationally
inexpensive surrogate based optimization method
that intends to improve the underlying system
performance while applying optimization algorithms
to the computationally expensive more advanced
models (e.g., hot compression) in WBCSim. Note
that while the optimization results here are for the
RDS model (since the HC model is not yet linked to
DOT), the motivation for and ultimate application
of this surrogate based optimization work is using
DOT with the expensive HC model. A typical RDS
simulation takes 545 ms verses 2 hours for a HOT
simulation.

The various visualization tools that are integrated
in WBCSim include Virtual Reality Modeling
Language [2], Wolfram’s Mathematica [41], and the
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UNIX utility WhirlGif. Shu et al. present a detailed
treatment of these tools in [31].

WBCSim has an efficient experiment management
component that integrates a Web based graphical
front end, server scripts, and a database management
system to allow scientists to easily save, retrieve, and
perform customized operations on experimental data
[29].

WBCSim has been enriched with a recent addition
of XML datasheets to unify its implementation
layers [30]. An XML datasheet is tailored for
each of the five models mentioned above. The
WBCSim interface layer, the server scripts, and the
database management system all use the same XML
datasheet for a particular model. The use of XML
reduces redundancy and improves the usability and
maintainability of the client, server, and developer
layers. A computational steering capability for the
hot pressing process simulation has also been added.
Now the user can view temperature, pressure, and
moisture content profiles within the mat during the
hot pressing simulation, and interactively modify the
press schedule or abort the simulation. Such steering
significantly enhances user productivity and insight
into the manufacturing process.

WBCSim has evolved in various ways over
many years, and has now become a sophisticated,
mature PSE, equipped with a complete suite of
high-level tools that make it a uniquely valuable
system for the wood-based composites industry.
Yet, its original goals remain the same: (1) to
increase the productivity of WBC research and
manufacturing groups by improving their software
environment, and (2) to continue serving as an
example for the design, construction, and evaluation
of small-scale problem solving environments. The
surrogate based optimization algorithm presented in
this paper intends to contribute towards these goals
by significantly enhancing the system performance
for optimization.

2.2. Surrogate Based Optimization and a SAO

Framework

The more advanced models in WBCSim such as
the hot pressing model (a two-dimensional nonlinear
partial differential equation) are quite complex and
can take hours to run on a fast (DEC AXP
21064 or Sun Sparc) workstation. Applying a
nonlinear optimization algorithm directly to these
complex models can be prohibitively time consuming
due to the complexity of the underlying simulation
codes. One way of alleviating this burden is
by integrating response surface approximations or

surrogate functions with nonlinear optimizers to
reduce the CPU time required for the optimization
of complex multidisciplinary systems. RSAs
provide a computationally inexpensive lower-fidelity
representation of the underlying simulation. In
large scale multidisciplinary engineering design the
construction and use of such surrogates has become
standard practice.

As discussed above, two trends have emerged
to integrate surrogate functions with a nonlinear
optimizer: (1) using a global RSA, or (2) using local
RSAs. One mechanism for utilizing local RSAs is
the SAO framework. In SAO, simple RSAs that are
valid for a local region are built for the objective
function and the constraints. An optimization
algorithm is applied to this approximation within
the local trust region defined by local move limits.
The surrogate functions and trust region (local
move limits) are updated at every iteration until
convergence is achieved. Different SAO strategies
have been developed [20], [21], [42], [43], [25], [27],
[24], [22], [23], depending on the sampling approaches
used and move limit methods implemented. This
paper presents an algorithm that implements a SAO
framework using DOE based sampling and a trust
region method to adjust the move limits. The only
constraints for the WBCSim models being optimized
are simple bound constraints on the variables, hence
RSAs are only required for the objective function.

The algorithm starts with iteration k = 0 at
some feasible design point. The move limits are
defined around the design point and a database is
generated for the local trust region using a DOE
array. A RSA that is valid near the current design
point is built using the generated database. A
nonlinear optimization is then performed using this
approximation. When the optimization returns a
new candidate point, a trust region test is applied
to decide the acceptance of the approximation and
to define the next move limits. Based on the
trust region ratio, the new candidate point is either
accepted or rejected, new move limits are defined, and
optimization proceeds until convergence is achieved.
Figure 1 presents a flowchart for a general SAO
framework.

