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Abstract

There has been much research on the combinatorial problem of generating the linear

extensions of a given poset. This paper focuses on the reverse of that problem, where

the input is a set of linear orders, and the goal is to construct a poset or set of posets that

generates the input. Such a problem finds applications in computational neuroscience,

systems biology, paleontology, and physical plant engineering. In this paper, several

algorithms are presented for efficiently finding a single poset that generates the input

set of linear orders. The variation of the problem where a minimum set of posets

that cover the input is also explored. It is found that the problem is polynomially

solvable for one class of simple posets (kite(2) posets) but NP-complete for a related

class (hammock(2,2,2) posets).

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Appli-

cations - Data Mining; I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithms.

Keywords: partial orders, posets, linear extensions.
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1 Introduction

With the growing popularity of knowledge discovery in databases (KDD) and its applica-

tions in numerous scientific domains [10, 14], algorithms for data mining have become a

fertile ground for theoretical developments. Modern data mining algorithms process massive

amounts of data, typically more than what can fit into main memory, and yield patterns

that can be viewed either as compressed representations [21] or as generative models of

data.

Many data mining algorithms can be viewed as addressing enumeration or counting

problems. The classical example is the search for frequent subsets in a collection of sets [1],

where frequency is determined by a user-determined support threshold. The support cri-

terion is harnessed effectively by algorithms like Apriori [2] that enumerate all possible

candidates and search levelwise, beginning with singleton subsets, estimating their support

among the collection, and building upon those subsets that pass the threshold to explore

bigger subsets. Researchers have since generalized the scope of such algorithms to finding

sequential patterns from a collection of lists [3], frequent trees from a forest [31], and even

frequent subgraphs from a collection of graphs [17].

In this paper, we focus on the task of poset mining, i.e., finding order constraints

(expressed as partial orders) from a collection of total orders. Pei et al. [23] study this

problem in the traditional framework of frequent pattern mining and present an Apriori-

like algorithm for mining frequent posets. Mannila and Meek [20] cast a variation of this

problem in a probabilistic setting and present algorithms that mine a specific category of

posets. Ukkonen [29] introduces a scoring function to accurately define a “best-fit” poset

or set of posets against the input set of total orders. Gionis et al. [12] seek bucket orders

(total orders with ties), instead of posets.

Although these works offer much practical significance, few theoretical results on mining

posets from linear orders have been published. In particular, since a poset can be viewed as a

generator of linear extensions (orders), the underlying data mining problem is the converse

2



of the well-studied combinatorial problem of generating the set of linear extensions of a

given poset, but has not been studied from a classical algorithmic perspective. Therefore,

we focus on the most basic version of poset mining, where we are given a set of linear orders

and we must find one poset (or a small number of posets) that generates the linear orders.

We study the theoretical complexity of this problem, present a general framework to pose

and study various inference tasks, and develop algorithms for mining restricted classes of

posets. Our work finds applications in many domains where we seek to reconstruct system

dynamics from sequential data traces, such as computational neuroscience [19], systems

biology [4, 30], paleontology [27], and physical plant engineering [18], although we do not

discuss these applications in detail in this paper.

The rest of the paper is structured as follows. Section 2 presents definitions and no-

tations used in the paper. In Section 3, we formulate the problem of determining a single

poset that generates the input set of linear orders, and present two algorithms for solving

the problem. Section 4 investigates the same problem for restricted classes of posets. In

Section 5, the problem of finding a minimum set of posets to cover the input set is formally

defined, and complexity results for two poset classes are presented. We summarize our

results and present future directions in Section 6.

2 Preliminaries

A (finite) partially ordered set or poset P = (V, <P ) is a pair consisting of a finite set V

and a binary relation <P ⊆ V × V that is irreflexive, antisymmetric, and transitive. For

any u, v ∈ V , we write u <P v if (u, v) ∈ <P .

For a given poset P = (V, <P ), we say that a pair of distinct elements u, v ∈ V are

comparable in P , written u ⊥P v, if either u <P v or v <P u. Otherwise, u and v are

incomparable in P , written u ‖P v. Moreover, if u <p v and there is no w ∈ V such that

u <P w <P v, then we say v covers u, written u ≺P v, and also say that (u, v) is a cover

relation in P .
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Figure 1: Hasse diagram of the example poset

A poset P = (V, <P ) corresponds to a directed acyclic graph (DAG) G = (V, E) with

vertex set V and edge set E = {(u, v) | u <P v}. The Hasse diagram H(P ) for the poset

P is a drawing of the transitive reduction of the DAG G. Equivalently, the edge set of the

Hasse diagram H(P ) consists of all cover relations (u, v) in P .

