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1. Abstract
The hybrid cellular automaton (HCA) method is a biologically inspired algorithm capable of topology synthe-
sis that was developed to simulate the behavior of the bone functional adaptation process. In this algorithm,
the design domain is divided into cells with some communication property among neighbors. Local evolu-
tionary rules, obtained from classical control theory, iteratively establish the value of the design variables in
order to minimize the local error between a field variable and a corresponding target value. Karush-Kuhn-
Tucker (KKT) optimality conditions have been derived to determine the expression for the field variable and
its target. While averaging techniques mimicking intercellular communication have been used to mitigate
numerical instabilities such as checkerboard patterns and mesh dependency, some questions have been raised
whether KKT conditions are fully satisfied in the final topologies. Furthermore, the averaging procedure
might result in cancellation or attenuation of the error between the field variable and its target. Several
examples are presented showing that HCA converges to different final designs for different neighborhood
configurations or averaging schemes. Although it has been claimed that these final designs are optimal, this
might not be true in a precise mathematical sense—the use of the averaging procedure induces a mathe-
matical incorrectness that has to be addressed. In this work, a new adaptive neighboring scheme will be
employed that utilizes a weighting function for the influence of a cell’s neighbors that decreases to zero over
time. When the weighting function reaches zero, the algorithm satisfies the aforementioned optimality crite-
rion. Thus, the HCA algorithm will retain the benefits that result from utilizing neighborhood information,
as well as obtain an optimal solution.

2. Keywords: Structural optimization, Optimality conditions, Mathematical programming.

3. Introduction
Topology optimization strives to distribute material in a design domain in order to maximize a prescribed
mechanical performance. Typically, this problem is constrained by the volume or mass of the final structure.
To this end, the design domain is divided into a sufficiently large number of elements. In this domain, the
optimization algorithm removes or adds material to every element until the process converges. Finite ele-
ment analysis (FEA) is typically used to evaluate the merit function. Classical gradient-based optimization
methods are prohibitively expensive due to the large number of function evaluations. Therefore, new tech-
niques have been proposed in order to efficiently solve topology optimization problems. Rozvany [1] presents
a review of two commonly used approaches referred to as Solid Isotropic Microstructure (or Material) with
Penalization (SIMP) [2] and Evolutionary Structural Optimization (ESO) [3]. Other approaches include
the method of moving asymptotes (MMA) [4] and the homogenization method [5]. A family of methods
characterized by its computational efficiency (i.e., naturally parallel algorithms) is the cellular automaton
(CA) approach [6, 7, 8, 9, 10], reviewed for topology optimization by Abdalla et al. [11].

In particular, the hybrid cellular automaton (HCA) method [9, 10] is a well developed approach derived
from Karush-Kuhn-Tucker (KKT) conditions that combines the CA paradigm (i.e., local optimization rules)
with FEA (i.e., global structural analysis) [12]. In this method, local field variables are driven to a desired
optimal value by modifying local design variables. Control rules applied to individual elements in the struc-
ture are utilized to find the optimal states [10]. This method has been utilized to synthesize noncompliant
structures subject to mass, stress, and displacement constraints [13], compliant mechanisms [14], and energy
absorbing structures for crashworthiness [15]. The HCA method has been proven to be a globally convergent
(under certain assumptions) fixed point iteration scheme [16]. However, the original neighborhood averaging
numeric implementation of the HCA method may fail to achieve a KKT point.

The neighboring technique in the HCA method is inspired by the cellular communication occurring
in biological structures such as bones [17]. In this way, the algorithm defines an effective field variable
value by averaging the values obtained in the vicinity of each element, which results in a reduction of
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checkerboard patterns (alternating solid elements and voids resembling a checkerboard) in the final structure.
These patterns are undesirable as they are the result of discretization and do not correspond to an optimal
continuous distribution of material [18]. In fact, some finite element discretizations make checkerboard
patterns appear to be artificially efficient. Some other procedures to deal with checkerboards were reviewed by
[18]. These procedures include image processing (e.g., smoothing and filtering), higher-order finite elements,
and patches (i.e., superelements on the finite element mesh).

