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Green computing, an emerging field of research that seeks to reduce excess power con-
sumption in high performance computing (HPC), is gaining popularity among researchers.
Research in this field often relies on simulation or only uses a small cluster, typically 8 or 16
nodes, because of the lack of hardware support. In contrast, System G at Virginia Tech is
a 2592 processor supercomputer equipped with power aware components suitable for large
scale green computing research. DIRECT is a deterministic global optimization algorithm,
implemented in the mathematical software package VTDIRECT95. This paper explores
the potential energy savings for the parallel implementation of DIRECT, called pVTdirect,
when used with a large scale computational biology application, parameter estimation for a
budding yeast cell cycle model, on System G. Two power aware approaches for pVTdirect
are developed and compared against the CPUSPEED power saving system tool. The results
show that knowledge of the parallel workload of the underlying application is beneficial for
power management.
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1. Introduction

As an effective means of scientific discovery and solving engineering problems, high performance

computing (HPC) tends to emphasize performance at all costs. The computing power of the fastest

computing machine doubles every year. Roadrunner, the current leader on the Top 500 list, reaches

1 petaFLOPS. However, power and energy consumption have also increased dramatically over the

years. The Earth Simulator, at one time the world’s fastest supercomputer, consumes 7 megawatts

of power [9]. Recently, several of the most powerful supercomputers require up to 10 megawatts of

peak power, enough to sustain a city of 40,000 people.

High performance clusters with lower frequency cores such as IBM’s Blue Gene were built

in response to concerns over power and energy consumption. Blue Gene uses 700MHz cores as

opposed to the 2GHz cores that are common in commodity computers and works well for many

scientific applications.

Dynamic voltage and frequency scaling (DVFS) in CPU cores provides a flexible tool to save

power and energy. This technology enables processors to adjust voltage and frequency under

software control. In a DVFS context, low frequency cores are simply cores that have been adjusted

to run at a low frequency, so it is expected that the power/performance success of Blue Gene could

be achieved by a cluster equipped with DVFS cores.

There has been some research utilizing DVFS tools to save power for scientific computing

applications [9, 11, 12, 19, 20, 23]. Some of this research is in the realm of serial applications

[19, 20]. Other researchers have touched upon parallel applications, mostly on a scale less than 16
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nodes [9, 11, 12, 19, 23]. There exist two difficulties in conducting large scale power aware research.

First, simulation is not practical. Large scale scientific applications running on supercomputers

take days to finish and would take much longer if running on simulators. Second, for real system

experiments, current power measurement technology is a barrier. Popular power meters like “Watts

Up?” [29] don’t scale well to large clusters and thus are only suitable for serial machines or very

small clusters.

In the infancy of power aware scientific computing, application specific study is important to

understand the potential for power conservation with different applications. More importantly,

methods developed for individual applications can usually be generalized to work on other appli-

cations. Finally, it is worthwhile to try to save power for widely used applications, such as the one

considered here.

The package VTDIRECT95, a Fortran 95 implementation of D. R. Jones’ deterministic global

optimization algorithm DIRECT [21], was developed by J. He, L. T. Watson, and M. Sosonkina and

consists of both a serial and a parallel version. DIRECT is widely used in many multidisciplinary

design optimization problems such as high speed civil transport aircraft design [4], pipeline design

[7], aircraft routing [5], surface optimization [30], wireless communication transmitter placement

[16], molecular genetic mapping [24], and cell cycle modeling [26]. Moreover, DIRECT represents

a generic category of random memory access and random communication programs in HPC [14,

15], and is therefore a good candidate for power aware computing research.

This paper studies the power conservation potential of pVTdirect, the parallel version in

VTDIRECT95, and proposes two power aware schemes for pVTdirect. Cao and Watson [6] studied

power conservation for VTdirect, the serial version in VTDIRECT95.

2. Related work

There are two notable lines of inquiry among power aware high performance computing studies that

make use of DVFS techniques. The first uses performance profiling as a guide for inserting DVFS

functions. The earliest work of Hsu et al. [20] profiles sequential programs during the compilation

phase and finds a repeated region of code, such as a loop, that benefits most from a lower frequency

setting. Ge et al. [11] use PMPI to profile MPI communications, determine appropriate processor

frequencies for each phase, and instrument source code with DVFS scheduling.