As an example, let V = {1, 2, 3, 4, 5, 6, 7}, and let

<P = {(1, 3), (1, 6), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1), (4, 3),

(4, 5), (4, 6), (5, 3), (6, 3), (7, 1), (7, 3), (7, 4), (7, 5), (7, 6)}

be a binary relation on V . The reader may verify that P = (V, <P ) is a poset. Its Hasse

diagram H(P ) is in Figure 1.

When the Hasse diagram of a poset P = (V, <P ) is a single path consisting of all the

n elements of V , then the poset P is also called a linear order. Formally, a linear order

L = (V, <L) is a poset such that u ⊥L v for every pair of distinct elements u, v ∈ V . A

linear order L determines a unique permutation (v1, v2, . . . , vn) of the elements of V with

v1 <L v2 <L · · · <L vn. In this case, we use the notation L[i] = vi for the ith element in

the permutation and L−1[vi] = i for the position of vi.

Given two posets P1 = (V, <P1
) and P2 = (V, <P2

) over the same set, we say that P2

is an extension of P1, written P1 ⊑ P2, if <P1
⊆ <P2

. Moreover, if P2 is a linear order,

then we say that P2 is a linear extension of P1. For a given poset P , we denote its set of

linear extensions by L (P ), and say that P generates L (P ). Generating the set of linear

extensions of a given poset P is equivalent to generating all topological sorts of its Hasse

diagram [8]. For the poset P whose Hasse diagram is shown in Figure 1, the set of linear
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extensions is readily computed to be

L (P ) = {(2, 7, 4, 1, 5, 6, 3), (7, 2, 4, 1, 5, 6, 3), (2, 7, 4, 1, 6, 5, 3),

(7, 2, 4, 1, 6, 5, 3), (2, 7, 4, 5, 1, 6, 3), (7, 2, 4, 5, 1, 6, 3)},

where the six linear extensions are given in permutation notation. Note that, for any two

posets P1 and P2 over V , if P1 ⊑ P2, then L (P1) ⊇ L (P2). Interestingly, the set of all

posets on a given base set is also a partial order (with binary relation ⊑) and forms a

semilattice [9]. The bottom of the lattice is the empty poset (V, ∅), while the top consists

of all the linear orders on the given base set.

Much attention has been given to the combinatorial problems of counting [5, 6] and

generating the linear extensions of a given poset [7, 16, 22, 25, 28]. Brightwell and Winkler

[6] prove that the problem of determining the number of linear extensions of a given poset

is #P-complete. Pruesse and Ruskey [26] provide an algorithm that generates all linear

extensions of a given poset, which may be exponential in number. Here, we investigate

problems whose input is a set Υ of linear orders on a fixed base set V . The problem space

that we have in mind results in a poset or set of posets that generates (or approximately

generates) Υ, in the senses we develop in the next sections. In some of these problems, we

restrict the poset or set of posets to specific classes. We now define those classes of posets.

A poset P = (V, <P ) is called a leveled poset if the vertex set V can be partitioned into

levels V1, V2, . . . , Vk such that, for u ∈ Vi and v ∈ Vj , we have u <P v if and only if i < j.

The sequence V1, V2, . . . , Vk is called a leveling of P . Figure 2 illustrates a leveled poset.

To facilitate discussion of leveled posets, we write the leveled poset P as a function of the

ordered set of sets:

P = leveled(V1, V2, . . . , Vk).

The poset of Figure 2 is thus written

leveled
(

{1, 4, 9}, {5, 10}, {3, 6, 7, 12}, {2, 8, 11}
)

.
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Figure 2: The Hasse diagram of a leveled poset on V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

The definition for leveled posets implies a couple of important consequences. First,

for distinct elements u, v ∈ Vi, we have u ‖P v. Second, the set of cover relations in

P = leveled(V1, V2, . . . , Vk) is

≺P = {(u, v) | u ∈ Vi and v ∈ Vi+1, for 1 ≤ i < k}.

Simple counting reveals that the number of linear extensions of a leveled poset P is

∣

∣L (P )
∣

∣ =
∏

1≤i≤k

∣

∣Vi

∣

∣!

Leveled posets belong to a larger class of posets called graded posets, of which the

semilattice of posets is an example. By definition, a graded poset is a poset in which every

maximal chain has the same length, where a chain is defined as a totally ordered subset of

the poset [13].

Next, define a hammock poset to be a leveled poset where |V1| = |Vk| = 1 and, for

2 ≤ i ≤ k − 1, either |Vi| = 1 or |Vi+1| = 1. Figure 3 shows the Hasse diagram of a

hammock poset, with partition

{3}, {4, 14}, {7}, {1}, {6}, {12, 9}, {11}, {2, 8, 13}, {10}, {5}.

