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ABSTRACT
Two families of methods are widely used in data assimilation: the four dimensional

variational (4D-Var) approach, and the ensemble Kalman filter (EnKF) approach. The
two families have been developed largely through parallel research efforts, and each
method has its advantages and disadvantages. It is of interest to combine the two ap-
proaches and develop hybrid data assimilation algorithms. This paper investigates the
theoretical equivalence between the suboptimal 4D-Var method (where only a small
number of optimization iterations are performed) and the practical EnKF method
(where only a small number of ensemble members are used) in a linear Gaussian
setting. The analysis motivates a new hybrid algorithm: the optimization directions
obtained from a short window 4D-Var run are used to construct the EnKF initial
ensemble. Numerical results show that the proposed hybrid ensemble filter method
performs better than the regular EnKF method for both linear and nonlinear test
problems.
Keywords: Data assimilation, variational methods, ensemble filters, hybrid methods.

1 Introduction

Data assimilation (DA) is a procedure to combine im-
perfect model predictions with imperfect observations in or-
der to produce coherent estimates of the evolving state of
the system, and to improve the ability of models to repre-
sent reality. DA is accomplished through inverse analysis by
estimating initial, boundary conditions, and model param-
eters. It has become an essential tool for weather forecasts,
climate studies, and environmental analyses.

Two data assimilation methodologies are currently
widely used: variational and ensemble filters (Bennett, 2002;
Daley, 1991; Evensen, 2007; Kalnay, 2003; Lewis et al.,
2005; Rodgers, 2000). While both methodologies are rooted
in statistical estimation theory, their theoretical develop-
ments and practical implementations have distinct histo-
ries. The four dimensional variational (4D-Var) methodol-
ogy has been used extensively in operational weather pre-
diction centers. In traditional (strong-constrained) 4D-Var
a perfect model is assumed; the analysis provides the sin-
gle trajectory that best fits the background state and all
the observations in the assimilation window (Talagrand and
Courtier, 1987). The 4D-Var requires the solution of a nu-
merical optimization problem, with gradients provided by an
adjoint model; the necessity of maintaining an adjoint model
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is the main disadvantage of 4D-Var. The ensemble Kalman
filter (EnKF) is based on Kalman’s seminal work (Kalman,
1960) but uses a Monte Carlo approach to propagate error
covariances through the model dynamics. The EnKF correc-
tions are computed in a low dimensional subspace (spanned
by the ensemble) and therefore the EnKF analyses are in-
herently suboptimal. Nevertheless, EnKF performs well in
many practical situations Anderson (2003), is easy to im-
plement, and naturally provides estimates of the analysis
covariances.

It is known that the fully resolved variational method
and the optimal Kalman filter technique compute the same
estimate of the posterior mean for linear systems, linear
observation operators, and Gaussian uncertainty (Li and
Navon, 2001). For very long assimilation windows the 4D-
Var analysis at the end of the window is similar to the
one produced by running a Kalman filter indefinitely Fisher
et al. (2005). In the presence of model errors the weak-
constrained 4D-Var and the fixed-interval Kalman smoother
are equivalent (Ménard and Daley, 1996). With both meth-
ods coming to maturity, new interest in the community has
been devoted to assess the relative merits of 4D-Var and
EnKF(Kalnay, 2007; Lorenc, 2003). The better understand-
ing of the strengths of each method has opened the pos-
sibility to combine them and build hybrid data assimila-
tion methods; relevant work can be found in Bewley et al.
(2009); Evensen and van Leeuwen (2000); Hamill and Sny-
der (2000); Harlim and Hunt (2004); Hunt et al. (2007); Liu
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at al. (2008); Tian et al. (2008); Torn and Hakim (2008);
Wang et al. (2007); Zhang et al. (2007); Zupanski (2005).

Little attention has been devoted to analyzing the prac-
tical situation where only a small number of optimization it-
erations is performed in 4D-Var, and only a small ensemble
is used in EnKF. In this paper we study the relationship
between the suboptimal 4D-Var and the practical EnKF
methods in a linear Gaussian setting. The close relationship
between 4D-Var and EnKF opens the possibility of combin-
ing these two approaches, and motivates a new hybrid data
assimilation algorithm.

To be specific, consider a forward model that propagates
the initial model state x(t0) ∈ Rn to a future state x(t) ∈Rn.

x(t) = Mt0→t (x(t0)) , t0 6 t 6 tF. (1)

The model solution operator M represents, for example, a
discrete approximation of the partial differential equations
that govern the atmospheric or oceanic processes. Realistic
atmospheric and ocean models typically have n ∼ 107 − 109

variables. Perturbations (small errors δx) may be simulta-
neously evolved according to the tangent linear model:

δx(t) = Mt0→t (δx(t0)) , t0 6 t 6 tF. (2)

We consider the case where the initial model state is
uncertain and a better state estimate is sought for. The
model (1) simulation from t0 to tn is initialized with a back-
ground (prior estimate) xB

0 of the true atmospheric state xt
0.