The main concept of a trust region method is to
monitor how well the approximation agrees with the
true objective function using a trust region ratio ρ,
the ratio of the actual improvement in the objective
function to the RSA predicted improvement. For a
detailed description of the trust region methodology,
computation of the trust region ratio, and the
adjustment of move limits, see [20].
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Figure 1. Flowchart for a general SAO framework.

The most expensive step in the SAO framework is
the generation of a database for a local trust region at
every iteration. The design points to be evaluated can
be generated either using some optimization based
sampling as described in [28], [25], [42], [43], or using
traditional DOE arrays as described in [27], [24], [22],
[23]. Each design point can be evaluated by running
the simulation code at that point. Several DOE
strategies have been developed to generate efficient
surrogate models. Among the common techniques
that have been used to generate response surface
approximations are traditional factorial designs
(full and fractional factorial), central composite
designs (CCD), orthogonal arrays (OAs), and space
filling techniques such as Latin hypercube and its
extensions. More complex experimental designs such
as D-optimal designs have been introduced to address
the limitations of traditional DOE techniques. The
SAO framework generally eschews such complex
experimental designs. This paper presents an
optimization algorithm and a comparative study
using various traditional DOE sampling techniques.

Numerous algorithms exist to generate response
surface approximations that interpolate or fit data
points. The SAO framework here uses techniques
from two packages that provide a collection of
approximation algorithms—SURFPACK [13], [14]

developed at Sandia National Laboratories, and
SHEPPACK developed by Thacker et al. [36].
SHEPPACK is a Fortran 95 package containing five
versions of the modified Shepard algorithm: quadratic
(Fortran 95 translations of ACM Algorithms 660,
661,and 798), cubic (Fortran 95 translation of
ACM Algorithm 791), and linear variations of
the original Shepard algorithm. SURFPACK
provides a library of surrogate modeling methods
including low order polynomials (linear (POLY1),
quadratic (POLY2), and cubic (POLY3), KRIGING
interpolation, multivariate adaptive regression splines
(MARS), and artificial neural networks (ANN).

2.3. Database

Experiment management is a crucial component of
any PSE. It provides a systematic and efficient way
to store, retrieve, and manage experimental data.
WBCSim is equipped with a sophisticated EM tool,
which consists of customized user interfaces, server
scripts, and an open source DBMS, Postgres. The
EM tool not only supports all the features from
the previous file-based system, but also significantly
improves WBCSim user productivity, usability, and
system maintenance in various ways by providing
support for storing simulation inputs and outputs,
retrieval of existing simulation runs instead of running
a brand new simulation when inputs and/or outputs
exist in the database, filtering the experiment data,
and comparing stored simulation outputs. See [29]
for a detailed description of the implementation of an
EM component for WBCSim.

WBCSim has a full fledged working EM
component for the simulation models OSB and RDS,
which has support for optimization as well and hence
is a test bed for the surrogate based optimization
algorithm presented in this paper. A strong
motivation for the implementation of a data driven
surrogate based optimization algorithm in WBCSim
is the availability of the required infrastructure. In
SAO, a database is generated for each iteration
by evaluating the objective function and constraints
(called a “system analysis”) at each DOE sample
point. An EM component saves the cost of a
simulation run when the data point already exists in
the database (a simulation run is required if and only
if the data point does not exist in the database).
After running the simulation, the point and results
are stored in the database for future references. Thus,
over time, the database matures and is enriched as
more and more optimizations are performed. This
data-driven approach significantly reduces the total
number of expensive simulation runs required and
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improves the underlying system performance. Based
on the trust region test, if a candidate point is
accepted, the new move limits are decided based on
the trust region ratio as described in [20]. This
paper describes an algorithm that adjusts the new
trust region such that it makes maximal use of
existing data points from previously generated trust
regions, hence reducing the number of new data point
evaluations (simulation runs) required for generating
a new trust region. Thus, a data driven approach
takes advantage of the fact that expensive simulations
are run only when data points do not exist in the
cumulatively growing database.