A non-singleton Vi in a hammock poset is a hammock set (or simply hammock), and its

elements are hammock vertices. A vertex in a singleton partition, on the other hand, is
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Figure 3: Hasse diagram of a hammock poset

called a link vertex. The hammock poset described in Figure 3 is more specifically called a

hammock(2,2,3) poset to indicate the ordered sizes of the hammocks.

When a hammock poset has only one hammock, we call it a kite poset, or specifically a

kite(k) poset if the size of the hammock is k. Kite posets are the simplest class of posets

that we consider.

We also consider a tree poset, which is a poset whose Hasse diagram is a rooted directed

tree, with each node (except for the root) covering exactly one other node. The class of

tree posets belongs to a well-known class of posets called series-parallel posets, whose Hasse

diagrams are series-parallel digraphs, and which naturally model certain electrical networks.

3 Generating Posets

The simplest nontrivial problem from the problem space we wish to explore asks whether

there is a single poset that generates a set of linear orders.

Generating Poset

INSTANCE: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

SOLUTION: A poset P such that L (P ) = Υ.

We show that the Generating Poset problem can be solved in polynomial time.

Theorem 1. The problem Generating Poset can be solved in O
(

mn2
)

time.

Proof. The correctness and time-complexity of the GeneratingPosetOne algorithm in

Figure 4 proves the theorem. In this algorithm, we build the binary relation <P by comput-
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ALGORITHM: GeneratingPosetOne

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: A poset P on V such that L (P ) = Υ, if one exists.

1 <P ←
⋂

L∈Υ <L

2 if Υ = L (P )

3 then return P

4 else return failure

Figure 4: First polynomial-time algorithm to solve Generating Poset

ing ∩L∈ΥL, the smallest partial order that contains all relations common to all the given

linear orders. This can be done in O
(

mn2
)

time, since each of the m linear orders has

O
(

n2
)

ordered pairs. By setting <P = ∩L∈ΥL, we are sure that P generates all linear ex-

tensions, and no larger one can. It is sufficient, therefore, to show that P does not generate

a linear extension outside Υ. This can be done by generating L (P ) and verifying the linear

extensions against Υ. At most m + 1 linear extensions will be generated before we are sure

whether or not L (P ) = Υ. This can be done in O(mn) time by using the algorithm of

Pruesse and Ruskey [26] that generates the linear extensions of P in O(n) amortized time

per linear order. Therefore the GeneratingPosetOne algorithm in Figure 4 is correct,

and runs in O
(

mn2
)

time.

The first algorithm computes the elements of the binary relation of the desired poset

while reading the input linear extensions. Another approach to solving the Generating

Poset problem is to derive the cover relations first, then compute the transitive closure of

the set of these cover relations to determine the desired poset. We first present two lemmas

related to this approach.

Lemma 2. Let P = (V, <P ) be a poset, and let u, v ∈ V be distinct. Then u ‖P v if and

only if there exists a linear order L ∈ L (P ) such that u ≺L v and a linear order L′ ∈ L (P )

such that v ≺L′ u.

Proof. First, assume that u ‖P v. Let A = {w ∈ V | w <P u or w <P v}, B = {w ∈ V |

u <P w or v <P w}, and C = V \ (A ∪ B ∪ {u, v}). Since u ‖P v, we have A ∩ B = ∅.
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Moreover, for all w ∈ C, we have u ‖P w and v ‖P w. Construct a linear order L = (V, <L)

as follows. Start with a linear extension of (A, <P ), follow it with a linear extension of

(C, <P ), follow that with u and then v, and conclude with a linear extension of (B, <P ).

(We can suggestively say that L matches the pattern ACuvB.) It is straightforward to

check that L is a linear extension of P that has u ≺L v. Similarly, to obtain L′ such that

v ≺L′ u, let L′ be the same as L, except swap the positions of u and v. (L′ matches the

pattern ACvuB.)

Now, assume that there exist linear orders L, L′ ∈ L (P ) such that u ≺L v and v ≺L′ u.

The existence of L implies that in the poset P , either u <p v or u ‖P v. The existence

of L′, on the other hand, implies that either v <P u or v ‖P u. It follows, therefore, that

u ‖P v.

Lemma 3. Let P = (V, <P ) be a poset, and let u, v ∈ V be distinct. Then u ≺P v if and

only if there exists a linear order L ∈ L (P ) such that u ≺L v and there is no linear order

L′ ∈ L (P ) such that v ≺L′ u.