The background errors (uncertainties) are assumed to have
a normal distribution (xB

0 −xt
0) ∈ N (0,B). The background

represents the best estimate of the true state prior to any
measurement being available.

Observations of the state yk = Hk(xk)+εk are available
at each time instant tk, k = 0, . . . , Nobs − 1. These obser-
vations are corrupted by measurement and representative
errors, which are assumed to have a normal distribution,
εk ∈ N (0,Rk). Data assimilation combines the background
estimate xB

0 , the measurements y0, · · · ,yNobs−1, and the
model M to obtain an improved estimate xA

0 of the true
initial state xt

0. This improved estimate is called the “anal-
ysis” (or posterior estimate of the) state.

The four dimensional variational (4D-Var) technique is
derived from variational calculus and control theory (?). It
provides the analysis xA

0 as the argument which minimizes
the cost function:

J (x0) =
1

2
(x0 − x

B
0 )T B−1 (x0 − x

B
0 ) (3)

+
1

2

Nobs−1X

k=0

(Hk(xk) − yk)T R−1
k (Hk(xk) − yk)

s.t. xk = Mt0→tk
(x0) .

Typically, a gradient-based optimization procedure is used
to solve the constrained optimization problem (3) with gra-
dients obtained by adjoint modeling.

In the incremental formulation of 4D-Var (Bennett,
2002; Lewis et al., 2005), one linearizes the estimation prob-
lem around the background trajectory. By expressing the

state as xk = xB
k + δxk, k = 0, · · · , Nobs − 1, we have

J ′(δx0) =
1

2
δx0

T B−1 δx0 (4)

+
1

2

NobsX

k=0

“
Hkδxk − dB

k

”T R−1
k

“
Hkδxk − dB

k

”
,

dB
k = Hk

“
x

B
k

”
− yk ,

where δxk = Mt0→tk
(x0), and Hk is the linearized obser-

vational operator around xB
k at time tk. The incremental

4D-Var problem (4) uses linearized operators and leads to
a quadratic cost function J ′. The incremental 4D-Var es-
timate is xA

0 = xB
0 + δxA

0 . A new linearization can be per-
formed about this estimate and the incremental problem (4)
can be solved again to improve the resulting analysis.

Ensemble filters are based on the Kalman Filter
(Kalman, 1960) theory, which gives an optimal estimate of
the true state under the assumption that probability densi-
ties of all errors are Gaussian, and the model dynamics and
observation operators are all linear. The extended Kalman
filter (Fisher, 2002) provides a suboptimal state estimation
in the nonlinear case by linearizing the model dynamics and
the observation operator.

If the errors in the model state at tk−1 have a normal
distribution N (0, P A

k−1) and propagate according to the lin-
earized model dynamics, then the forecast errors at tk are
also normally distributed N (0, P f

k ). The forecast is obtained
using

x
f
k = Mtk−1→tk

“
x

A
k−1

”
, (5)

P f
k = Mtk−1→tk

P A
k−1 M

T
tk−1→tk

+ Qk ,

where MT is the adjoint of the tangent linear model, and
Qk is the covariance matrix of model errors. The analysis
provides the state estimate xA

k and the corresponding error
covariance matrix P A

k

x
A
k = x

f
k + Kk

`
yk −Hk(xf

k)
´

,

P A
k = P f

k − Kk Hk P f
k , (6)

Kk = P f
k HT

i

`
Hk P f

k HT
k +Rk

´
−1

,

where Kk is the Kalman gain matrix.
The extended Kalman filter is not practical for large sys-

tems because of the prohibitive computational cost needed
to invert large matrices and to propagate the covariance
matrix in time. Approximations are needed to make the
EKF computationally feasible. The (“perturbed observa-
tions” version of the) ensemble Kalman filter (Fisher, 2002)
uses a Monte-Carlo approach to propagate covariances. An
ensemble of Nens states (labeled e = 1, · · · , Nens) is used to
sample the probability distribution of the background error.
Each member of the ensemble (with state xA

k−1(e) at tk−1)
is propagated to tk using the nonlinear model (1) to obtain
the “forecast” ensemble x

f
k(e). Gaussian noise ηi ∈ N (0, Qk)

is added to the forecast to account for the effect of model
errors. Each member of the forecast is analyzed separately
using the state equation in (6). The forecast and the analysis
error covariances (P f

k and P A
k ) are estimated from the sta-

tistical samples ({xf
k(e)}e=1,··· ,Nens

and {xA
k (e)}e=1,··· ,Nens

respectively). The EnKF approach to data assimilation has
attracted considerable attention in meteorology (Anderson,
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2003; Burgers et al., 1998) due to its many attractive fea-
tures.

