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Abstract

Clustering is the unsupervised method of grouping data samples to form a partition of a given dataset. Such grouping
is typically done based on homogeneity assumptions of clusters over an attribute space and hence the precise definition
of the similarity metric affects the clusters inferred. In recent years, new formulations of clustering have emerged
that posit indirect constraints on clustering, typically in terms of preserving dependencies between data samples and
auxiliary variables. These formulations find applications in bioinformatics, web mining, social network analysis,
and many other domains. The purpose of this survey is to provide a gentle introduction to these formulations, their
mathematical assumptions, and the contexts under which they are applicable.

1 Introduction
Clustering algorithms [7, 13, 16, 25, 30] are unsupervised methods to group data samples such that the samples
assigned to a group (cluster) are highly similar with each other but are dissimilar from those assigned to other clusters.
Although the classic survey by Jain, Murty, and Flynn [17] was published nearly a decade back, and retrospective
views of classical clustering algorithms have emerged [15], interest in clustering research remains strong – primarily
due to the advent of high-throughput data acquisition technologies [1, 8, 14] in practically every field of computational
science.

Clustering algorithms grapple with two fundamental issues: (i) what constitutes a cluster? and (ii) how to ef-
ficiently infer clusters from data? The former is a matter of problem definition and classical clustering research has
addressed it by defining clusters as distributions around cluster prototypes and using distance or similarity measures [9]
to determine cluster boundaries. The precise definition of these measures influences the shapes and sizes of clusters
found. The efficient inference of clusters is then posed as an optimization over the space of cluster prototypes. Other
constraints such as balanced clusters [3] can also be imposed in the optimization.

Recently, new clustering algorithms have been developed that, in addition to/in lieu of a distance measure, also
utilize some prior auxiliary information about the data to drive the clustering. The intent is that the clustering, when
viewed as a compression of the data, must preserve the auxiliary information as much as possible. Such auxiliary
information can come in various guises. For instance, it could be some prior class (supervised) information that we
seek to mimic in our clustering. It could be relationships between data samples [19] if we are simultaneously clustering
two or more datasets. In either case, the objective function is suitably modified to capture the notion of preservation
of relevant information.

Our survey here is scoped by clustering algorithms that exhibit one or both of the following traits. First, the given
dataset has both attribute-value and relational components and it is desired to use one to influence the other. Second,
the objectives of clustering are specified in terms of dependencies or constraints [24, 32]. These constraints can either
be direct such as that two given data points should (or should not) belong to a cluster [5, 31], or they could be indirectly
specified in terms of properties of induced clusters. Even with these restrictions, the amount of related work is broad
and we identify key representative methods to illustrate the diversity of related research. We first begin by reviewing
pertinent background in information theory.
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2 Review of information theory
We denote discrete random variables by capital letters (X , Y , . . .) and their realizations (specific values taken by
the random variables) by lowercase letters (x, y, . . .). The set of all possible values of a discrete random variable
is denoted by calligraphic letters, i.e., x ∈ X denotes the possible values of X . Vectors of random variables are
denoted by uppercase bold letters, X, Y, . . ., and their realizations are denoted by lowercase bold letters, x, y, . . ..
The probability distribution (density function) of X is denoted by p(x) = P (X = x), and the conditional probability
distribution is denoted by p(x|y) = P (X = x|Y = y).

Entropy
Entropy is a measure of the uncertainty of a random variable. The entropy of a discrete random variable X with
distribution p(x) is defined as

H(X) = −
∑
x∈X

p(x) log p(x). (1)

For discrete random variables X,Y with joint distribution f(x, y) and marginal distributions g(x), h(y), the condi-
tional entropy is defined as

H(X|Y = y) = −
∑
x∈X

f(x, y)
h(y)

log
f(x, y)
h(y)

and
H(X|Y ) =

∑
y∈Y

h(y)H(X|Y = y). (2)

KL-divergence
The Kullback Leibler divergence between two probability distributions p(x) and q(x) is defined as

DKL[p‖q] =
∑
x

p(x) log
p(x)
q(x)

, (3)

with the limits lim
p(x)→0

p(x) log p(x)
q(x) = 0, lim

q(x)→0
p(x) log p(x)

q(x) =∞ implied. It measures the inefficiency of assuming

that the distribution is q when the true distribution is p. KL-divergence is colloquially referred to as a “distance”
between two distributions p and q although it doesn’t satisfy the requirements of a distance measure. It is nonnegative
and is zero if and only if p = q. However, it is not symmetric and does not satisfy the triangle inequality.

JS divergence
The Jensen-Shannon divergence between two probability distributions p(x) and q(x) is defined as

JSΠ(p, q) = π1DKL[p‖m] + π2DKL[q‖m], (4)

where Π = (π1, π2), 0 < π1, π2 < 1, π1 + π2 = 1 and m = π1p+ π2q. It is easy to verify that the JS divergence is a
true distance metric.