This investigation presents a novel neighboring technique that achieves a KKT point final topology
while reducing checkerboarding. This technique is presented using quadrilateral bilinear finite elements. A
two-dimesional simply supported beam example is used to show its implementation and its main advantages.

4. The hybrid cellular automaton method
In nature, numerous biological structures occur that achieve an efficient form in correspondence with their
function. In particular, bone undergoes remodeling precesses to functionally adapt its structure to changes in
the local mechanical environment. This process has inspired the development of the hybrid cellular automata
(HCA) algorithm as presented by Tovar [17].

This methodology utilizes the cellular automata (CA) computing paradigm where a regular lattice of
cells can exist in any finite number of dimensions. Each cell itself represents a discrete dynamical system.
The basis for CA is that an overall global behavior can emerge from local rules acting over an automaton
that possesses only local state information. In the case of the HCA algorithm, the local state information is
determined from a global finite element analysis (FEA). Thus, HCA is a hybrid technique as it utilizes global
information to drive local state behavior. The basis of HCA is that complex static and dynamic problems
can be simplified to a set of local rules that operate over a lattice of cells that know only their local conditions.

4.1. Biologically inspired framework
The CA lattice utilized by the HCA formulation is assumed to model the connected cellular network of
osteocytes in bone. Osteocytes are the most abundant cell in bone tissue and are assumed to act as me-
chonosensors, sensing the mechanical stimulus in a local region. Therefore, if a region of bone is discretized
into a regular lattice of cells it is reasonable to assume that each cell will contain one or more osteocytes,
surrounded by mineralized tissue. One theory for bone functional adaptation is that bone is remodeled to
achieve a local target mechanical stimulus. Thus, this model assumes that local changes in relative density
are driven by a mechanical stimulus target differential. Consequently, three variables are required to define
the state of each cell ψi(t) in the lattice, the relative (or normalized) density xi(t), the mechanical stimulus
Si(t), and the error signal ei(t), written

ψi(t) =




xi(t)
Si(t)
ei(t)



 . (1)

where Si(t) = Ui(t)/xi(t) and Ui(t) is the strain energy in the ith cell.
Osteocytes are also connected with each other through a network of cellular processes, allowing for the

passage of various signals. This neighborhood communication is effected in the HCA framework by gathering
information from neighboring cells. The effective mechanical stimulus sensed by each cell S̄i(t) is calculated
as the average of the stimuli sensed by all of the cells within the designated neighborhood,

S̄i(t) =
Si(t) +

∑
k∈N(i) Sk(t)

1 + N̂(i)
, (2)

where Si(t) is the state of mechanical stimulus at location i, Sk(t) represents the mechanical stimulus sensed
by the kth neighbor, N(i) = {indices of neighbors of cell i}, and N̂(i) = |N(i)| is the total number of
neighbors in the neighborhood. In the context of CA computing, no restrictions are generally placed on the
sized of the neighborhood, only that the neighborhoods are consistent for each cell in the lattice.

As new bone is formed and old bone is removed over time the relative density of each can cell vary,
resulting in a change in the modulus of the material. This material behavior is modeled using a power
law, which assumes that the material remains locally isotropic. Therefore, the modulus at a location i is
calculated as

Ei(t) = E0ixi(t)p, (3)
where E0i is the base modulus for each cell, typically set to the modulus of fully dense bone (assumed to be
equivalent to cortical bone), and p is an empirical value, typically satisfying 2 ≤ p ≤ 3 [19]. For topology
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synthesis problems, the goal is to obtain a structure that has a ‘0-1’ topology, meaning that the structure is
comprised of areas of fully dense material (xi(t) = 1) or a void (xi(t) = 0). Ideally the relative density would
be a discrete variable (i.e., xi(t) ∈ {0, 1}). For the HCA formulation, the relative density xi(t) is relaxed
such that it is a continuous function (i.e., 0 ≤ xi(t) ≤ 1).