It has been established that the 4D-Var and the EnKF
techniques are equivalent for linear systems with Gaussian
uncertainty (Li and Navon, 2001), provided that the 4D-Var

solution is computed exactly and an infinitely large number

of ensemble members is used in EnKF. By equivalent we
mean that the two approaches provide the same estimates
of the posterior mean. In practice, the dynamical systems of
interest for data assimilation are very large – for example,
typical models of the atmosphere have n ∼ 107 − 109 vari-
ables. As a consequence, the numerical optimization prob-
lem in 4D-Var (3) can only be solved approximately, by an
iterative procedure stopped after a relatively small number
of iterations. Similarly, in an ensemble based approach, the
number of ensemble members is typically much smaller than
the state space dimension and the sampling is inherently
suboptimal. In this work we seek to better understand the
relationship between the suboptimal 4D-Var solution and the
suboptimal EnKF solution. This analysis motivates a new
hybrid filter algorithm for data assimilation.

The paper is organized as follows. Section 2 performs a
theoretical analysis that reveals subtle similarities between
the suboptimal 4D-Var and EnKF solutions in the linear
Gaussian case, and for one observation time. This analysis
motivates a new hybrid filter algorithm for data assimila-
tion, which is discussed in Section 3. Numerical experiments
presented in Section 4 reveal that the proposed algorithm
performs better than the traditional EnKF for both linear
and nonlinear problems.

2 Comparison of Suboptimal 4D-Var and EnKF

Solutions in the Linear, Gaussian Case with a

Single Observation Time

Consider a linear system that advances the state from
t0 to tF ,

xF = M · x0 .

We assume M to be an invertible matrix (i.e., the system is
time-reversible) so that we can uniquely map any solution
at tF to the corresponding solution at t0, xF = M−1 · x0.

We assume the initial state uncertain, and the prior
distribution of uncertainty is Gaussian, xt

0 ∈ N
`
xB

0 ,B0

´
.

Consequently, the uncertainty in the background state at
the final time tF is also Gaussian. The mean background
state and the background covariance at final time are

x
B
F = M · xB

0 , BF = M ·B0 · MT .

A single set of noisy measurements are taken at tF

yF = H · xF + εF , εF ∈ N (0,RF ) .

We consider the assimilation window [t0, tF ]. Under the
above assumptions, the posterior distribution of the true
state is Gaussian, with mean xA and posterior covariance
matrix A

x
t
0 ∈ N

“
x

A
0 ,A0

”
, x

t
F ∈ N

“
x

A
F ,AF

”
.

We use both 4D-Var and EnKF methods to estimate the
posterior initial condition xA

0 . Each method is applied in a
suboptimal formulation: only a small number of iterations is

used to obtain the 4D-Var solution, and only a small number
of ensemble members is used in EnKF.

We first state the main result of this section; the de-
tailed analysis and the proof follow.

Theorem 1. Under the assumption that the model is linear
and the errors are Gaussian, with observations at only one
time, the state estimate computed by the suboptimal 4D-Var
method is equivalent to that obtained by the EnKF method
with a small number of ensemble members.

2.1 Full 4D-Var Solution

The 4D-Var analysis is obtained as the minimizer of the
function:

J(x0) =
1

2

“
x0 − x

B
0

”T B−1
0

“
x0 − x

B
0

”

+
1

2
(HMx0 − yF )T R−1

F (HMx0 − yF ) .

The first order necessary condition ∇J = 0 reveals that
the optimum increment is obtained by solving the following
linear system:

A · ∆x0 = b

A =
“B−1

0 + M
T HTR−1

F HM
”

(7)

b = M
T HTR−1

F

“
yF − HMx

B
0

”

where the solution is the deviation of the analysis from the
background state

∆x0 = x0 − x
B
0 .

The system matrix A in (7) is the inverse of the posterior
covariance at t0 (Gejadze et al., 2008), A = A−1

0 . The right
hand side vector b in (7) is the increment corresponding to
the background state dF = y−HMxB

0 scaled by the inverse
covariance and “pulled back” to t0 via the adjoint model

b = M
T HTR−1

F dF .

Since M is invertible, the 4D-Var system (7) can be
formulated in terms of the solution at tF using the relationB−1

0 = MTB−1
F M

“B−1
F + HTR−1

F H
”
· ∆xF = HTR−1

F

“
yF − Hx

B
F

”
(8)

∆xF = xF − x
B
F .

2.2 Iterative 4D-Var Solution by the Lanczos Method

In practice (7) is not solved exactly, but is solved in an
approximate sense by using an iterative method and per-
forming a number of iterations that is much smaller than
the size of the state space n. We are interested in the prop-
erties of this suboptimal algorithm. In the nonlinear case a
relatively small number of iterations are performed with a
numerical optimization algorithm.