The second approach is to design a system tool that monitors run-time behavior of a program

and does DVFS scheduling automatically and transparently. CPUSPEED is an interval-based

DVFS scheduler for Linux distribution that adjusts the CPU frequency based on CPU utilization

during the past interval. Hsu and Feng [19] propose the β-adaptation algorithm that automatically

adapts the voltage and frequency based on the average retired MIPS. Ge et al. [12] also use

performance monitoring and workload prediction in their CPU MISER.

The first approach, performance profiling, assumes there is no performance variance between

different runs of a same program. This may be true for simple computational kernels or artificial

problems, but is certainly not true for real large scale scientific applications, as will be shown

later in this paper. The second approach, dynamic tool implementation, also has its limitations.

Dynamic system tools base their DVFS scheduling policies on the performance of a local process. In

a parallel application, where there are hundreds or thousands of processes running simultaneously,

a good local policy does not always work well globally. This will also be shown later in this paper.

There are also a few works of a more theoretical nature. Cho and Melhem [8] study optimal

energy consumption for a classic model that decomposes a program into a serial portion and a

parallel portion. The same program model is also used in Amdahl’s Law [2]. Cao and Watson et
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al. [6] decompose a sequential program into on-chip and off-chip portions and find optimal energy

consumption without performance degradation. This study was a first step for the current study

as it demonstrated the CPU intensiveness of VTDIRECT programs.

3. Budding yeast problem

The chosen test problem is global parameter estimation for an ordinary differential equation model

of protein interactions governing the cell cycle of a budding yeast cell (Saccharomyces cerevisiae).

This problem was chosen because it is a real problem of current interest to biologists—a production

run takes 10 hours on 1024 processors. The cell cycle of budding yeast refers to the sequence of

events that take place in a cell leading to its replication and consists of four phases (G1, S, G2,

and M). A newborn cell starts in the G1 phase, during which the size of the cell grows until it is

ready for the DNA synthesis (S) phase. After DNA synthesis, the cell enters the G2 phase and

continues to grow until everything is ready for the mitosis (M) phase. In the M phase, two copies

of each DNA molecule are separated to different compartments and the cell divides into two new

G1 phase cells. The cell cycle then starts again.

The cell cycle is believed to be regulated by chemical protein interactions. Following the

development in [26], these protein interactions are modeled using ordinary differential equations

that describe the protein concentrations in each phase. In general, the concentration of protein [A]

is described by

d[A]

dt
= synthesis − degradation − binding + dissociation − inactivation + activation,

where [A] is the concentration of protein A, and each term on the right-hand side corresponds to

the rate of a certain process involving protein A. For example, “synthesis” is the rate at which new

protein A molecules are synthesized from amino acids (which depends on the concentration of active

messenger RNA molecules for a particular protein), and “degradation” is the rate at which protein

A is broken down into amino acids and polypeptide fragments (which depends on the activity of

specific proteolytic enzymes). Each of these rates is itself a function of the concentrations of the

interacting species in the cell. For example,

synthesis = k1[transcription factor],

degradation = k2[proteolytic enzymes] [A].

The budding yeast cell cycle model consists of 36 such differential equations with 143 rate

constant parameters (ks.). For each parameter vector (s1, s2, ..., s143), the system of ordinary

differential equations can be solved and the concentrations of proteins during a cell cycle time

course obtained. This time course data is transformed to quantities that can be experimentally

measured (e.g., cell mass at division, cell division time, failure to exit a particular phase) so that

the predictive power of the model can be assessed. The goal is to find a parameter vector that

maximizes the predictive power of the model, or equivalently, minimizes the discrepancy between

predictions and observations.