Proof. First, assume that u ≺P v. Let L ∈ L (P ) be any linear extension of P . As in the

proof of Lemma 2, let A = {w ∈ V | w <P u or w <P v}, B = {w ∈ V | u <P w or v <P

w}, and C = V \ (A ∪ B ∪ {u, v}). Construct a linear order L = (V, <L) as follows. Start

with a linear extension of (A, <P ), follow it with a linear extension of (C, <P ), follow that

with u and then v, and conclude with a linear extension of (B, <P ). As in the proof of

Lemma 2, L is a linear extension of P that has u ≺L v. Since u <P v, every linear extension

L′ of P has u <L′ v and therefore not v ≺L′ u.

Now, assume that there exists a linear order L ∈ L (P ) such that u ≺L v and there is

no linear order L′ ∈ L (P ) such that v ≺L′ u. Since u ≺L v, either u ≺P v or u ‖P v. Since

there is no L′ ∈ L (P ) such that v ≺L′ u, by Lemma 2, u and v cannot be incomparable in

P . Hence, u <P v and u ≺P v.

With Lemma 3, the cover relations of a poset can be computed from the cover relations

of all of its linear extensions.
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ALGORITHM: GeneratingPosetTwo

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: A poset P on V such that L (P ) = Υ, if one exists.

1 ⊲ First, set up a matrix to record cover relations in all linear orders

2 for u ← 1 to n do for v ← 1 to n do Cu,v ← 0

3 ⊲ Next, record each of the n − 1 cover relations for each of the m linear orders

4 for i ← 1 to m do for (u, v) ∈ ≺Li
do Cu,v ← 1

5 ⊲ Then extract the cover relations from the matrix

6 ≺P ← ∅

7 for u ← 1 to n − 1

8 do for v ← u + 1 to n

9 do if Cu,v = 1 and Cv,u = 0

10 then ≺P ← ≺P ∪ {(u, v)}

11 else if Cu,v = 0 and Cv,u = 1

12 then ≺P ← ≺P ∪ {(v, u)}

13 <P ← transitive closure (≺P )

14 if Υ = L (P )

15 then return P

16 else return failure

Figure 5: An O
(

mn + n3
)

-time algorithm to solve Generating Poset
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Theorem 4. The Generating Poset problem can be solved in O
(

mn + n3
)

time.

Proof. Algorithm GeneratingPosetTwo (Figure 5) is used to solve Generating Poset

in the requisite time. Lemma 3, together with the uniqueness of the transitive closure,

assures us that the poset P created in the two algorithms in Figures 4 and 5 are the same.

This proves the correctness of the second algorithm. The time complexity of the algorithm

is as follows. Setting up the n × n matrix C is done in O
(

n2
)

. Steps 4 requires O(mn)

time since there are n− 1 cover relations in each of the O(m) linear orders. Extracting the

cover relations in Steps 6–12 requires O
(

n2
)

time. Computing the transitive closure from

the cover relations can be done in O
(

n3
)

time using the Floyd-Warshall algorithm. Finally,

verifying the generated linear extensions of the computed poset requires O(mn) time, as

discussed in the proof for Theorem 1. Therefore, the algorithm GeneratingPosetTwo

has running time O
(

mn + n3
)

. The theorem follows.

It should be noted that the number m of linear extensions of a given poset on n ele-

ments is, in the worst case, n!. Algorithm GeneratingPosetTwo is more efficient than

algorithm GeneratingPosetOne when mn+n3 is asymptotically smaller than mn2, that

is, when n = o(m).

We conclude this section with a corollary that states a similar result for a more relevant

version of the problem. The candidate poset computed by both algorithms presented in

this section in fact produces the best poset possible, if we relax the problem constraints

and allow the poset to generate extensions outside the input set:

Poset Super-Cover

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

SOLUTION: A poset P such that Υ ⊆ L (P ) and
∣

∣L (P )
∣

∣ is minimum.

Note that what is desired is a poset that is able to generate all of the input linear orders

with as few as possible extra linear extensions.

Corollary 5. The Poset Super-Cover problem is solvable in polynomial time.
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Use either GeneratingPosetOne or GeneratingPosetTwo for the Generating

Poset problem, but skip the verification step, and simply output the resulting poset.

4 Restricted Generating Poset Problem

If we have any knowledge about the structure of the poset that generates the set of lin-

ear extensions, then specialized algorithms may have time complexity better than that of

either GeneratingPosetOne or GeneratingPosetTwo. In this section, we consider

a restricted version of the Generating Poset problem and apply it to a few classes of

posets.