Assume that the Lanczos algorithm (Saad, 2003) is em-
ployed to solve the symmetric linear system (7). Specifically,
K Lanczos iterations are performed from the starting point
x

[0]
0 = xB

0 , i.e., ∆x
[0]
0 = 0. Consequently, the first residual is

r[0] = b.
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The Lanczos method computes a symmetric tridiagonal
matrix TK ∈ RK×K and a second matrix

VK =
ˆ
v1, · · · , vK

˜
∈ Rn×K

whose columns form an orthonormal basis of the Krylov
space

KK(A, r[0]) =
n

r[0], Ar[0], A2r[0], · · · , AK−1r[0]
o

.

The matrices have the following properties (Saad, 2003)

V T
K VK = I , V T

K AVK = TK .

The approximate solution of the system (7) after K itera-
tions is the exact solution of the system reduced over the
Krylov subspace KK ,

V T
K A VK · θ = TK · θ = V T

K b , ∆x
[K] = VK θ . (9)

The convergence of the Lanczos iterations can be im-
proved via preconditioning. The background covariance is
available and offers a popular preconditioner. Assume that
a Cholesky or matrix square root decomposition of B0 is
available: B0 = B1/2

0 ·BT/2
0 .

Applying the background covariance square root as a sym-
metric preconditioner to the system (7) leads to:BT/2

0 AB1/2
0 · ∆u = BT/2

0 b , ∆x = B1/2
0 ∆u

The preconditioned 4D-Var system reads:
“
I +BT/2

0 M
T HTR−1

F HMB1/2
0

”
· ∆u = (10)BT/2

0 M
T HTR−1

F

“
yF − HMx

B
0

”

The application of Lanczos iterations to the preconditioned
system (10) leads to a new Krylov space (for the new matrix

and right hand side vector) and a new orthonormal basis eVK .
The approximate solution (9) obtained after K iterations
reads:
“
I + eV T

K BT/2
0 M

T HTR−1
F HMB1/2

0
eVK

”
· eθK (11)

= eV T
K BT/2

0 M
T HTR−1

F

“
yF − HMx

B
0

”

∆u = eVK
eθK , ∆x0 = B1/2

0
eVK

eθK .

An explicit form of the solution (11) can be obtained
using the Sherman-Morrison-Woodbury formula (Sherman
and Morrison, 1950; Mandel, 2007)

“
W + UV T

”
−1

= W−1−W−1U
“
I + V T W−1U

”
−1

V T W−1

with W = I and

U = V = eV T
K BT/2

0 M
T HTR−1/2

F R−1/2
F HMB1/2

0
eVK .

Together with the notation

eB1/2
0 = B1/2

0
eVK ,

eB0 = B1/2
0

eVK
eV T

K BT/2
0 ,

eB1/2
F = MB̃1/2

0 = MB1/2
0

eVK ,

eBF = MB1/2
0

eVK
eV T

K BT/2
0 M

T ,

the Sherman-Morrison-Woodbury formula leads to the fol-
lowing solution of (11)

eθK =
“
I − eBT/2

F HT
“RF + H eBF HT

”
−1

H eB1/2
F

”

·eBT/2
F HTR−1

F

“
y − Hx

B
F

”

∆xF = MB1/2
0

eVK
eθK = eB1/2

F
eθK

= eB1/2
F

“
I − eBT/2

F HT
“RF + H eBF HT

”
−1

H eB1/2
F

”

·eBT/2
F HTR−1

F

“
yF − Hx

B
F

”

=
“

eBF − eBF HT
“RF + H eBF HT

”
−1

H eBF

”

·HTR−1
F

“
yF − Hx

B
F

”

= eBF HT
“RF + H eBF HT

”
−1 “

yF − Hx
B
F

”
.

The above relation gives the 4D-Var update formula at tF :

x
A
F = x

B
F + eBF HT

“RF + H eBF HT
”
−1 “

yF − Hx
B
F

”
.

(12)
A comparison between (12) and (6) reveals that the 4D-

Var update (12) is equivalent to a suboptimal Kalman filter
update with

KF = eBF HT
“RF + H eBF HT

”
−1

.

Consequently the analysis covariance associated with the
4D-Var estimate is:

eAF = eBF − eBF HT
“RF + H eBF HT

”
−1

H eBF

= eBF − eBF HT R−1/2
F

“
I +R−1/2

F H eBF HT R−1/2
F

”
−1R−1/2

F H eBF

=
“

eB−1
F + HT R−1

F H
”
−1

,

where the last relation follows from another application of
the Sherman-Morrison-Woodbury formula.

2.3 EnKF Solution with Small Ensemble

Consider now a standard formulation of the EnKF with
K ensemble members. Let 〈x〉 denote the ensemble mean
and δx(i) = x(i)−〈x〉 , i = 1, · · · , K, denote the deviations
from the mean. The initial set of K ensemble perturbations
are drawn from the normal distribution N (0,B0). Equiva-
lently, they are obtained via a variable transformation from
the standard normal vectors ξi as follows:

δx0(i) = B1/2
0 ξi , ξi ∈

`
N (0, 1)

´n
, i = 1, · · · , K . (13)

The ensemble covariance is

bB0 =
1

K − 1

KX

i=1

δx0(i) δx0(i)
T ≈ B0 .