Estimating these parameters is formulated as a global optimization problem. In the budding

yeast cell cycle problem, the objective function to be minimized is defined as

f(x) =

Nm
∑

j=1

µjR(Oj , Pj(x)).
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In the above equation, Oj and Pj(x) denote an experimental outcome and model prediction,

respectively, for mutant j and model parameters x (143-dimensional vector). R(Oj , Pj(x)) is a

nonnegative rating function (see [1]). µj > 0 is a weight indicating the relative importance of the

jth mutant. The smaller the objective value, the better the match between experimental outcome

and model prediction; an objective value f(x) = 0 indicates a perfect match.

This parameter estimation problem is highly nonlinear and has a number of local minima. The

objective function is Lipschitz continuous, but not C1, prohibiting the use of standard gradient

based optimization algorithms.

This budding yeast cell cycle problem is representative not only of a category of computational

biology problem, but also of a more general class of modeling problems known as inverse problems.

Inverse problems often arise in computational biology, medical imaging, geophysics, and other fields

where the values of some model parameter(s) must be estimated from the observed data [3].

4. VTDIRECT95 package

DIRECT is a deterministic search algorithm for solving global optimization problems. DIRECT is

guaranteed to find an arbitrarily accurate approximation to the global optimum since in the limit

it is an exhaustive grid search. Additional characteristics of DIRECT make it very appealing and

effective in practice [10]. When applied to a quantitative trait loci (QTL) detection problem in

computational biology, Ljungberg et al. [24] confirm that DIRECT is superior to an exhaustive

grid search or n-dimensional bisection and report that DIRECT is faster and more accurate than a

genetic algorithm. Zhu et al. [30] found that, in an application to slider air-bearing surface (ABS)

optimization for magnetic hard disk drive design, DIRECT converges to a global optimum faster

then adaptive simulated annealing.

The general optimization problem is to find the point p that minimizes the given objective

function f defined in the N -dimensional domain D = {x ∈ EN | l ≤ x ≤ u}, where l and u are

lower and upper bounds on x. Notice the search domain is a hyper-rectangle.

The algorithm first scales the search domain to a unit hypercube and calculates the center of

the search domain, then samples two points along each dimension and divides the search domain

into several hyper-rectangles called boxes. In the SELECTION phase the algorithm proceeds to

select potentially optimal boxes. In the SAMPLING phase the algorithm samples points along

each maximum dimension in the boxes. During the DIVISION phase the algorithm divides the

potentially optimal boxes again into several further boxes before going back to SELECTION. The

definition of a potentially optimal box is a little subtle: it is a box, for some Lipschitz constant,

that contains a point with a potentially smaller function value than that at points in any other

boxes. The detailed definitions and procedures can be found in [17, 21].

The three most important operations are SELECTION, SAMPLING, and DIVISION de-

scribed above. These operations form the main body in the serial code VTdirect (a dynamic data

structure implementation of DIRECT) and are implemented in the following nested loop structure.

outer loop:

SELECTION

inner loop:

SAMPLING

DIVISION

end inner loop

end outer loop
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Figure 1. The parallel scheme.

The parallel version pVTdirect employs a master-worker paradigm. There is an inherent

sequential order to the algorithm: SELECTION must precede SAMPLING, which in turn must

precede DIVISION. For high dimensional optimization problems, a large number of points are

generated for SAMPLING at each iteration. Each SAMPLING task (function evaluation) can be

expensive in real world applications. In the budding yeast problem, it takes tens of seconds to

evaluate the objective function on a 2.3GHz PowerPC G5 processor. These circumstances strongly

suggest a parallel implementation of the algorithm.

In pVTdirect, masters are responsible for SELECTION and DIVISION, while workers do

SAMPLING. The number of subdomains and the number of masters within each subdomain can

be specified by the user. Workers are shared among all subdomain masters. At the start of the pro-

gram, the search domain is divided into several subdomains. Multiple subdomains result in better

load balance but create more function evaluation tasks, resulting in a higher workload. Multiple

masters in a subdomain are necessary when the amount of intermediate data grows beyond the

memory capacity on a single machine. This potentially complicates the operation of SELECTION

and DIVISION, as multiple masters must then collaborate on these tasks. SELECTION is a convex

hull computation on a group of points. Convex hull computation can be done efficiently in parallel

[18]. SELECTION and DIVISION can therefore be done smoothly in the context of multiple mas-

ters without incurring much overhead. Figure 1 [18] shows the logical organization of subdomains,

masters, and workers. SDi denotes the ith subdomain, SMi,j denotes the jth master in the ith

subdomain with SMi,1 being the root master of the ith subdomain, and Wks are workers.
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Figure 2. Latency comparison for mpi send on System G.