Let C be a predicate applicable to posets (perhaps C characterizes the Hasse diagram

of a poset). A poset on V that satisfies C is called a C-poset. Each such predicate defines

a class of posets, namely, {P | P is a C-poset}. We define a restricted version of the

Generating Poset problem using a predicate C as follows.

Generating C-Poset (GENPOSETC)

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

QUESTION: Is there a C-poset P on V that generates Υ, that is, such that C(P ) is true

and L (P ) = Υ?

As a simple example, let PATH be the predicate that describes a poset whose Hasse

diagram is a simple path. There is exactly one linear extension associated with such a

poset, namely, itself. Hence, GENPOSETPATH is trivially solvable in polynomial time (in

fact, in O(n) time).

Consider now the predicate TREE defining the class of tree posets. We show that

GENPOSETTREE is solvable in O
(

mn + n2
)

-time.

Theorem 6. There is an O
(

mn + n2
)

-time algorithm to solve GENPOSETTREE.

Proof. The algorithm that we present for this problem is the same as Generating-

PosetTwo, except for the construction of the transitive closure. Since each vertex v ∈ V
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(except for the root) covers exactly one other vertex, we can construct all (u, v) ∈<P by

simply traversing the path from v to the root. This can be done in O(n)-time for each

vertex, and therefore O
(

n2
)

overall. Thus the entire algorithm runs in O
(

mn + n2
)

-time.

The theorem follows.

To develop an efficient algorithm for the Generating Poset problem applied to leveled

posets, we first make the following definition and present some useful results related to it.

Define the depth depth(v; P ) of element v in poset P as 1 plus the number of elements

less than v:

depth(v; P ) = 1 +
∣

∣{u ∈ V | u <P v}
∣

∣.

Thus, for a linear order L = (v1, v2, ..., vn), the depth of a vertex vi is given by L−1[vi] = i.

The depth of any vertex in a poset can be determined from the linear extensions of the

poset, as follows.

Lemma 7. Let P = (V, <P ) be any poset. For any element v ∈ V ,

depth(v; P ) = min
{

depth(v; L) | L ∈ L (P )
}

.

Proof. Let A = {u ∈ V | u <P v}. Let L ∈ L (P ) be any linear extension of P . Since

u <P v implies u <L v, we have A ⊆ {u ∈ V | u <L v} and hence depth(v; P ) ≤ depth(v; L).

Let B = V \ (A ∪ {v}). Construct a linear order L′ on V as a linear extension of (A, <P ),

followed by v, and followed by (B, <P ). (L′ matches the pattern AvB.) It is straightforward

to check that L′ is a linear extension of P . Moreover, depth(v; L′) = 1+ |A| = depth(v; P ).

We conclude that

depth(v; P ) = min
{

depth(v; L) | L ∈ L (P )
}

.

Another result, specifically for leveled posets, is presented next.
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Lemma 8. Let P = (V, <P ) be a leveled poset with leveling V1, V2, . . . , Vk. Let ℓ0 = 0 and

ℓi =
∑i

j=1 |Vj |, for 1 ≤ i ≤ k. Then, |L (P ) | =
∏k

j=1 |Vj |! =
∏k

j=1(ℓj − ℓj−1)!. Fix i such

that 1 ≤ i ≤ k, and fix v ∈ Vi. Then, for all L ∈ L (P ), the depth of v in L satisfies

ℓi−1 + 1 ≤ depth(v; L) ≤ ℓi. Let d satisfy ℓi−1 + 1 ≤ d ≤ ℓi. Then, the number of linear

extensions L of P for which depth(v; L) = d is |L (P ) |/|Vi|.

Proof. A linear extension of P is constructed by starting with the ℓ1 − ℓ0 elements of V1,

in any order, followed by the ℓ2 − ℓ1 elements of V2, in any order, and continuing until

it is concluded by the ℓk − ℓk−1 elements of Vk, in any order. The number of ways of

constructing a linear extension is therefore |L (P ) | =
∏k

j=1(ℓj − ℓj−1)!. If L is such a linear

extension, then the depth of v in L satisfies ℓi−1 + 1 ≤ depth(v; L) ≤ ℓi, by construction.

Also by the construction, the number of linear extensions L of P for which depth(v; L) = d

is |L (P ) |/|Vi|.

Theorem 9. Let LEVELED be the predicate defining the class of leveled posets. There is

an O
(

mn + n2
)

-time algorithm to solve GENPOSETLEVELED.

Proof. Algorithm GeneratingLeveledPoset in Figure 6 solves the given problem. The

correctness is established by Lemma 8. For the running time of the algorithm, setting up

the Min and Max arrays is done in O(n) time while updating them is done in O(mn) time.