The perturbations are propagated to the final time via the
tangent linear model (this holds true for perturbations of
any magnitude for the linear model dynamics assumed here)

δxF (i) = M · δx0(i) , i = 1, · · · , K .
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Denote the scaled initial perturbations by

X0 =
1√

K − 1

h
δx0(1), · · · , δx0(K)

i
(14)

= B1/2
0

h ξ1√
K − 1

, · · · ,
ξK√
K − 1

i
,

we have that

bB0 = X0 · XT
0 ,

and

XF = M · X0 , bBF = XF · XT
F .

The EnKF analysis updates each member using the formula:

x
A
F (i) = x

B
F (i) + bBF HT

“
H bBF HT +R”

·
“
yF (i) − Hx

B
F (i)

”
, i = 1, · · · , K .

The ensemble mean values are updated using

〈xA
F 〉 = 〈xB

F 〉 + bBF HT
“
H bBF HT +R”

−1 “
yF − H〈xB

F 〉
”

.

(15)

2.4 Comparison of 4D-Var and EnKF Solutions

2.4.1 4D-Var Solution as a Kalman Update A compari-
son of (12) and (15) reveals an interesting conclusion. The
suboptimal 4D-Var (in the linear case, with one observation
time) leads to a Kalman-like update of the state at the final
time. The difference between the 4D-Var update (12) and
the EnKF mean update (15) is in the approximation given
to the background covariance matrices.

In the ensemble Kalman filter case:

bB1/2
F = MB1/2

0

h ξ1√
K − 1

, · · · ,
ξK√
K − 1

i

= MB1/2
0

h
bv1, · · · , bvK

i
,

while in the 4D-Var case

eB1/2
F = MB1/2

0

h
ev1, · · · , evK

i
.

The standard EnKF initialization (13) is based on the ran-
dom vectors ξi sampled from a normal distribution. Instead
of the random vectors one can use the following initial per-
turbations:

ξi ∈
`
N (0, 1)

´n −→
replaced by

ξi =
√

K − 1 · evi ,

i = 1, · · · , K , (16)

where evi are the orthonormal directions computed by the
Lanczos algorithm applied to the preconditioned system
(11). With this initialization the EnKF analysis for the mean
(15) is precisely the 4D-Var solution (12).

Note that while the initial perturbations in the regu-
lar EnKF have zero mean, the perturbations (16) along the
Lanczos directions have nonzero mean. Thus formula (16)
constructs a biased initial ensemble, which performs an ad-
justment of the initial state before the filtering occurs.

2.4.2 EnKF as an Optimization Algorithm EnKF looks
for an increment in the space of ensemble deviations

〈xA
F 〉 = 〈xB

F 〉 + XF · µ,

where the vector of coefficients µ is obtained as the mini-
mizer of the function (Ott et al., 2004):

Jens(µ) =
1

2
µT µ +

1

2

“
dB

F − HXF µ
”T R−1

F

“
dB

F − HXF µ
”

(17)
with

dB
F = yF − H〈xB

F 〉 .

The solution is obtained by solving the linear system

∇µJens(µ) = 0

which is equivalent to

“
I + X

T
F HTR−1

F HXF

”
· µ = X

T
F HTR−1

F dB
F . (18)

Using the Serman-Woodbury-Morrison formula to “invert”
the system matrix in (18) leads to the following closed form
solution:

µ = X
T
F HT

“RF + HXFX
T
F HT

”
−1

· dB
F (19)

〈xA
F 〉 = 〈xB

F 〉 + XF · µ

= 〈xB
F 〉 + XFX

T
F HT

“RF + HXFX
T
F HT

”
−1

· dB
F

= 〈xB
F 〉 + bBF HT

“RF + H bBF HT
”
−1

·
“
yF − H〈xB

F 〉
”

.

This confirms that the EnKF analysis formula provides the
minimizer for (17).

Let XF = MB1/2
0

bV , where bV = (K − 1)−1/2 ξ and ξ ∈Rn×K is a matrix of N (0, 1) independent random numbers.
Then the system (18) becomes:

“
I + bV TBT/2

0 M
T HTR−1

F HMB1/2
0

bV
”
· µ

= bV TBT/2
0 M

T HTR−1
F dB

F (20)

∆〈xF 〉 = 〈xA
F 〉 − 〈xB

F 〉 = XF · µ = MB1/2
0

bV · µ
∆〈x0〉 = 〈xA

0 〉 − 〈xB
0 〉 = X0 · µ = B1/2

0
bV · µ

A comparison of the EnKF system (20) with the 4D-
Var system solved by K Lanczos iterations (11) reveals
that the two formulas are nearly identical. In the subop-
timal 4D-Var approach the full preconditioned 4D-Var sys-
tem (10) is reduced by the orthonormal matrix eVK ∈ Rn×K

(whose columns are the Lanczos vectors). When the pre-
conditioned 4D-Var system (10) is partially reduced by the
matrix of independent normal random numbers ξ ∈ Rn×K ,
the result is the system (20) that provides the EnKF anal-
ysis. By partially reduced we mean that the reduction is
applied only to the second matrix in the parenthesis, and
that the identity is taken with the appropriate dimensions.
Note that the full reduction leads to the first term equal to
bV T bV ≈ (n− 1)/(K − 1) I ; this term approximately equals a
scaled identity matrix, with a scale factor much larger than
one in practice.