5. Tools

5.1 System G

System G (short for “System Green”) is a $1.1 million cluster that is currently the world’s largest

power aware computer research cluster. System G has on-board power and thermal sensors acces-

sible via software specifically implemented for power aware research. The cluster consists of 324

Apple Mac Pro systems, with two quad-core 2.8 GHz Xeon processors and 8GB memory per node,

and a Mellanox QDR InfiniBand interconnect, the first QDR deployment for Mellanox. The cluster

has achieved 23.4 TFlops. There are 30+ thermal sensors and 30+ power sensors in each Mac Pro.

Raritan smart power strips provide accurate AC power measurement at the node level. Each node

has DVFS capacity at the core level with two frequency steps, 2.4GHz and 2.8GHz. Kim et al.

[22] show that per-core DVFS has an advantage over coarse grained DVFS with respect to saving

energy. System G has over 20,000 power, thermal, and performance sensors for use in studying the

effects of scaled software aimed at improving the power, energy, and thermals in high-performance

computing applications.

5.2 Interconnect performance

In power aware computing, intensive communication phases are generally good places to save

energy for large scale scientific applications. Methodologies used in this paper take advantage of

such communication phases. Different interconnect media have a noticeable difference in latencies.

A slower network interconnect clearly offers more CPU slackness during communication phases

than a faster network interconnect, and thus provides a higher potential savings in energy. Such

a slow network interconnect, however, is also likely to become an undesirable bottleneck for the

performance of an application. System G is equipped with both InfiniBand and gigabit Ethernet.
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Figure 3. Bandwidth comparison for mpi send on System G.

Their performances are compared here using the OSU benchmarks [25]. The Mellanox QDR

InfiniBand interconnect is capable of delivering 40Gbits/s. The software package MVAPICH2 [25]

for MPI is used when testing InfiniBand, while the MPICH2 package [13] is used for testing gigabit

Ethernet.

Figures 2 and 3 show that InfiniBand has about 20–30 times less latency and more bandwidth

than gigabit Ethernet for point to point communication (mpi send). For collective communications

like mpi bcast and mpi alltoall, experiments show that gigabit Ethernet is hundreds of times slower

than InfiniBand for a large number of nodes. Figures 4 and 5 show InfiniBand latency for the two

operations on 512 nodes on System G.

Experiments in this paper use InfiniBand for MPI communications. As these figures and later

results show, energy savings achieved in the experiments are not due to bottlenecks caused by a

slow network interconnect.

6. Methodology

6.1 Process to core mapping

The methodology used in this experiment is to insert frequency scaling instructions directly into

the code. In order to make this work, a mechanism that ensures a one-to-one mapping from

processes to cores is needed, as each process is directly controlling the core it is running on. If

the process to core mapping is not one-to-one, several processes would be attempting to control

one core at the same time. Not only would performance be compromised in this scenario, but the

DVFS scheduling scheme would be contaminated. One way to ensure this one-to-one mapping

property is to explicitly specify the number of processes to run on a single node and to guarantee

the number of processes does not exceed the number of cores in a node. This explicit specification

is possible with both MVAPICH2 and MPICH2. In experiments, each node is specified to run 7
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or 8 MPI processes (each node has 8 cores on System G) and assigned a one-to-one mapping from

processors to cores. The following algorithm efficiently accomplishes this, involving only one all

gather communication executed by each process.

1. Get the size of the world communication pool, world size.

2. Get the rank r of the process in the global communication pool.
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3. Allocate an array of integers, machine(1:world size), that is used to store the machine ID

for each process.

4. Get the physical machine ID the process r is running on, and set machine(r) equal to this

ID.

5. Do an all gather communication for the array ‘machine’. That is, each process receives a

copy of the full array and knows the machine ID of every process.

6. Assign processes to cores. If process i is running on machine j, find its relative rank k

among all the processes that are running on machine j, then assign the kth core on machine j to

process i.