3. Optimization Algorithm

Move limits define a “local design space” around the
current point Xk, taken as the intersection of the
trust region box

{

X | ‖X −Xk‖∞ ≤ ∆
}

with the box

[L, U ] defined by the variable bounds L ≤ X ≤ U .
The user defined bounds L and U are used to scale
each design variable between −1 and 1 replacing Xk[i]

by Xk[i]−((U [i]+L[i])/2)
(U [i]−L[i])/2 and making [L, U ] = [−1, 1].

Assume henceforth that all the design variables are
thusly scaled. A precise description of the data driven
surrogate based optimization algorithm described in
the previous section follows.

Algorithm DDSAO

Input: p (a user specified start point), minmax
(min or max selection for the optimization), ∆ (trust
region radius), l, u (local move limits), N (number of
design variables), DB (simulation database).
Output: optimum design point and objective
function value.

Initialize trust region radius ∆ to 20% of the diameter
of the entire design space;
δ := 0.1 ∗ ∆;
ǫ := 1.0E − 8;

δ̃ := 1.0E − 5;

δ̂ := 1.0E − 5;
η := 1.0E − 2;
count := 0;
k := 0;
convergence := false;
if a point within ∆ of p does not exist in DB

OR DB contains no points in [−1, 1] then

begin

run simulation at p;
insert p and corresponding objective
function value f(p) for p into DB;

end

select a point Xk from DB as a start point,
where the point lies within the design space
bounds [−1, 1] and has optimum value f(Xk);

define the local design space move limits [l, u] on
all the design variables around Xk using ∆.

while not convergence do

begin

generate DOE array A of size n for local
design space around Xk;

for i := 1 step 1 until n do

begin

if a point within ∆/n of A[i]
does not exist in DB then

begin

perform SA at A[i] to get f(A[i]);
insert A[i] and f(A[i]) into DB;

end

end

build a surrogate model f̃(X) using all DB points
within 2∆ of Xk;

call DOT to optimize f̃(X) in [l, u] yielding Xk+1;

ρ :=
f(Xk) − f(Xk+1)

f̃(Xk) − f̃(Xk+1)
;

if ρ ≤ 0 then

begin

if |f(Xk) − f(Xk+1)| ≤ ǫ then

convergence := true;
else

begin

reject Xk+1;
∆ := 0.25 ∗ ∆;
reset local move limits using ∆;

end

end

else

begin

accept Xk+1; k := k + 1;

if
|f̃(Xk)−f(Xk)|

|f(Xk)|+1 ≤ δ̃ then

for i := 1 step 1 until N do

if (Xk[i] = l[i] = −1) OR
(Xk[i] = u[i] = 1) OR
(l[i] < Xk[i] < u[i]) then

count := count + 1;

if (‖Xk−Xk−1‖∞

‖Xk−1‖∞+1 ≤ δ̂) OR

(count = N) OR

(|f̃(Xk) − f̃(Xk−1)| ≤ ǫ) then

convergence := true;
else

begin

if ρ ≤ 0.25 then

begin

∆ := ∆ ∗ 0.25;
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if ∆ ≤ η then

throw an error message and exit;
end

else if ρ > 0.75 then

∆ := ∆ ∗ 2;
end

end

for i := 1 step 1 until N do

begin

if Xk[i] is within δ of l[i] then

begin

u[i] := l[i] + δ;
l[i] := l[i] − ∆;

end

else if Xk[i] is within δ of u[i] then

begin

l[i] := u[i] − δ;
u[i] := u[i] + ∆;

end

else

begin

l[i] := (l[i] + u[i])/2 − ∆/2;
u[i] := (l[i] + u[i])/2 + ∆/2;

end

if l[i] < −1 then

l[i] := −1;
if u[i] > 1 then

u[i] := 1;
end

end

return Xk and f(Xk);