The overall purpose of the bone remodeling process is functional adaptation to variations in bone’s
mechanical environment to obtain a state of equilibrium. The local rules R utilized by the HCA framework
are designed to model this process. These rules Ri are driven by the mechanical stimulus target differential.
Therefore, strength of the remodeling signal is measured by the normalized error between the effective
stimulus sensed and the stimulus target,

ei(t) =
S̄i(t)− S∗i

S∗i
, (4)

where S̄i(t) is the effective mechanical stimulus, which incorporates information from neighboring cells,
and S∗i is the stimulus target. In the context of bone remodeling, a positive error signal would lead to
formation, while a negative error signal would lead to resorption. Once the error signal becomes zero, no
further remodeling is required and bone returns to equilibrium. The set of local rules R update the material
distribution evolving the structure towards equilibrium according to information gathered from the cells in
a prescribed neighborhood.

Previous investigations with HCA have utilized control based rules and a ratio based rule, following
the principles of fully stressed design [12]. For the current study, the proportional, integral, and derivative
(PID) control strategy will be utilized. The reasoning behind proportional control is that it is assumed that
osteoclastic or osteoblastic activity occurs in proportion to the error between a local effective mechanical
stimulus and the stimulus target. Various computational models of bone remodeling use some form of
proportional control in their remodeling rule [20, 21, 22, 23]. Integral control provides a pathway for including
a sense of memory in the adaptation process. Consequently, this can be interpreted as osteocytes storing
information from previous states, i.e., ei(t− 1), . . ., ei(t− T ). Thus, the remodeling activity is proportional
to the cumulative error. The rate of osteoblastic and osteoclastic activity depending on a prediction of the
future error signal, based on the current and previous error signals ei(t) and ei(t− 1), represents a form of
derivative control. Hence, the change in relative density ∆xi(t) for a cell at location i is given as

∆xi(t) = cpei(t) + ci

∫ t

0
ei(τ) dτ + cd∆ei(t), (5)

where cp, ci, and cd are the proportional, integral, and derivative control gains, respectively. Therefore, the
material update for each cell is

xi(t + 1) = min
{

max
{

0, xi(t) + cpei(t) + ci

∫ t

0
ei(τ) dτ + cd∆ei(t)

}
, 1

}
. (6)

It has been observed that this PID control strategy reduces numerical instabilities and improves convergence
performance of the HCA algorithm.

4.2. Optimization problem
Previous work has shown that the HCA method is an effective topology synthesis technique, although not
being a formal topology optimization method itself [10]. The basic premise of the HCA method is that bone
remodels to obtain a state of stimulus equilibrium. This occurs when the stimulus error ei(t) in (4) goes
to zero. This criterion applies to all the cells in the CA lattice. Tovar el al. showed that this criterion can
be interpreted as the solution of a multiobjective structural optimization problem for minimizing both mass
and strain energy written as

min
0≤x≤1

c(x) = f(U) + g(M), (7)

where f(U) = U/U0 is a function of the current strain energy U and initial strain energy U0, g(M) = M/M0

is a function of the current mass M and the initial mass M0, and x is the vector of relative densities for each
cell [12]. Thus, the set of rules for conducting structural optimization with HCA are determined by deriving
the Karush-Kuhn-Tucker (KKT) optimality conditions. The Lagrangian of the aforementioned optimization
problem can be written as

L = f(U) + g(M) + (λ1)T (x− 1)− (λ0)T x, (8)
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where λ0 and λ1 are the Lagrange multiplier vectors associated with the inequality constraints. Subsequently,
the KKT necessary conditions are given by

∂L

∂xi
=

∂f(U)
∂U

∂U

∂xi
+

∂g(M)
∂M

∂M

∂xi
+ λ1

i − λ0
i = 0, (9)

λ1
i ≥ 0, (10)

λ0
i ≥ 0, (11)