6.2 Local approach

The serial code VTdirect in VTDIRECT95 is a CPU intensive application [6]. More precisely,

though VTdirect involves many random memory accesses, the function evaluation tasks are often

so CPU intensive that they completely mask the memory accesses.

In pVTdirect, the CPU intensive portions and memory intensive portions of the program are

performed by workers and masters, respectively. There is also a nontrivial amount of communi-

cation going on between masters and workers. This observation leads naturally to the following

power-aware scheme.

1. On the masters, memory operations dominate the critical path. There are therefore many

chances to reduce the CPU frequency without overly affecting performance, leading to energy

savings for the masters with little performance degradation.

2. On the workers, a large portion of the workload is CPU intensive. Reducing the CPU

frequency will have a corresponding adverse affect on performance, which greatly reduces the

opportunity for energy savings with an acceptable performance impact.

3. The communication-intensive phases are ideal for saving energy. When large numbers of

communications are occurring between masters and a large pool of workers, the CPUs are largely

idle, which allows for a CPU frequency reduction with minimal performance impact. There is

also a good deal of message passing needed at program termination. Moreover, different workers

finish work at different times as the program concludes. This load imbalance is similarly a good

opportunity for CPU frequency reduction.

The following (Code 1) is a sketch of the most important subroutines and steps in pVTdirect,

with all details omitted and frequency scaling directives inserted.

pVTdirect()

mpi initialization

fix CPU affinity

if (the current process is a master process) then

change frequency to 2.4GHz

allocate data structures

call master()

termination

else

call worker()

end if

change frequency to 2.8GHz

end pVTdirect()
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master()

change frequency to 2.4GHz

initialization

if (the current process is a root subdomain master) then

change frequency to 2.8GHz

sample the first center point

change frequency to 2.4GHz

end if

mpi alltoall, notify others it has passed initialization

LOOP: do while (iteration limit is not reached)

call boxSelection() (SELECTION phase)

assign function evaluation tasks (SAMPLING phase)

division (DIVISION phase)

end do LOOP

clean up

end master()

worker()

change frequency to 2.4GHz

initialization

mpi alltoall, notify others it has passed initialization

OUTER LOOP: do

mpi send, send request

INNER LOOP: do

mpi recv, keep waiting for any message

select case (message)

case (“function evaluation”)

change frequency to 2.8GHz

evaluation

change frequency to 2.4GHz

mpi send, send result

case: (“no point”)

exit INNER LOOP

case: (“termination”)

mpi send, pass “termination” message to other workers

exit OUTER LOOP

case: (others)

end select case

end do INNER LOOP

end do OUTER LOOP

end worker()

boxSelection()

change frequency to 2.4GHz

find local convex hull

mpi barrier

mpi gatherv (root subdomain master gathers all local convex hull boxes)
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if (the current process is a root subdomain master) then

change frequency to 2.8GHz

find global convex hull

change frequency to 2.4GHz

end if

mpi bcast (apportion global convex hull boxes to subdomain masters)

end boxSelection()

Code 1

As shown in the code model, several subdomain masters collaborate in the SELECTION phase

to perform a parallel convex hull selection. Points are distributed between subdomain masters.

Each subdomain master first finds the local convex hull for its assigned points. Since any global

convex hull points must lie on one of the local convex hulls, the root subdomain master only

gathers the local convex hull points and performs convex hull selection on these points. During

the SELECTION phase, the local convex hull selection is memory intensive, as it accesses a large

data structure and performs pointer chasing. The global convex hull selection, however, is CPU

intensive, since the root subdomain master places the points it gathers into an array.

6.3 Global approach

In the case where there is only one subdomain, there is a clear program flow dependence. That is,

SELECTION and DIVISION operations are on the critical path of the program execution. These

operations are performed on the master nodes. While this would seem to offer an opportunity for

saving power, as these operations involve random memory accesses, many worker nodes are idle

waiting for function evaluation jobs. Any power saved at the expense of a small amount of time by

reducing the frequency of the master CPU is therefore offset by the power wasted by the worker

nodes as they await their tasks, due to the imbalance in the numbers of masters and workers.