Producing the sorted array A can be done in O(n log n) time using mergesort. Checking

if Lemma 8 is satisfied in lines 7–11 is done in O(n) time, while building the partial order

is in O
(

n2
)

time. For the last part, checking whether the number of linear extensions of

P matches the size of Υ can actually be done in constant time if the sizes of the vertex

partitions are computed while performing the Lemma 8 check. Thus, the overall running

time of the algorithm is O
(

mn + n2
)

. The theorem follows.
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ALGORITHM: GeneratingLeveledPoset

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: A leveled poset P on V such that L (P ) = Υ, if one exists.

1 ⊲ Derive the min and max depths of every vertex in every linear extension

2 for v ← 1 to n

3 do Min[v] ← min
L∈Υ

depth(v; L)

4 Max[v] ← max
L∈Υ

depth(v; L)

5 ⊲ Check whether Lemma 8 is satisfied

6 A[1..n] ← V sorted by Min value

7 for j ← 1 to n − 1

8 do u ← A[j]

9 v ← A[j + 1]

10 if not ((Min[u] = Min[v] and Max[u] = Max[v]) or Max[u] < Max[v])

11 then return failure

12 ⊲ Build the partial order, if passed the Lemma 8 check

13 <P ← ∅

14 for u ← 1 to n − 1

15 do for v ← u + 1 to n

16 do if Min[u] < Min[v]

17 then <P ← <P ∪ {(u, v)}

18 else if Min[u] > Min[v]

19 then <P ← <P ∪ {(v, u)}

20 if |Υ| = |L (P ) |

21 then return P

22 else return failure

Figure 6: A polynomial-time algorithm to solve GENPOSETLEVELED
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5 Poset Cover Problem

A poset cover for a set Υ of linear orders on V is a set P of posets such that the union of

all linear extensions of all posets in P is Υ, that is, such that Υ =
⋃

P∈P L (P ). There is

always at least one poset cover of Υ, since Υ is a poset cover of itself. The computationally

interesting problem is to minimize the number of posets in a poset cover. As a decision

problem, this is the following.

Poset Cover

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}

and an integer K ≤ m.

QUESTION: A poset cover P = {P1, P2, . . . , Pk} of Υ such that k ≤ K.

Most sets of linear orders do not have a corresponding generating poset. Hence, the

Poset Cover problem is usually the one that must be addressed. Heath and Nema [15],

however, have recently proved that Poset Cover is NP-complete. Hence, to investigate

polynomial-time solvable variants of Poset Cover, we restrict our attention to poset

covers whose elements come from a particular class. Let C be any predicate defined on

posets. The restricted decision problem is the following.

C-Poset Cover (COVERC)

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}

and an integer K ≤ m.

QUESTION: A poset cover P = {P1, P2, . . . , Pk} of Υ such that k ≤ K and such that C(Pi)

is true for every Pi ∈ P.

We begin by developing notation for partial covers, which will be the candidate members

for the poset cover.

A poset P = (V, <P ) is a partial cover of Υ if L (P ) ⊆ Υ, that is, if every linear

extension of P is one of the linear orders in Υ. A partial cover P = (V, <P ) is maximal in

Υ if there is no poset P ′ 6= P on V such that P ′ ⊑ P and L (P ′) ⊆ Υ.
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The number of partial cover posets for a set Υ of m linear orders may be exponential

in m. However, if we restrict our attention to some particular classes of posets, it may be

possible to show that the number of maximal partial covers in that class is polynomial in

m and indeed can be generated in polynomial time.

Recall that a kite poset is a hammock poset with a single hammock. For kite posets,

there exists a polynomial time algorithm for determining partial covers of such types from

a given set of linear orders, as shown in the next theorem.

Theorem 10. Let Υ = {L1, L2, . . . , Lm} be a nonempty set of linear orders on V =

{1, 2, . . . , n}. The set of all partial cover kites for Υ can be generated in O
(

mn3
)

time.

Proof. Let P be a kite poset that is a partial cover of Υ. Let Vh ⊂ V be its hammock, and

let u, v ∈ V be the unique elements such that, for all w ∈ Vh, we have u ≺P w ≺P v. Let

k = |Vh|, let i = depth(u; P ), and let j = depth(v; P ). It follows that 1 ≤ i < j ≤ n and

j − i = k + 1 ≥ 3. We search for the elements u and v by considering the O
(

n2
)

possible

i, j pairs. For a linear order L = (v1, v2, . . . , vn), define its i, j-restriction to be

L(i, j) = (v1, v2, . . . , vi−1, vi, vj , vj+1, . . . , vn).