λ1
i (xi − 1) = 0, (12)

and
λ0

i xi = 0. (13)

4.3. Optimality conditions
The KKT necessary conditions specify the criterion to be satisfied for both interior and saturated points.
For an interior point, i.e., 0 < xi < 1, by definition the Lagrange multipliers are λ1

i = λ0
i = 0, satisfying

(10)–(13). Therefore, the optimality conditions are satisfied if

∂f(U)
∂U

∂U

∂xi
+

∂g(M)
∂M

∂M

∂xi
= 0. (14)

For the case that f(U) = ω1U and g(M) = ω2M , then (14) yields the optimality condition

Si = S∗i ≡
ω2

ω1

ρ0i

p
, (15)

where ρ0i is the density of a solid element [12].
For either case where the relative density xi is saturated, i.e., xi = 0 or xi = 1, different optimality

conditions apply. For the case of xi = 0, it follows from (12) that λ1
i = 0. Therefore, the conditions in (10),

(12), and (13) are satisfied. The remaining optimality conditions from (9) and (11) can then be combined
to yield,

λ0
i =

∂f(U)
∂U

∂U

∂xi

∣∣∣∣
xi=0

+
∂g(M)
∂M

∂M

∂xi

∣∣∣∣
xi=0

≥ 0. (16)

If it is assumed that f(U) = ω1U and g(M) = ω2M , it has been shown that (16) leads to the optimality
condition,

λ0
i = ω2m0i ≥ 0. (17)

This condition implies that 0 = Si ≤ S∗i if xi = 0.
In the case that xi = 1, it follows from (13) that λ0

i = 0. Therefore, the conditions in (11), (12), and
(13) are satisfied. The remaining optimality conditions from (9) and (10) can be combined to yield,

λ1
i = −∂f(U)

∂U

∂U

∂xi

∣∣∣∣
xi=1

− ∂g(M)
∂M

∂M

∂xi

∣∣∣∣
xi=1

≥ 0. (18)

Again, utilizing the assumption that f(U) = ω1U and g(M) = ω2M , it has been shown that (18) yields the
optimality condition,

λ1
i = ω1pv0i

Ui

xi

∣∣∣∣
xi=1

− ω2m0i ≥ 0, (19)

which can be written as
Ui

xi

∣∣∣∣
xi=1

≥ ω2

ω1

ρ0i

p
. (20)

This condition implies that Si|xi=1 ≥ S∗i if xi = 1.

4.4. Proof of convergence
In previous work, it has been observed that the convergence of the HCA methodology is affected by param-
eters of the algorithm. To utilize HCA as a generic topology synthesis tool, it is important to understand
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the conditions under which HCA converges to an optimal design. A previous study proved that HCA is a
fixed point algorithm,

x(t + 1) = G(x(t)), (21)

where G(x(t)) is the function representing the HCA update [16]. In mathematics, a fixed point x̄ of a function
G(x) is a point that is mapped to itself by the function: G(x̄) = x̄ [24]. There are numerous theorems in
different parts of mathematics that guarantee that these functions, if they satisfy certain conditions, have
at least one fixed point. If the HCA iteration is converging to a fixed point x̄, then it must be true that

‖x(t + 1)− x̄‖ → 0. (22)

Using (21), the definition of a fixed point, and the Mean Value Theorem gives

‖x(t + 1)− x̄‖ = ‖G(x(t))−G(x̄)‖ = ‖DG(x̂)(x(t)− x̄)‖ ≤ ‖DG(x̂)‖ ‖(x(t))− x̄)‖ (23)

for any vector norm ‖ ·‖ and for some x̂ between x̄ and x(t). This holds for 0 < xi(t) < 1, and also at the
boundary values if xi(t) = x̄i = 0 or xi(t) = x̄i = 1.