4. Experimental Results and Discussion

4.1. Design of Experiments

Design of experiments (DOE) is a statistical
based approach for systematically and efficiently
designing and analyzing experiments to determine
the relationship between different factors affecting a
process and the response of the process. A particular
setting of design variables describes a typical
experimental run, and a particular combination of
runs defines an experimental design. The choice of
the DOE methods is motivated by the six different
approximation methods used to build a surrogate
and the testbed PSE rotary dryer simulation (RDS)
used for the optimization. The RDS model simulates
drying behavior of the wood particles in a rotary
dryer as discussed in [16], [17]. The RDS optimization
has thirteen variables that define the inlet conditions
of the hot gases and wet wood particles, as well as the
physical dimensions of the drum and lifting flanges,
flow rates, and thermal loss factor for the dryer.

LHS: Size 10 FF: Size 12

CCD: Size 15

Figure 2. A 2D projection of the DOE methods
used. The FF points are {−1, 0, 1}×{−1, 1}×{−1, 1},

and the CCD points are {−1, 0, 1}3
∖

{points with

exactly one 0 coordinate}.

The model predicts the particle moisture content,
temperature, cumulative time, gas composition, and
energy consumption. The experiments here used
three of the thirteen variables (temperature of drying
gases, flow rate of inlet drying gases, and drum
rotation speed) as design variables, and cumulative
time as the objective function to be minimized. It
was observed during the exploratory analysis that the
objective function for evaluating the cumulative time
is more sensitive to the flow rate of inlet drying gases
than to the other variables. Hence the full factorial
design is formulated to cater to this specific case.
The class of central composite designs (CCD) is the
most popular class of second-order designs, hence a
face centered CCD was chosen. The KRIGING model
used to build surrogates is known to work better with
the space-filling designs, and the Latin hypercube
design being one of the favorite space-filling designs,
was chosen as the third DOE method.

Figure 2 is a two-dimensional representation of
the three DOE methods used. A full factorial (FF)
design array of sample size 12 is generated with three
levels for the design variable corresponding to the
flow rate of the drying gases and two levels for the
other two. All the possible high/low combinations of
all the three design variables form a FF design of
size 3 × 2 × 2 = 12 as shown in Figure 2. A Latin
hypercube sampling (LHS) is a space filling technique
in which the design space is divided into n non
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Figure 3. A possible convergence scenario.

overlapping intervals and one value from each interval
is then selected at random to generate an array of
n k-tuplets. A two dimensional representation of the
LHS design on a 10 × 10 grid is shown in Figure 2
where n = 10 and k = 3. The third DOE technique
implemented is the face centered central composite
design (CCD) with 8 corner points, 6 points with a
point at the center of each face and a point at the
center of the local design space. Thus a DOE array
of sample size 15 is generated as shown in Figure 2.

4.2. A typical scenario

Figure 3 gives a graphical representation of a possible
convergence scenario of the optimization algorithm
through a series of iterations. The algorithm starts
at X0 with ∆ = D = 0.2 × (diameter of the entire
design space) defining the bold outlined box (not
drawn to scale) in Figure 3. DOT is called to

optimize f̃(x) within this local trust region, and
returns a new candidate point at X1 and ρ > 0.75.
Hence X1 is accepted and as it is towards the right
boundary of the current local region, the new local
design space is defined towards the right of the
current box using ∆ = 2D. DOT returns the point
X2 and 0 < ρ ≤ 0.25. Hence the trust region radius is
reduced to ∆ = 2D/4 = D/2. As X2 is towards the
center of the boundary of the local trust region, the
new local design space is defined around X2 as shown
in Figure 3. The next candidate point is at X3, which
is towards the left, and ρ ≥ 0.75. Hence the new trust
region is defined towards the left of the current box
using ∆ = D. DOT returns a new candidate point at
X4 again towards the left of the current local trust

Table 3A
Full factorial (FF) results.

f(x) is true function value, f̃(x) is surrogate
predicted value, #f(x) is number of true function

evaluations, and #f̃(x) is number of surrogate
function evaluations.