For a given i, j pair, sort the elements of Υ by their i, j restrictions, ordered by the

entries from the leftmost to the rightmost. This can be done in O(mn) time using radix

sort. Let Lr ∈ Υ. There is a partial cover kite(k) poset that has linear extension Lr if

and only if there are k! elements of Υ having the same i, j restriction as Lr. This is easily

determined by scanning the sorted linear orders in O(mn) time. Thus, detecting partial

cover kites requires O
(

mn3
)

time.

Each kite requires O
(

n2
)

time to construct. We now count the number of possible kite

posets that can be returned by this algorithm. Fix k, where 2 ≤ k ≤ n − 2. There are

n − k − 1 possible i, j pairs for kite(k) posets. For a fixed i, j pair, there are at most m/k!
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kite(k) posets. We obtain the following upper bound on the total number of kite posets:

n−2
∑

k=2

m(n − k − 1)

k!
≤ mn

n−2
∑

k=2

1

k!

< mne

= O(mn).

We conclude that it takes O
(

mn3
)

time to construct O(mn) kite posets. Consequently,

the running time of this algorithm is O
(

mn3
)

. The theorem follows.

Theorem 11. COVERKITE(2) can be solved in O
(

m1.5n + mn3
)

time.

Proof. For a set Υ of linear orders on V , the set of all partial cover posets that satisfy the

predicate KITE(2) can be generated in O
(

mn3
)

time as shown in the proof of Theorem 10.

Let p be the number of partial cover posets returned; clearly, p = O(mn), since every linear

order is associated with n − 3 kite posets satisfying KITE(2). Construct an undirected

graph with vertex set Υ and an edge between Lr and Ls if one of the generated posets

has both Lr and Ls as linear extensions. This graph has m vertices and p edges. We

need to choose a minimum set of edges such that every linear order is incident on one of

the edges. This can be accomplished as follows. Find a maximum matching in the graph

using the algorithm of Micali and Vazirani [24], which runs in O
(

m1/2p
)

= O
(

m1.5n
)

time.

Choosing the kite poset for each of the edges in a maximum matching plus one edge for

every unmatched vertex yields an optimal solution to COVERKITE(2).

We move our attention to hammock(2,2,2) posets; let HAMMOCK(2, 2, 2) be

the predicate that describes such posets. We now show the NP-completeness of

COVERHAMMOCK(2,2,2), using a reduction similar to that in Heath and Nema [15]. In par-

ticular, we reduce from Cubic Vertex Cover, a known NP-complete problem (see [11]),

which is defined here.

Cubic Vertex Cover

INSTANCE: A nonempty undirected graph G = (V, E) that is cubic, that is, in which every

vertex has degree 3; and an integer K ≤ |V |.

18



QUESTION: Is there a subset V ′ ⊂ V of cardinality K or less such that every edge in E is

incident on at least one vertex in V ′?

The main idea in the reduction is to represent edges with linear extensions, and vertices

with hammock(2,2,2) posets, so that a linear extension representing an edge (u, v) can only

be covered by the hammock posets representing the vertices u and v. We construct it in

such a way that if a vertex cover contains a particular vertex, then the corresponding poset

cover contains the corresponding hammock poset. This intuition is further elucidated in

the proof of the following theorem.

Theorem 12. The problem COVERHAMMOCK(2,2,2) is NP-complete.

Proof. First, we show that COVERHAMMOCK(2,2,2) is in the class NP. Let Υ =

{L1, L2, . . . , Lm}, V = {1, 2, . . . , n}, and K, where K ≤ m, constitute an instance of

COVERHAMMOCK(2,2,2). Let P be a set of posets. First, check whether each poset in P

satisfies HAMMOCK(2, 2, 2). Second, check that |P| ≤ K. Third and finally, check that

Υ =
⋃

P∈P L (P ). Generate the linear extensions of every poset P ∈ P, and collect these in

the set Υ′. If Υ′ = Υ, then we have a poset cover. Each hammock(2,2,2) poset has exactly

2!2!2! = 8 linear extensions that can be easily generated in polynomial time. Collecting

these linear extensions into a single set Υ′ and then comparing this set with Υ can also

be done in polynomial time using known efficient algorithms for set union and comparison.

Thus, COVERHAMMOCK(2,2,2) is in NP. To complete the proof of the theorem, we show a

polynomial-time reduction from Cubic Vertex Cover to COVERHAMMOCK(2,2,2).

Let G = (VG, EG) and K ′ ≤ |V | be an instance of the Cubic Vertex Cover problem.

If nv = |VG| and ne = |EG|, then ne = 3nv/2, since G is a cubic graph. Figure 7 shows an

example of a cubic graph with nv = 6 and ne = 9. Construct the corresponding instance of

COVERHAMMOCK(2,2,2) as follows. Let n = 3(ne+3)+1, so the base set is V = {1, 2, . . . , n}.