Loosely speaking, an important difference between 4D-
Var and EnKF is the choice of subspace where the full sys-
tem is reduced. In 4D-Var the subspace is carefully chosen
by the iterative procedure, while in EnKF this subspace is
chosen randomly.

c© 0000 Tellus, 000, 000–000



6 SANDU ET AL.

3 A Hybrid Approach to Data Assimilation

The above analysis reveals a subtle similarity between
the 4D-Var and EnKF analyses for the linear, Gaussian case
with one observation window. If the initial ensemble is con-
structed using perturbations along the directions chosen by
the 4D-Var solver, the EnKF yields the same mean analysis
as the 4D-Var yield. This result motivates a hybrid assim-
ilation algorithm, where 4D-Var is run for a short window;
the 4D-Var search directions are used to construct an initial
ensemble, and then EnKF is run for a longer time window.
The procedure can be repeated periodically, i.e., additional
short window 4D-Var runs can be used from time to time
to regenerate the ensemble. We now describe in detail the
hybrid data assimilation algorithm; even if the motivation
comes from a linear analysis, the algorithm below can also
be applied to nonlinear systems.

(i) Starting from x
(0)
0 = xB

0 , run 4D-Var for a short
time window. The iterative numerical optimization algo-
rithm generates a sequence of intermediate solutions x

(j)
0

for each iteration j = 1, . . . , ℓ.
(ii) Construct St0 , a matrix whose columns are the nor-

malized 4D-Var increments:

St0 =

2
4 x

(j)
0 − x

(j−1)
0‚‚‚x

(j)
0 − x

(j−1)
0

‚‚‚

3
5

j=1,...,ℓ

∈ Rn×ℓ . (21)

The normalized increments play the role of the Lanczos vec-
tors in the general case. Note, however, that they are not
orthogonal.

(iii) Perform a singular value decomposition of St0 :

St0 = UΣV T , (22)

and retain only the first K right singular vectors u1, . . . uK

that correspond to the largest K singular values σ1, . . . , σK .
The directions evi = ui, i = 1, · · · , K, are used in (16) to

generate the initial EnKF ensemble.
(iv) EnKF initialized as above is run for a longer time pe-

riod, after which the ensemble is reinitialized using another
short window 4D-Var run.

Note that the initial perturbations in the regular EnKF
have zero mean. On the other hand the orthonormal di-
rections evi obtained in step (iii) above are independent,
and therefore their mean is nonzero. We can remove the
bias by subtracting the mean from each direction, or by
adding one additional ensemble member initialized using
evK+1 = −PK

i=1 evi.
The proposed hybrid method is computationally less

expensive than the full fledged 4D-Var, as only short assim-
ilation windows are considered, and only a relatively small
number of iterations is performed. The method is expected
to perform better than the regular EnKF due to the special
selection of how the state space is initially sampled. Note
that the application of the hybrid method requires the 4D-
Var machinery to be in place (and in particular, requires
an adjoint model). The infrastructure is thus more complex
than that required by regular EnKF; the complexity is sim-
ilar to the case where the total energy singular vectors (or
the Hessian singular vectors) are computed and used to ini-
tialize the ensemble.

Note that a popular approach to initializing the EnKF
is to place the initial perturbations along the “bred vectors”
(BVs) (Toth and Kalnay, 1997). The bred vectors share sim-
ilar properties with the Lyapunov vectors (LVs); they have
finite amplitude, finite time, and have local properties in
space. The BVs are used to capture the maximum error
growth directions in the model. We next implement the pro-
posed hybrid approach and compare with the regular EnKF
as well as the EnKF with the breeding technique, and show
the numerical test results in section 4.

4 Numerical Experiments

4.1 Linear Test Case

To test the proposed hybrid approach, we first use a
simple linear model with n = 7 states. Define the diagonal
eigenvalue matrix

D = diag{10, 9.9, 0.2, 0.1, 0.01, 0.001, 0.0001} ,

and the tridiagonal eigenvector matrix V :

V =

2
6664

2 1 0 · · ·
1 2 1 · · ·
...

...
...

...
· · · 0 1 2

3
7775 .

The linear model is defined by the matrix

M = V · D · V −1

such that a multiplication by M advances the state in time
by one time unit. The linear model has two directions along
which the error is amplified (corresponding to the eigenval-
ues greater than one). The two dimensional subspace of error
growth can be spanned by only three ensemble members in
EnKF, and by the first three directions generated by the
4D-Var iterative optimization routine.