FF f(x) f̃(x) #f(x) #f̃(x)

QSHEP3D 248.900 248.899 66 156
248.800 248.800 21 27

LSHEP 248.900 248.900 47 97
248.900 248.900 11 4
248.800 248.800 6 10

POLY1 248.900 249.713 46 41
248.800 250.398 11 12

POLY2 434.800 502.000 14 10
252.400 1230.880 97 138
248.800 247.755 37 38
248.800 247.631 3 38

KRIGING 434.800 434.800 13 10
410.000 410.000 12 15
391.500 391.500 24 51
368.300 368.300 10 10

ANN 248.900 249.474 59 67
248.800 248.120 32 54
248.800 248.178 9 35

region and with ρ > 0.75. Hence the new local design
space is defined towards the left of the current trust
region using ∆ = 2D, and truncated to be within the
feasible set. The algorithm converges at X5, which
is at the boundary of the entire design space for the
optimization problem.

4.3. Results

The optimization algorithm DDSAO discussed in
Section 3 was applied to the RDS model using
six different surrogate construction methods from
the two packages SURFPACK (POLY1, POLY2,
KRIGING, and ANN) and SHEPPACK (QSHEP3D
and LSHEP). Refer to [14], [36] for a detailed
treatment of these methods. Each of the surrogates
was constructed using three different DOEs: FF,
LHS, and CCD. The optimization problem was to
minimize the objective function f(x) (cumulative
time) using three design variables (temperature of
drying gases, flow rate of inlet gases, and drum
rotation speed), subject to the bound constraints
L ≤ X ≤ U where L = (500, 1, 5) and U = (600,
2, 6), and a start point X0 = (550, 1.5, 5.5).
The optimization was performed first by linking
the simulation code directly to the DOT optimizer,
and then using the optimization algorithm DDSAO

8



Table 3B
Latin hypercube sampling (LHS) results,

in the same format as Table 3A.

LHS f(x) f̃(x) #f(x) #f̃(x)

QSHEP3D 259.300 257.336 35 85
259.100 259.096 43 66
259.100 259.100 12 58

LSHEP 248.900 248.900 64 97
248.900 248.900 10 4

POLY1 248.900 253.449 32 30
248.900 253.050 10 4

POLY2 259.300 257.395 54 110
259.100 259.083 33 63
259.100 259.089 3 77

KRIGING 344.500 332.746 43 136
279.400 277.377 11 24
277.800 277.785 11 24
276.300 276.174 11 21
274.800 274.791 22 53
268.300 265.700 22 41
260.000 260.000 11 11

ANN 259.100 259.100 87 180
259.100 259.092 37 49
259.100 259.974 2 48

of Section 3. In both cases, all the control
parameters to DOT were set to their default values
except for the relative finite difference step (FDCH).
While performing the optimization by having DOT
directly call the simulation code, the finite difference
step (FDCH) was set to 0.02. While using the
optimization algorithm DDSAO, FDCH was set to its
default value of 0.001 for all approximation methods
except QSHEP3D using the FF design and LSHEP
using the CCD for which it was set to 0.02. FDCH
is the finite difference step size as a fraction of
the design variable being perturbed and is used for
internal gradient calculations by DOT. The values set
for FDCH for the experiments here seem to exhibit
reasonable results. While using the optimization
algorithm DDSAO, all the constants initialized in the
algorithm are set to their default values except for
the trust region radius ∆, which was changed to 10%
of the diameter of the entire design space for the FF
and CCD designs.

When directly coupled with the simulation code,
DOT returned the point (550.413, 2, 6), the objective
function value f(x) = 259.3, and required 22
simulation runs (#f(x)). The same experiment was
performed using the optimization algorithm DDSAO
for comparison with the aforementioned results.
Executing the optimization algorithm DDSAO once

Table 3C
Central composite design (CCD) results,

in the same format as Table 3A.