Let the base linear order be Lb = (1, 2, . . . , n), here written in permutation notation. For

19



e 89e

e 6

6v

e 4

4v

3e3v
e 2

7e
v 2e 1

v 1

5e v 5

Figure 7: A cubic graph example.

our example, n = 37 and

Lb = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37).

For 1 ≤ i ≤ ne +3, define the i-swap pair to be (3i−1, 3i). If L is a linear order on V , then

its i-swap L[i] is obtained from L by swapping the two elements of V in its i-swap pair. We

extend the notation to any number of swaps, so that L[i, j, k] = ((L[i])[j])[k]. (Note that

the order of swapping does not matter, since different swap pairs are disjoint.) Without

loss of generality, assume that the edges of G are e1, e2, . . . , ene . The linear order for ei is

Lei
= Lb[i]. For example, for edge e2, we have

Le2
= (1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37).

Let x = ne + 1, y = ne + 2, and z = ne + 3. Let L be a linear order on V . Define the

set of cleanup linear orders for L to be

C[L] = {L, L[x], L[y], L[z], L[x, y], L[x, z], L[y, z], L[x, y, z]} .

Then there is a unique hammock(2,2,2) poset that covers C[L]; call that poset P [L].

We choose the set of linear orders to be Υ = {Lb}∪{Lei
| ei ∈ EG}∪C, where the cleanup

set C is defined later. Fix v ∈ VG. Assume that v is incident on edges ei, ej , and ek. Define
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the poset Pv to be the unique hammock(2,2,2) poset such that
{

Lb, Lei
, Lej

, Lek

}

⊂ L (Pv).

Note that, in fact,

L (Pv) = {Lb, L[i], L[j], L[k], L[i, j], L[i, k], L[j, k], L[i, j, k]} .

Since we want the Pv’s to be the posets to cover the linear orders for the edges, we must

put the additional four linear orders in C. Since we do not want to be forced to choose

every Pv, we must put even more linear orders in C to provide alternative posets to cover

the additional four linear orders. In particular, define the set

Lv = C[L[i, j]] ∪ C[L[i, k]] ∪ C[L[j, k]] ∪ C[L[i, j, k]].

Lv contains all additional four linear orders in L (Pv). Moreover, Lv is exactly covered by

the cleanup posets P [L[i, j]], P [L[i, k]], P [L[j, k]], and P [L[i, j, k]].

We can now define C, which is

C =
⋃

v∈VG

Lv.

Careful counting shows that |C| = 32nv and that |Υ| = 1 + ne + 32nv.

To complete the instance of COVERHAMMOCK(2,2,2), define K = K ′ + 4nv.

We claim that G has a vertex cover of size ≤ K ′ if and only if Υ has a hammock(2,2,2)

cover of size ≤ K. First, suppose that G has a vertex cover of size ≤ K ′. Let that

vertex cover be V ′ ⊆ VG. Any hammock(2,2,2) cover of Υ must contain the 4nv cleanup

posets. To cover the base linear order and the edge linear orders, it suffices to choose

the K ′ vertex posets Pv, where v ∈ V ′. Hence, Υ has a hammock(2,2,2) cover of size

|V ′| + 4nv ≤ K ′ + 4nv = K, as required. Now, suppose that P is a hammock(2,2,2) cover

of size |P| ≤ K. As before, P must contain all 4nv cleanup posets, plus some number of

vertex posets Pv. It is clear that these vertex posets correspond to a vertex cover of size at

most K − 4nv = K ′, as required.

It is easy to see that (Υ, V, K) can be constructed in polynomial time in the size of

the Cubic Vertex Cover instance. Hence, we have demonstrated a polynomial-time

reduction of Cubic Vertex Cover to COVERHAMMOCK(2,2,2). The theorem follows.
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6 Conclusions

This paper has formalized problems related to identifying sets of posets that summarize or

compress order-theoretic data sets. Through formalization, we hope to open the door for

greater research into these problems. We have presented polynomial-time algorithms for

Generating Poset and provided some complexity results for Poset Cover. While the

problems bear much resemblance to classical set cover problems, they also have striking

differences, as the objects to be used in a solution are only available implicitly, rather than

explicitly given as in set cover problems. Future work may be directed with complexity

results on relaxed variations of Generating Poset that allow the poset to generate a ma-

jority of the input set. There are also variations of Poset Cover that ask for approximate

solutions. For example, one might allow a solution that is a set of posets that has linear

extensions outside of the input set of linear orders; in this case, one must decide what it

means to have a good approximation.
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