The global approach is characterized by the following rules.

1. Whenever an operation on a node is on the critical path of the program and there are

other nodes waiting for it to be completed, it is executed as fast as possible. SELECTION and

DIVISION on a subdomain master are two such critical operations, so the CPU is set to its highest

speed throughout these portions of the program.

2. Other operations are given the same treatment as in the Local Approach.

Below (Code 2) is a sketch of the program for the global approach.

pVTdirect()

mpi initialization

fix CPU affinity

if (the current process is a master process) then

change frequency to 2.8GHz

allocate data structures

call master()

change frequency to 2.4GHz

termination

else

call worker()

end if
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change frequency to 2.8GHz

end pVTdirect()

master()

change frequency to 2.8GHz

initialization

if (the current process is a root subdomain master) then

sample the first center point

end if

change frequency to 2.4GHz

mpi alltoall, notify others it has passed initialization

change frequency to 2.8GHz

LOOP: do while (iteration limit is not reached)

call boxSelection() (SELECTION phase)

change frequency to 2.4GHz

assign function evaluation tasks (SAMPLING phase)

change frequency to 2.8GHz

division (DIVISION phase)

end do LOOP

clean up

end master()

worker()

change frequency to 2.4GHz

initialization

mpi alltoall, notify others it has passed initialization

OUTER LOOP: do

mpi send, send request

INNER LOOP: do

mpi recv, keep waiting for any message

select case (message)

case (“function evaluation”)

change frequency to 2.8GHz

evaluation

change frequency to 2.4GHz

mpi send, send result

case: (“no point”)

exit INNER LOOP

case: (“termination”)

mpi send, pass “termination” message to other workers

exit OUTER LOOP

case: (others)

end select case

end do INNER LOOP

end do OUTER LOOP

end worker()

Code 2
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Table 1. Test problems selected from GEATbx [27] and He et al. [14].

Name Description

GR Griewank

f = 1 +
∑N

i=1
xi

2/500 −
∏N

i=1
cos(xi/

√
i)),

−20.0 ≤ xi ≤ 30.0, f(0, . . . , 0) = 0.0

QU Quartic

f =
∑N

i=1
2.2 × (xi + 0.3)2 − (xi − 0.3)4,

−2.0 ≤ xi ≤ 3.0, f(3, . . . , 3) = −29.816N

RO Rosenbrock’s Valley

f =
∑N−1

i=1
100(xi+1 − x2

i )
2 + (1 − xi)

2,
−2.048 ≤ xi ≤ 2.048, f(1, . . . , 1) = 0

SC Schwefel

f = −∑N

i=1
xi sin(

√

|xi|),
−500 ≤ xi ≤ 500,
f
(

420.9(1, . . . , 1)
)

≈ −418.9N

MI Michalewicz

f = −∑N

i=1
sin(xi) × sin(

ix2

i

π
)20,

0 ≤ xi ≤ π, f(x̄) = 0 for x̄ ∈ {0, π}N

BY Budding Yeast
A 143 dimensional parameter estimation
problem for the budding yeast cell cycle

6.4 Power measurement methodology

System G uses intelligent power distribution units (PDUs) to measure the power consumption of

the executing nodes. Each PDU is attached to four or five nodes; using an Ethernet connection,

they are capable of simultaneously reporting power measurements for a large number of nodes.

The power measured here is the system power.

Normally, one machine is used to gather power measurements and do calculations. However,

since this communication-intensive program involves such a huge number of data packets going

into one machine, the probability of missing packets is high. As a consequence, the accuracy of

power measurement is decreased. A distributed power measurement scheme is used to mitigate

this effect. A number of machines are assigned to gather power data, and each is responsible for

an equal number of computational nodes.

All results in this paper are based on this power measurement methodology.