If the operator norm
‖DG(x̂)‖ ≤ L < 1 (24)

for some constant L, vector norm ‖ · ‖, and every x̂, then G(x) has a unique fixed point x̄ and the HCA
iteration converges to x̄ for any starting point 0 < xi(0) < 1 (this is the contraction mapping theorem). For
each ε > 0 there exists a vector norm ‖ ·‖ such that

ρ(DG(x̄)) ≤ ‖DG(x̄)‖ < ρ(DG(x̄)) + ε, (25)

where
ρ(DG(x̄)) = max

1≤j≤s
|λj | (λ1, . . . , λs are the eigenvalues of DG(x̄)) (26)

is the spectral radius of the Jacobian matrix DG(x̄), and (25) holds for all x in a neighborhood of x̄ [24].
Hence if

ρ(DG(x̄)) < 1, (27)

then the HCA iteration converges to the fixed point x̄ for any initial x(0) sufficiently close to x̄ . Note that
if DG(x) is symmetric, then ‖DG(x)‖2 = ρ(DG(x)), and so ρ(DG(x)) < 1 on 0 ≤ x ≤ 1 would guarantee
HCA converges for any 0 ≤ x(0) ≤ 1 . For nonsymmetric DG(x), the norm in (25) changes with x, so HCA
convergence is guaranteed only in a neighborhood of x̄.

4.5. Implementation

Recently, it has been questioned if the designs produced by HCA when utilizing neighborhood information
satisfy the KKT optimality conditions. In fact, topologies synthesized using neighborhood information have
been presented by Tovar et al. that do not satisfy the all of the optimality criterion [10, 12]. In these examples,
an insufficient criterion was utilized to determine when a fixed point had been reached. For instance, the
Mitchell truss examples presented by Tovar et al. utilized a HCA stopping criterion

|M(t + 1)−M(t)| ≤ ε, (28)

where M(t) is the mass of the structure at a time t and ε = 0.001 ·M0, for the initial structural mass M0 [12].
This criterion is global in nature and it does not ensure that all of the optimality conditions are satisfied.
For the cells that have saturated, their local changes in relative density will become zero and their respective
optimality criterion will be satisfied. However, this stopping criterion does not yield any meaningful measure
of the satisfaction of the optimality criterion for an interior point (i.e., Si(t)−S∗i (→ 0). It is possible that the
criterion of (28) is satisfied while large local changes in relative density xi are still occurring, as in [10, 12].
While the optimality conditions are not strictly satisfied, the number of interior points represents < 2% of
the number of elements in the structures presented in Tovar et al. [10, 12].

For the purpose of mathematical rigor, an algorithm stopping criterion will be used that ensures that
the optimality conditions for all cells are satisfied. From the definition of a fixed point iterative scheme in
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(21), it would be reasonable to define a criterion that ensures that the local changes in relative density xi

are sufficiently small, i.e.,
|xi(t + 1)− xi(t)| ≤ ε. (29)

This criterion is more meaningful in the sense that it is the same for every cell.
Considering an HCA update that only utilizes proportional control (i.e., ci = cd = 0, cp (= 0), the

expression from (6) can be rewritten as,

xi(t + 1) = xi(t) + cpei(t), (30)

for 0+ ε ≤ xi(t) ≤ 1− ε. Rearranging (30) and substituting into (29) yields the satisfaction of the optimality
criterion

|ei(t)| = |Si(t)− S∗i | ≤
ε

|cp|
. (31)

Thus, one must carefully consider the algorithm stopping criterion so as to be able to appropriately assess
the optimality of the obtained x(t). In this investigation, the stopping criterion was (29) with ε = 5 · 10−4.

5. Neighboring reduction technique
Utilizing neighborhood information is a method of dampening the local changes in the relative density xi. It
will be shown that it is not always possible to achieve a mathematically optimal solution when using neigh-
borhood information. This is because the neighborhood averaging is driving S̄i(t) − S∗i → 0, which does
not imply Si(t)− S∗i → 0. This due to the fact that the optimality condition was derived for the case when
N̂ = 0. In this study, it is desired to utilize neighborhood information to avoid computational instability and
checkerboarding. Previous studies have utilized a constant neighborhood throughout the entire synthesis
process. These conventional fixed neighborhood schemes will be compared with sequential neighboring and
adaptive neighboring techniques.