The background covariance is constructed with a corre-
lation distance L = 1 as follows:B0(i, j) = σi · σj · exp

„
−|i − j|2

L2

«
, i, j = 1, . . . , n , (23)

with the standard deviations σi = 0.1.
The linear model is run for six time units. The “true”

solution xt
i = 0 is zero at all times. Synthetic observations

at the end of each time unit are obtained by adding random
noise with mean zero and covariance Ri = 0.01.

Since the system is linear, the cost function is quadratic,
and the 4D-Var solution is obtained by solving a linear sys-
tem. We compute the perfect 4D-Var solution by solving this
linear system exactly. We also compute a suboptimal 4D-Var
solution by applying a preconditioned conjugate gradients
(PCG) method with three iterations.

We use three ensemble members for the EnKF. Several
versions of the EnKF are implemented as follows:

(i) EnKF-Regular. The ensemble is initialized using nor-
mal random samples and the perturbed observations version
of the algorithm implemented in (Evensen, 2003).

(ii) EnKF-Eigenvector. The initial ensemble perturba-
tions are placed along the three dominant eigenvectors of
the linear system, i.e., the initial ensemble spans the di-
rections of maximal error growth. This approach represents
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the initialization along the bred vectors (Toth and Kalnay,
1997).

(iii) EnKF-Hybrid. A “short window” 4D-Var solution is
obtained by using only the observations after one time unit,
and by applying three PCG iterations. The directions gen-
erated by the short window 4D-Var are used to initialize the
hybrid EnKF method.

To assess the effectiveness of each assimilation method
we compute the 2-norm of the analysis error ‖xa

i −xt
i‖ (anal-

ysis minus truth) at the end of each time unit i = 1, · · · , 6.
The results of the EnKF-Regular method depend on the par-
ticular draw of normal random numbers used to initialize the
ensemble. To remove the random effects from the compari-
son, we perform multiple EnKF-Regular experiments (each
initialized with a different random draw) and report the av-
erage errors from 1,000 converging runs.

In the regular EnKF ensemble generation, the ensemble
of initial perturbations has zero mean. In the EnKF-Hybrid
approach we take an extra step to eliminate the bias by
subtracting the mean from each perturbation direction be-
fore constructing the initial ensemble. The same procedure is
applied in the EnKF-Eigenvector case. The evolution of the
analysis errors for different assimilation methods is shown
in Figure 1.

The smallest errors are associated with the perfect 4D-
Var solution, followed by the suboptimal 4D-Var solution
(three PCG iterations). The errors keep decreasing until the
end of window 4. The suboptimal 4D-Var solution also shows
small errors, approaching the perfect 4D-Var solution.

Among the three EnKF methods the largest errors are
associated with the regular version, which uses a random
initial ensemble. The medium errors are associated with the
case where the initial perturbations are along the domi-
nant eigenvectors. Finally, the EnKF-Hybrid solution shows
the smallest errors. This indicates that the initial ensemble
generated with 4D-Var directions is more effective than ini-
tial ensembles obtained through either random sampling or
breeding.

To quantify the improvement provided by the hybrid
approach we compute the ratio between the analysis errors
with hybrid EnKF and the regular EnKF as follows:

error ratio =

‚‚xEnKF−Hybrid − xt
‚‚

‖xEnKF−Regular − xt‖ .

A similar metric is used for the analysis errors of EnKF-
Eigenvector. The error ratios are presented in Figure 2. The
results indicate that both the eigenvector and the hybrid ver-
sions of EnKF provide smaller errors than the regular (ran-
domly initialized) EnKF. The hybrid error is consistently
smaller than the eigenvector error, showing the power of the
proposed hybrid approach.

We have performed additional experiments where the
“short window 4D-Var” used to initialize the hybrid ensem-
ble spans two time units. The results are similar to those
obtained from only one window, and are not reported here.

4.2 Nonlinear Test Case

The nonlinear test is carried out with the Lorenz-96
model. This chaotic model has n = 40 states and is described
by the following equations:
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Figure 1. Comparison of analysis errors for several data assim-
ilation methods applied to the linear test problem. Among the
EnKF methods the hybrid version is the most accurate.
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Figure 2. Ratios of analysis errors obtained with different assim-
ilation methods for the linear test. EnKF-eigenvector over regu-
lar EnKF (solid), and unbiased EnKF-Hybrid over regular EnKF
(dashed).

dxj

dt
= −xj−1(xj−2 − xj+1 − xj) + F , j = 1, . . . , n (24)

with periodic boundary conditions. The forcing term is F =
8.0. The conventional EnKF method implementation follows
the algorithm described in (Evensen, 2003). We compare the
following methods:

(i) EnKF-Regular: sample normal random numbers to
form the perturbation ensemble, then add the perturbations
ensemble to the initial best guess.