7. Results and discussion

First, a key observation is that real problems (such as BY in Table 1) often have a large variance

for different runs with the same problem size, while artificial problems (such as the first five in

Table 1) usually do not. Function evaluations are very cheap for the artificial problems, with each

function evaluation taking on the order of 10−5s for the 150-dimensional problems tested in this

13



Table 2. Test problem GR, 50 iterations (time in seconds, energy in kilojoules).

cores 210 630 1050
time energy time energy time energy

baseline 244 1,724 101 2,145 69 2,439
CPUSPEED 267 1,791 105 2,137 79 2,634

local 243 1,713 101 2,120 72 2,473
global 242 1,733 100 2,127 72 2,518

Table 3. Test problem QU, 50 iterations (time in seconds, energy in kilojoules).

cores 210 630 1050
time energy time energy time energy

baseline 1,860 14,730 774 18,715 552 22,686
CPUSPEED 2,058 15,330 855 19,360 630 24,267

local 1,868 14,718 759 18,073 576 23,451
global 1,874 14,795 763 18,271 561 22,795

Table 4. Test problem RO, 50 iterations (time in seconds, energy in kilojoules).

cores 210 630 1050
time energy time energy time energy

baseline 1,737 13,143 683 15,936 491 19,500
CPUSPEED 1,953 13,923 762 16,697 548 20,483

local 1,746 13,064 684 15,695 494 19,359
global 1,746 13,197 683 15,770 493 19,388

Table 5. Test problem SC, 100 iterations (time in seconds, energy in kilojoules).

cores 210 630 1050
time energy time energy time energy

baseline 6,960 54,024 2,418 57,322 1,548 62,592
CPUSPEED 7,816 55,647 2,684 59,390 1,708 64,586

local 6,960 53,776 2,416 57,035 1,551 61,946
global 6,981 54,051 2,414 57,231 1,559 62,263

Table 6. Test problem MI, 100 iterations (time in seconds, energy in kilojoules).

cores 210 630 1050
time energy time energy time energy

baseline 8,318 61,254 2,839 64,100 1,763 67,829
CPUSPEED 9,187 64,161 3,145 67,481 1,949 71,066

local 8,395 61,935 2,866 64,698 1,779 67,940
global 8,427 62,205 2,890 65,417 1,795 68,576

experiment. In order to create computational tasks that resemble real applications, each function

evaluation is padded with extra work so that the time needed for one function evaluation is on the

order of 1s or 0.1s. For all test problems except BY, the dimension N = 150. Tables 2–6 give the
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Table 7. Test problem BY, 40 iterations (time in seconds, energy in kilojoules, coefficient of

variation in parenthesis).

cores 400 800 1200
time energy time energy time energy

baseline 4,103 48,216 2,264 54,470 1,622 67,238
(0.10) (0.10) (0.02) (0.02) (0.03) (0.02)

CPUSPEED 4,697 51,569 2,577 57,738 1,830 70,914
(0.03) (0.03) (0.01) (0.01) (0.04) (0.04)

local 3,911 45,436 2,408 55,886 1,752 68,871
(0.02) (0.02) (0.05) (0.05) (0.04) (0.04)

global 3,905 45,260 2,249 52,113 1,653 64,645
(0.05) (0.05) (0.01) (0.01) (0.06) (0.06)

time and energy (mean from four runs) for each task with different numbers of cores used. In these

tables, “baseline” refers to the program run without any DVFS scheduling, while “CPUSPEED,”

“local,” and “global” refer to the program run with these DVFS scheduling policies, respectively.

The coefficient of variation is negligible for these test cases, less than 0.1%, and thus is not reported

here. This behavior is expected for these artificial problems, since all function evaluation tasks are

uniform. This also leads to a good load balance and predictable network communications.

For the budding yeast problem, each case is run four times. Mean and coefficient of variation

(in parentheses) are reported here in Table 7. As can be seen from the table, the coefficient of

variation ranges from 1%–10%. This is typical of large scale scientific applications. For example,

in the budding yeast (BY) problem, the function evaluation tasks are by no means uniform. As

explained above, each function evaluation is a simulation of some biological process. The simulation

model is a system of 36 ordinary differential equations. Function evaluations in the BY problem

consist of solving a system of ODEs and then computing the objective function value from the

solution. The BY code calls the routine LSODAR in the numerical package ODEPACK [28].