CCD f(x) f̃(x) #f(x) #f̃(x)

QSHEP3D 259.200 261.381 82 127
259.200 255.654 16 32
259.100 259.100 38 58
259.100 259.100 2 64

LSHEP 248.900 247.069 61 142
248.900 248.900 25 29
248.800 248.800 9 11

POLY1 248.900 249.753 57 41
248.800 250.211 49 34
248.800 250.167 9 24

POLY2 248.900 247.371 58 54
248.900 247.772 14 4
248.800 248.669 25 34
248.800 248.669 1 34

KRIGING 434.800 434.800 16 14
410.000 410.000 14 15
391.500 391.500 12 10
368.300 −2960.420 13 26

ANN 248.900 250.378 73 86
248.900 249.308 10 4

defines a single run. A very first run of the algorithm

was carried out with no data in the simulation

database. Multiple runs of the algorithm were carried

out using the gradually growing simulation database

in order to observe the change in the total number of

simulation runs required.

Tables 3A, 3B, and 3C report the experimental

results for the optimization algorithm DDSAO using

the six surrogate types constructed from the FF,

LHS, and CCD designs. Each row in these tables

corresponds to a single run of the optimization

algorithm DDSAO, and records the true function

value f(x), the surrogate predicted value f̃(x), the

number of true function evaluations #f(x), and

the number of surrogate function evaluations #f̃(x).

Subsequent rows for an approximation method

correspond to subsequent runs of the optimization

algorithm DDSAO using a cumulatively growing

simulation database. The cost of the optimization

is measured by the total number of true function

evaluations (#f(x)) needed, and the approximation

quality of a surrogate is measured by |f(x) − f̃(x)|.

The surrogate types and the DOEs used are compared

in terms of both the approximation accuracy and the

optimization cost.
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4.4. Discussion

A generally observed trend is that the very first run of
the optimization algorithm DDSAO is more expensive
than having DOT directly call the simulation code.
However, the results also show that the optimization
algorithm DDSAO returned a better point for a large
subset of runs. When directly coupled with the
simulation code, DOT returned the point (550.413,
2, 6), and the objective function value f(x) = 259.3.
The optimization algorithm DDSAO returned a point
near the boundary of the entire design space with
the objective function value of approximately 248
for more than 50% of the runs. This behavior is
observed due to the iterative sampling nature of the
SAO framework that allows the DDSAO algorithm
to explore more of the design space than DOT.
Consequently, DDSAO does more work but also finds
a better point. Another interesting result is the
significant reduction in the number of true function
evaluations (simulations) for the subsequent runs
with a cumulatively growing simulation database. A
gradually maturing database increases the probability
of finding a nearby data point, thereby reducing the
number of expensive simulation runs. Whenever
a simulation is executed, the results are stored in
the database and all the subsequent runs use the
previously stored simulation data. Over time, the
database matures and is enriched as more and more
optimizations are performed, further reducing the
optimization cost.

LSHEP from SHEPPACK appears to be closely
imitating the true function behavior and is the best
choice overall. LSHEP outperforms all the other
surrogate types in terms of approximation accuracy
and optimization cost. It works equally well with all
the DOEs in terms of the approximation accuracy
and works best with the FF design in terms of the
optimization cost.

Among the other surrogates, QSHEP3D from
SHEPPACK appears to be quite competitive when
constructed using the FF design. In general,
QSHEP3D from SHEPPACK, and POLY1, POLY2,
and ANN from SURFPACK work well with some of
the DOEs and not so good with others. The response
predictions obtained by using QSHEP3D, POLY2,
and ANN with the LHS design, and QSHEP3D
with the CCD design are as good as the response
prediction obtained by having DOT directly call the
simulation code.

It is well known that a polynomial surface fit
may be a poor choice for modeling data trends over
an entire parameter space, unless the true data
trends are polynomial. The response predictions

using POLY1 and POLY2 with all three experimental
designs confirm this conclusion where the surrogates
fail to adequately mimic the true function behavior,
resulting in a poor approximation for a large subset
of runs. Results show that the approximation quality
is awful for the first two runs for POLY2 using the
FF design. One is reminded of the fact that with an
interpolating polynomial, uniform convergence is not
even guaranteed for infinitely differentiable functions
(recall Runge’s classical example of the divergence
of interpolating polynomials as the number of data
points increases). Also, for a second-order polynomial
a two-level FF design may not be an appropriate
choice. For a second-order polynomial fit there must
be at least 1 + 2k + k(k − 1)/2 distinct design points,
where k is the number of design variables. For
subsequent runs, POLY2 appears to work well as
the simulation database matures providing enough
design points for deriving reasonable second-order
polynomial coefficients.