5.1. Sequential neighboring
For the sequential neighboring strategy, an initial neighborhood size N̂0 and final neighborhood size N̂∞

will be selected. An initial design will be synthesized utilizing N̂0, until the algorithm stopping criterion
is achieved. The initial design will then be used as the starting point for topology synthesis when utilizing
N̂∞, producing the final design. The premise behind the sequential neighboring scheme is that although the
structures generated with fixed neighborhoods may not satisfy the optimality criterion, it is possible that
they provide a suitable starting point for an improved design.

5.2. Adaptive neighboring
For the adaptive neighboring strategy, the influence of each neighbor wk is incorporated in the effective
stimulus calculation. Recall that the effective stimulus in (2) weights the stimulus of a cell and its neighbors
equally. Rewriting this equation to include the influence of each neighbor wk yields

S̄i(t) =
Si(t) +

∑
k∈N(i) wk(t)Sk(t)

1 +
∑

k∈N(i) wk(t)
. (32)

One strategy for weighting each neighbor is to calculate the influence of a neighboring cell based on that
cell’s closeness to the algorithm stopping criterion in (29). This can be represented as a piecewise-linear
function with weights ranging between 0 and 1 for changes in the local relative density of the neighboring
elements, i.e., |xk(t)− xk(t− 1)| (Fig. 1). Thus, the neighbor weights can be expressed as

wk(t) = min
{

max
{

0,
|xk(t)− xk(t− 1)| −∆0

∆1 −∆0

}
, 1

}
, (33)

where ∆1 is the minimum change in relative density of the kth neighbor for which its weight is 1, and ∆0 is
the maximum change in relative density of the kth neighbor for which its weight is 0. Note that ∆0 > ε to
ensure that the weights of all neighbors are zero when the stopping criterion is met. Therefore, the effective
size of the neighborhood will be N̂ = 0 when the topology synthesis is complete.
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∆0

wk(t)

1

0
|xk(t)-xk(t-1)|∆1ε

Figure 1: Piecewise-linear representation for neighborhood weights wk.

The reasoning behind this neighbor weighting scheme is that the optimality conditions for interior and
saturated points are different. It is reasonable that any number of cells may have a neighbor which is con-
verging to an optimality condition other than that of the current cell. For example, this situation would
arise when a cell saturated at full density is in the neighborhood of a cell with intermediate density. If
it is not possible for the cell of intermediate density to become saturated, then the influence of the fully
dense neighbor would not be consistent with achieving the optimality condition for an interior point. Thus,
allowing the influence of neighboring cells that are undergoing sufficiently small changes in relative density to
decrease to zero will eliminate the adverse influence of neighbors that are converging to different optimality
conditions.

6. Comparative studies
The effect of incorporating neighborhood information was assessed by studying an empty neighborhood,
fixed neighborhood, sequential neighboring, and the aforementioned adaptive neighboring technique. These
techniques were applied to a simply supported structure modeled with 50×25 cells (Fig. 2), as done in Tovar
et al. [12]. For this example, a one to one mapping is used between the cells of the CA lattice and the FE
model. Quadrilateral bilinear finite elements are used. The node at the bottom left corner is constrained in
both coordinate directions to have zero displacement so that the node is fixed, while the node in the bottom
right corner is constrained only in the vertical direction to resemble a rolling support. A downward force of
100 N is applied to the node at the midspan of the bottom edge. The dimensions of the structure are 25
mm in width by 50 mm in height. As mentioned before, the HCA algorithm operates on the relative density
of each cell, therefore, the density is interpolated between zero and one, using a power law relationship (3)
with exponent p = 3. The initial structure was assumed to be fully dense (i.e., xi = 1 for all i). The Young’s
modulus was set at E = 20 GPa and the Poisson’s ratio to ν = 0.3. The equilibrium stimulus was set at
S∗i = 1.8084 · 10−9 Pa for all i, i.e., each cell in the lattice is seeking the same target stimulus. For this
equilibrium stimulus, it can be shown using (15) that the corresponding objective function weights in (7)
are ω1 = 0.25 and ω2 = 0.75. The CA implementation used for the following numerical experiments is given
in (6) for cp = 0.2, ci = 0, and cd = 0.