LSODAR will dynamically switch between the twelfth order Adams-Moulton method and the fifth

order backward differentiation formula (BDF) method depending on whether the system of ODEs

is nonstiff or stiff. The linear systems that arise are solved by LU decomposition. Depending on

the different parameters (rate constants), the ODE system can be both stiff and nonstiff. The time

needed to solve each system depends on the stiffness of the problem, the initial value, the final

integration time, and the convergence requirement for the solution. The cost of transforming the

time course output to the experimental observables also depends on the nature of the time course.

All of this leads to a nonnegligible variation in the function evaluation time and memory usage,

affecting the communication pattern and timing, and hence ultimately the program running time

and energy consumption.

Second, for tests with the same problem size, energy consumption increases almost linearly

as the number of cores used increases (Figure 6). This coincides with our intuition that more

energy will be consumed if more machines are used. Consider that if the workload is perfectly

parallelizable and evenly distributed to several machines, the total running time will be the serial

running time divided by the number of machines used. The energy consumption will then be the

same for both serial and parallel computation. This is not generally the case. The resulting extra

energy consumption is the price of using parallel computing to achieve higher performance.

15



GR QU RO SC MI
0

1

2

3

4

5

6

7
x 10

4

test cases

en
er

gy
 (

K
J)

Energy consumption for baseline programs

 

 

210 cores
630 cores
1050 cores

Figure 6. Energy consumption comparison for artificial problems. CPU frequency is 2.8GHz.

400 800 1200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of cores

tim
e 

(s
)

Runing time for BY

 

 

baseline

CPUSPEED

local

global

Figure 7. Running time comparison for BY problem.

Third, the global approach is able to reduce energy consumption by up to 6.1% for the BY

problem. See Figures 7, 8, and 9 for comparisons between different schemes in terms of per-

formance, energy saving, and energy delay product (EDP). The CPUSPEED daemon, however,

reduces performance by 14% and increases energy consumption by 7% for the BY problem. The
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energy savings achieved by the global approach are again due to the imbalance in function evalua-

tion tasks. In the BY parameter estimation computation, the communication pattern is relatively

unpredictable and complicated and takes much longer than in the artificial problems. Whenever
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there is synchronization among different processes in the program, some nodes are idle while wait-

ing for the slowest one. Overall idle time is much longer for problem BY than for the artificial

problems. Hand crafted code based on the knowledge of the code and real time workload intelli-

gently locates spots for potential energy savings, but a system tool lacking an overall picture of the

whole application only attempts to save energy for the local process being monitored. This local

behavior may be beneficial to the local process, but it certainly has a harmful effect on the BY

application overall. For example, CPUSPEED does workload characterization for each time inter-

val in order to predict the workload and select the frequency level for the next time interval. The

results indicate that either the prediction is inaccurate or the frequency selection is inappropriate

for the global optimization problem investigated in this paper.

Fourth, neither the global nor the local DVFS scheduling introduces significant performance or

energy overhead. This is an important criterion for a good DVFS scheduling policy. Extra DVFS

scheduling operations have two effects on performance. First, when CPU frequency is decreased,

CPU intensive portions of code will run more slowly. Second, extra DVFS scheduling operations

themselves take CPU cycles. Since the artificial problems have a negligible variance in performance

for different runs, they are ideal for examining the overhead caused by DVFS operations. The data

shows performance loss of at most 1% and energy overhead of at most 2%, which means DVFS

overhead is minimal for the two schemes.

8. Conclusion

Results show that while using a globally oriented hand crafted DVFS scheduling method, the

energy consumption of the biological application BY is reduced by as much as 6.1%. There is no

similarly observed reduction in energy consumption when using the system tool CPUSPEED or a

more locally oriented approach, but rather an increase in energy consumption. For the artificial test

cases, taking power measurement accuracy into account, the baseline, local, and global approaches

have similar behavior in performance and energy consumption. CPUSPEED increases both running

time and energy consumption for these problems. Real large scale scientific applications differ

significantly from artificial test problems; there is a nontrivial variance in performance and real-

time behavior. Locally based methods doesn’t always work globally, and knowledge of the overall

workload of a real application is helpful in reducing energy consumption for HPC.
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