Results show that the surrogate predicted
responses for KRIGING are unpredictable in general,
and are worse when the surrogate is constructed
with the FF and CCD designs. However, differences
between the predictions and the true function
behavior for KRIGING may be predominantly caused
by the experimental design that is used. One of the
designs more commonly used with KRIGING is Latin
hypercube sampling (LHS). The results reported in
Table 3B confirm these findings and show that the
KRIGING method works better with a space filling
experimental design like LHS. However, results from
Table 3 also show that the predicted response using
KRIGING always turned out to be a local optimum,
irrespective of the sampling approach used. In
general, KRIGING (without tuning) does not seem
to be competitive at all.

An abnormal behavior is observed for some of the
runs where the DDSAO algorithm returns a point
away from the previously found optimum (see all but
the first run for POLY1 with all three DOEs, POLY2
with the LHS design, and ANN with the LHS and
CCD designs). This behavior is not attributed to
the surrogate type or the DOE method used, but
rather is a peculiarity of the DDSAO algorithm. For
each new run (except for the first run), the DDSAO
algorithm starts at the previous run’s optimal point,
and defines an experimental design around that
point. This experimental design may or may not
be the same as the previous run’s last experimental
design, and hence, DOT might return a different
candidate point. Reducing the trust region radius for
the second run onwards might prevent this behavior,
but this would negate the more global search nature
of DDSAO.
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Figure 4. Convergence profiles (objective
function value f(x) vs. cost #f(x)) for LSHEP
(diamond), POLY2 (star), and KRIGING (box) using
FF design. The profiles for QSHEP3D, POLY1, and
ANN (not shown) are similar to that for LSHEP.

4.5. Convergence histories

Convergence histories for the DDSAO algorithm for
six different surrogates using the three DOEs are
shown in Figures 4, 5, and 6, where the true function
value f(x) is plotted against the optimization cost
#f(x). Each curve exhibits the progress of a single
run of the DDSAO algorithm through a series of SAO
iterations till convergence, and the x-y coordinates
for each intermediate point (shown as a geometric
symbol—diamond, star, box, or circle) indicate the
number of simulations and the true function value
at the end of the corresponding SAO iteration.
Convergence histories reveal some useful information
about the performance of the DDSAO algorithm
during the optimization process in terms of the
number of SAO iterations required and the rate of
convergence for a particular approximation method
(e.g., POLY1 in Figure 5 converges rapidly to the
true optimum in four SAO iterations).

It can be observed from all three plots
that KRIGING is worse than all other surrogate
construction methods, and among the three DOEs
it works better with LHS. The convergence profiles
for QSHEP3D, POLY1, and ANN in Figure 4, and
POLY1, POLY2, and ANN in Figure 6 are similar to
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Figure 5. Convergence profiles (objective
function value f(x) vs. cost #f(x)) for LSHEP
(diamond), POLY1 (star), POLY2 (Box), and
KRIGING (triangle) using LHS design. The profiles
for QSHEP3D, and ANN (not shown) are similar to
that for POLY2.

those for LSHEP in the respective plots, however, a
closer examination of the Tables 3A and 3C shows
that the approximation accuracy for some of these
methods is considerably worse than that for LSHEP.

4.6. Other issues

The computer based simulation models are
deterministic in nature where the response values
are not random variables but are determined by the
underlying mathematical models. The RDS model
under consideration here is one such deterministic
model. An important issue in the analysis of
data from a deterministic computer experiment as
discussed in [18] is that many of the usual statistical
techniques cannot be directly applied because of the
lack of a random error component. It is observed that
the full factorial (FF) design is a more appropriate
choice of DOE for LSHEP, QSHEP3D, POLY1,
and ANN; the Latin hypercube sampling (LHS) for
KRIGING, and the central composite design (CCD)
for POLY2. Even though these DOEs appear to
be compatible with the approximation methodologies
discussed, there are many classes of experimental
designs (orthogonal arrays, Box-Behnken design,
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Figure 6. Convergence profiles (objective
function value f(x) vs. cost #f(x)) for LSHEP
(star), QSHEP3D (diamond), and KRIGING (box)
using CCD. The profiles for POLY1, POLY2, and
ANN (not shown) are similar to that for LSHEP.