Figure 2: Simply supported 50× 25 beam struc-
ture.

Figure 3: Structure generated with N̂ = 0 in 81
iterations. This structure is optimal and has a
final objective function value of c = 0.73646.

6.1. Empty neighborhood
In this first example, a design was synthesized utilizing an empty neighborhood, i.e., N̂ = 0 (Fig. 3). One
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can see that this design contains checkerboarding, which makes it undesirable to a designer. However, in
terms of the objective this design has met the algorithm stopping criterion in (29) and satisfies the optimality
criterion within the specified tolerance in (31). The objective function value for this structure is c = 0.73646
and was obtained in 81 iterations.

6.2. Nonzero neighborhood
To compare the empty neighborhood result with those of typical 2D CA neighborhoods, structures were
generated while using von Neumann (N̂ = 4) and Moore (N̂ = 8) neighborhoods. In both cases significantly
more iterations were required to meet the local stopping criterion in (29), as compared to the empty neigh-
borhood case. For N̂ = 4, the structure was synthesized in 237 iterations with a function value of c = 0.74488
(Fig. 4). For N̂ = 8, the structure was synthesized in 753 iterations with a function value of c = 0.74312
(Fig. 5). The objective function value in both cases is larger than that of the empty neighborhood result.

Figure 4: Structure generated with N̂ = 4 in 237
iterations. This structure is not optimal and has
a final objective function value of c = 0.74488.

Figure 5: Structure generated with N̂ = 8 in 753
iterations. This structure is not optimal and has
a final objective function value of c = 0.74312.

Although the generated structures do not contain any checkerboarding, these structures do not satisfy
the optimality criterion and are not local minima. This is due to the fact that S̄i − S∗i → 0, which does not
imply that the optimality condition Si − S∗i → 0. However, these solutions are indeed fixed points of the
HCA iteration function given in (6), for their respective neighborhood sizes.

6.3. Sequential neighboring
The previous structures generated with nonzero neighborhoods are not optimal, however they provide a
suitable starting point for an improved design. For this reason the sequential neighborhood strategy was
employed where the N̂0 = 4 and N̂∞ = 0, and N̂0 = 8 and N̂∞ = 0. This will allow each element in
these designs to meet both the stopping criterion and the optimality criterion within the specified tolerance,
yet retain the benefits of utilizing neighborhood information. For N̂0 = 4 and N̂∞ = 0, the structure was
synthesized in 299 iterations with a function value of c = 0.74008 (Fig. 6). For N̂0 = 8 and N̂∞ = 0, the
structure was synthesized in 810 iterations with a function value of c = 0.73880 (Fig. 7). The objective
function value in both cases is larger than that of the empty neighborhood result.

Figure 6: Structure generated with N̂0 = 4 and
N̂∞ = 0 in 299 iterations. This structure is op-
timal and has a final objective function value of
c = 0.74008.

Figure 7: Structure generated with N̂0 = 8 and
N̂∞ = 0 in 810 iterations. This structure is op-
timal and has a final objective function value of
c = 0.73880.

Again, these structures contain little to no checkerboarding. The objective function values decreased as
compared to the nonzero neighborhood results, but are still slightly larger than that for the empty neigh-
borhood used for the entire synthesis process. For completeness, the opposite simulations were conducted,
N̂0 = 0 and N̂∞ = 4, and N̂0 = 0 and N̂∞ = 8. Both of these cases yielded the same result as the
empty neighborhood case in the same number of iterations, which was expected. This is due to the fact that
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(a) ∆1 = 0.20, c = 0.73251, 77 iterations (b) ∆1 = 0.15, c = 0.73222, 137 iterations

(c) ∆1 = 0.10, c = 0.73327, 100 iterations (d) ∆1 = 0.05, c = 0.73265, 81 iterations

Figure 8: Adaptive neighboring strategy with N̂ = 4. Each structure is optimal and represents a local
minimum.