(ii) EnKF-Breeding. The “breeding” technique described
in (Toth and Kalnay, 1997) is used to capture the maximum
error growth directions of the system. The initial ensemble
perturbations are set along the bred vectors.
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(iii) EnKF-Hybrid. A 4D-Var assimilation is run in a
short window of 0.2 time units. The directions generated
by the L-BFGS numerical optimization routine are used to
initialize the hybrid ensemble as explained in Section 3.

Each method uses an ensemble of 10 members. The total
simulation time is three time units of the Lorenz model.
There are 15 equidistant observation times; synthetic ob-
servations for all states are obtained from the reference
solution. The 4D-Var short window run used to initialize
the hybrid ensemble spans 0.2 time units (one observation
time). The background covariance is generated using (23)
with L = 1.0 and standard deviations equal to 1% of the
initial reference values. The breeding EnKF implementation
follows the description in (Toth and Kalnay, 1997), where
the perturbations are propagated with the system for one
time unit and rescaled. The propagation and rescaling are
carried out ten times. We use three resulting bred vectors
as maximum error reduction directions to construct the per-
turbation ensembles.

In order to alleviate the impact of different random
choices of the initial conditions in EnKF-Regular, and of
different random noise levels used to perturb the observa-
tions, we run 100 independent tests with each method to
obtain the average solutions. Without loss of generality, we
plot the first component of the Lorenz chaotic state. Figure 3
shows the first component of the solutions obtained with dif-
ferent methods. The reference solution is represented with a
solid line, with circles on it indicating the observations. The
background solution is represented with a dashed line. The
EnKF-regular solution is represented with dash dotted line,
and the EnKF-Hybrid solution is represented by a solid line
with triangles. Both EnKF analyses are in good agreement
with the reference solution.

To better assess the accuracy of each method, we com-
pute the root mean square error (RMSE) of the average
solution obtained from 100 runs for each method, and plot
the error in Figure 4. The dotted line shows the background
RMSE error. The EnKF-Regular RMSE is shown with a
dash dotted line. The EnKF-Hybrid RMSE is the solid
line with triangles. The dashed line with circle on it repre-
sents the EnKF-Breeding RMSE. We observe that both the
EnKF-Hybrid RMSE and the EnKF-Breeding RMSE are
smaller than the EnKF-Regular RMSE, showing improve-
ments of both methods over the regular sampling method
for EnKF ensemble generation.

Figure 5 reports the ratio of the EnKF-Hybrid RMSE
over the EnKF-Regular RMSE, and the ratio of the EnKF-
Breeding RMSE over the EnKF-Regular RMSE. Both ra-
tios are well below one throughout the simulation interval,
indicating that both methods perform better than EnKF-
Regular. The hybrid analysis error is smaller for the first 1.5
time units, and for the time interval [2.5,3] units. The breed-
ing analysis error is smaller between [1.5,2.5] time units. The
hybrid RMSE is about 70% of that of the regular EnKF.
We conclude that, for some time interval after initialization
(here, 1.5 units) the hybrid ensemble method works better
than the breeding method. After this interval a new short
window 4D-Var may be necessary to reinitialize the ensem-
ble. More work is needed to formulate and test this resam-
pling strategy.

The numerical tests in both linear and nonlinear cases
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Figure 3. Time evolution of the first Lorenz-96 component for
different solutions. Reference (solid line), background (dashed
line), analysis with regular EnKF, 10 members (dash dotted line),
and analysis with hybrid EnKF, 10 members (solid line with tri-
angles).
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Figure 4. Root mean square error evolution for background, reg-
ular EnKF, hybrid EnKF, and breeding EnKF solutions.

show the hybrid method improves the analysis solution when
compared to the regular EnKF solution. The implementa-
tion requires running a 4D-Var for a short time window in
order to collect the directions used to initialize the ensemble.
Tests also show that the proposed hybrid approach performs
better than the breeding method for some time interval after
the initialization.

5 Summary

This work is the first to establish the equivalence be-
tween the EnKF with a small ensemble and the suboptimal
4D-Var method in the linear Gaussian case, and for a single
observation time within one assimilation window. The rela-
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Figure 5. Ratios of analysis errors obtained with different as-
similation methods for the nonlinear test. Breeding over regular
EnKF (dashed) and hybrid over regular EnKF (solid).

tionship between these two methods motivates a new hybrid
data assimilation approach: the directions identified by an
iterative solver for a short window 4D-Var problem are used
to construct the EnKF initial ensemble. Numerical tests on
both linear and nonlinear cases show that the proposed hy-
brid approach improves the analysis accuracy of the regular
EnKF. The overall increase in computational cost over regu-
lar EnKF is moderate, as short window 4D-Var problems are
solved infrequently, and only a small number of iterations is
performed each time. The hybrid method requires that a
model adjoint is available. The proposed approach brings
together two different families of methods, variational and
ensemble filtering. More detailed tests on complex systems
are planned as future work.
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