Koshal design, small composite design, etc.) in the
literature that are worth trying. A more sophisticated
choice of the experimental design may provide more
insight. Orthogonal arrays are widely used for
data sampling in many large multidisciplinary design
optimization (MDO) problems and might be useful
for the implementation of the proposed approach
for more complex models in WBCSim. Another
sampling approach known as optimization based
sampling has proved to be more efficient in driving
the optimization in a SAO framework [24].

Numerous sophisticated techniques are available
to build response surface approximations such as
radial basis functions (RBF), smoothing splines, etc.,
that are worth trying. The RDS model that has been
used as a testbed is one of the simplest models in
WBCSim, and although the proposed methodology
appears to be competitive for the chosen model, one
must extend the current study to different MDO
problems having large dimensionality and complexity,
e.g., the hot pressing model in WBCSim, in order to
conclude much more.

There is a limitation to the optimization algorithm
DDSAO. In general, a true optimum value cannot be
guaranteed when the algorithm converges. Methods

like defining a final trust region around the last
candidate point to verify the true optimality do not
work without mathematical assumptions about the
objective function and its gradient.

5. Conclusions

A data driven, surrogate based optimization
algorithm DDSAO was applied to the simulation
code of the RDS model in WBCSim. Although
a RDS simulation is relatively cheap (545 ms),
the DDSAO methodology extends to very expensive
simulation models (e.g., the two hour HC simulation
in WBCSim), where exploiting an existing database
of previous analyses can be imperative. Six different
approximation algorithms from the two packages
SURFPACK and SHEPPACK were used to build a
surrogate using three DOEs: full factorial (FF), Latin
hypercube sampling (LHS), and central composite
design (CCD). Results show that the response
surface approximations constructed using design of
experiments can be effectively managed by a SAO
framework based on a trust region strategy. A
generally observed trend is that the very first run of
the optimization algorithm DDSAO is more expensive
than having DOT directly call the simulation code.
However, results also show that the optimization
algorithm DDSAO returned a better point for a large
subset of runs. This behavior derives from the
iterative sampling nature of the SAO framework that
allows the DDSAO algorithm to explore more of the
design space than DOT. Consequently, DDSAO does
more work but also finds a better point. Another
interesting result is the significant reduction in the
number of simulations (exact function evaluations)
for the subsequent runs with a cumulatively growing
simulation database. Whenever a simulation is
executed, the results are stored in the database and
all the subsequent runs use the previously stored
simulation data. Over time, the database matures
and is enriched as more and more optimizations are
performed, further reducing the optimization cost.

Of the six approximation types used to build a
surrogate, LSHEP from SHEPPACK appears to be
the best choice in terms of approximation accuracy
and optimization cost. It is observed that the full
factorial (FF) design is a more appropriate choice
of DOE for LSHEP, QSHEP3D, POLY1, and ANN;
the Latin hypercube sampling (LHS) for KRIGING,
and the central composite design (CCD) for POLY2.
Although the proposed methodology appears to be
competitive for the chosen RDS model, one must
extend the current study to different MDO problems
having large dimensionality and complexity, e.g., the
hot pressing model in WBCSim, in order to conclude
much more.
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[25] Rodŕıguez, J. F.; Renaud, J. E.; Watson, L. T. (1998),
“Trust region augmented Lagrangian methods for se-
quential response surface approximation and optimiza-
tion,” Journal of Mechanical Design, 120, 58–66.

[26] Resnik, J.; Kamke, F. A. (1998), “Modeling the cure
of adhesive-wood bonds using high frequency energy,”

13



Final Report,U.S.-Slovene Joint Board on Scientific and

Technological Cooperation, Project 95-AES10: Ljubljana
Slovenia: University of Ljubljana.
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