(a) ∆1 = 0.20, c = 0.73216, 88 iterations (b) ∆1 = 0.15, c = 0.73178, 83 iterations

(c) ∆1 = 0.10, c = 0.73244, 130 iterations (d) ∆1 = 0.05, c = 0.73120, 4338 iterations

Figure 9: Adaptive neighboring strategy with N̂ = 8. Each structure is optimal and represents a local
minimum.

each cell has already met the specified stopping criterion tolerance, therefore, the average change over the
neighborhood will be within the tolerance as well.

6.4. Adaptive neighboring
The adaptive neighboring strategy incorporates a new method for weighting the influence wk of neighbors.
For this study, fix ∆0 = 0.001 > ε = 5 · 10−4. The selection of ∆1 will determine the steepness of the
transition between wk = 1 and wk = 0. Topologies were synthesized for ∆1 = 0.20, 0.15, 0.10, 0.05, selected
based on the value of cp = 0.20. Since the error is normalized in (4), a large change in relative density in
(6) would be on the order of cp. To compare this strategy with the previous examples the same 2D CA
neighborhoods were utilized, von Neumann (N̂ = 4) and Moore (N̂ = 8). The results for N̂ = 4 and N̂ = 8
are displayed in Figures 8 and 9, respectively.

It is interesting to note that all of the structures synthesized for both N̂ = 4 and N̂ = 8 are improved
designs as compared to the empty neighborhood result. The topologies with the best objective function
value were obtained with ∆1 = 0.15 for N̂ = 4 and ∆1 = 0.05 and for N̂ = 8. From these results, it is not
apparent that the reduction in ∆1 is related to either a decrease in objective function value or the number
of iterations required to carry out the design synthesis. However, it was found that if ∆1 is too close to ∆0
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oscillations are induced in the synthesis process, delaying the arrival at the final design. This is apparent
from Fig. 9(d), for which the design synthesis required over 4000 iterations.

7. Final comments
This study shows that it is possible to retain the benefits from utilizing neighborhood information and
obtain an optimal solution with HCA. Several different neighborhood schemes were analyzed, an empty
neighborhood, fixed neighborhood, sequential neighboring, and adaptive neighboring. Optimal designs were
synthesized in each case, with the exception of fixed neighborhoods. Compared to the empty neighborhood
algorithm, the sequential neighboring technique produced optimal designs with little to no checkerboarding,
but at a significant increase in iterations; the adaptive neighboring scheme produced optimal designs with
less checkerboarding and an improved objective function value; the adaptive method typically achieved the
algorithm stopping criterion in a similar number of iterations. Therefore, it seems as though the adaptive
neighboring rule is a good compromise between achieving the benefits of neighborhood smoothing, mathe-
matical optimality, and algorithm speed.

Several important facts about neighborhoods are revealed by this study. (1) A global stopping criterion,
such as that on the change in mass in (28), gives no meaningful measure of the satisfaction of the optimality
conditions for an interior point. It is necessary to use a local stopping criterion due to the existence of interior
points to ensure that the optimality conditions are explicitly satisfied. (2) Increasing the neighborhood size
does not speed up the synthesis process. While these designs typically have less checkerboarding than the
empty neighborhood design, the results of this study show that the use of a neighborhood can significantly
slow down convergence to a local stopping criterion. (3) The use of neighborhood averaging in general leads
to conflicting objectives when an interior point contains neighbors that are saturated points, a situation
where the cell and its neighbors are approaching different optimality conditions. Neighborhood averaging
will not allow the interior point to achieve its optimality criterion as illustrated by the fixed neighborhood
results here.
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