Mutual Information
The mutual information between two random variables X and Y with a joint distribution f(x, y) and marginal distri-
butions g(x) and h(y) is defined as

I(X;Y ) =
∑
x

∑
y

f(x, y) log
f(x, y)
g(x)h(y)

. (5)

Mutual information is a measure of dependence between the two random variables. It can be expressed as the KL
divergence between f(x, y) and g(x)h(y). In terms of entropy,

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (6)

Mutual information is the reduction in uncertainty of one random variable due to the knowledge of the other.
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3 The single sided information bottleneck
The information bottleneck (IB) method introduced by Tishby et al. [29] is an information theoretic approach to
clustering. In the information bottleneck method, each primary data sample x, which is an instance of the random
variable X , is associated with some auxiliary data sample y, which is an instance of another discrete random variable
Y . A joint probability distribution p(x, y) of this association is assumed to be available. Typically X represents the
features of the objects to be clustered and Y represents some relevant information about these objects. For instance,
X could denote features of documents and Y could denote some a priori classification of documents, such as whether
they are news articles or research papers. The goal of IB is to cluster X in such a way that the clustering preserves the
distinctions made by Y . Of course, a trivial answer is to just group documents as suggested by Y but such a clustering
will not yield a compression of the given dataset. IB aims to find clusters such that the clusters afford compression of
X and preserve information about Y .

The IB variational principle captures the tradeoff between compression (increasing compression reduces I(C;X))
and preservation of auxiliary information (increasing preservation increases I(C;Y)) via

L = I(C;X)− βI(C;Y ), (7)

where C is the desired clustering, I(C;X) is the compression information, and I(C;Y ) is the auxiliary information.
Lower values of β > 0 give more importance to compression while higher values give more importance to preserving
relevant information.

We seek clusters such that the cluster membership probabilities of the data samples, i.e., p(c|x), minimize L. In
order to express L in terms of p(c|x), we substitute the expressions for mutual information

L =
∑
x,c

p(c, x) log
p(c, x)
p(c)p(x)

− β
∑
c,y

p(c, y) log
p(c, y)
p(c)p(y)

=
∑
x,c

p(x)p(c|x) log
p(c|x)
p(c)

− β
∑
c,y

p(c)p(y|c) log
p(y|c)
p(y)

. (8)

Observe that since samples x and y are associated, knowing x and y provides no more information than knowing just
x, i.e., p(c|x, y) = p(c|x). Using this independence relation,

p(x, y, c) = p(c|x)p(x, y), (9)

p(c) =
∑
x,y

p(x, y, c) =
∑
x

p(x)p(c|x), (10)

p(y|c) =
1
p(c)

∑
x

p(x, y, c) =
1
p(c)

∑
x

p(x, y)p(c|x). (11)

Using the above equations it can be shown that p(c|x) is a stationary point of L if and only if

p(c|x) =
p(c)

Z(x, β)
e−βDKL[p(y|x)‖p(y|c)],∀c ∈ C,∀x ∈ X , (12)

where Z(x, β) is a normalization function so that
∑
c p(c|x) = 1. It is evident that the KL divergence, DKL[p(y|x)‖

p(y|c)], is the effective distortion measure for the IB functional. This is a key contribution of the IB framework —
without making any assumptions on the distortion measure, IB shows that the KL-divergence between the distributions
of auxiliary data as represented by the primary data and the clusters is the exact distortion measure to be minimized,
and derives p(c|x) in terms of this measure.

In any clustering algorithm, similar data points are grouped together and cluster prototypes are chosen such that
the distance between the data points in a cluster and the prototype of the cluster is minimized. In the IB framework,
the distances between the data points are measured in terms of their associations with the auxiliary data, p(y|x). The
auxiliary data distribution represented by a cluster p(y|c) is interpreted as the cluster prototype. A data point x is
assigned to a cluster c if p(y|c) is similar to p(y|x), and this is captured by the KL-divergence DKL[p(y|x)‖p(y|c)].
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In practice IB algorithms start with a random assignment of the data points to clusters and iteratively improve this
solution such that at each step L decreases and the iterates eventually converge to a local optimal solution. Some of
these algorithms are described below.

Iterative Information Bottleneck
This algorithm is a straightforward method that uses the Eqs. (10), (11), and (12). The update steps for the (n+ 1)-st
iteration are given by

1. p(n+1)(c|x) = p(n)(c)
Z(x,β)e

−βDKL[p(y|x)‖p(n)(y|c)],∀c ∈ C,∀x ∈ X .

2. p(n+1)(c) =
∑
x p(x)pn+1(c|x),∀x ∈ X .

3. p(n+1)(y|c) = 1
pn+1(c)

∑
x p(x, y)pn+1(c|x).

These steps are repeated till p(c|x) converges.

Agglomerative Information Bottleneck
The agglomerative IB algorithm [27] is analogous to hierarchical clustering algorithms. A hierarchical clustering
algorithm starts with a proximity matrix containing the distance between data points and each data point is treated as
a singleton cluster. The most similar pair of clusters is merged in each iteration and the proximity matrix is updated to
reflect this merger. The process is repeated until all data points are in the same cluster.

Recall that the IB framework implicitly specifies the distance measure. In order to calculate the cost of merging
two clusters, consider the problem of maximizing the IB functional

Lmax = I(C;Y )− β−1I(C;X). (13)

Observe that this functional is simply (7) multiplied by −β−1, and hence maximizing Lmax is equivalent to minimiz-
ing L. Suppose two clusters ci and cj are merged to form a single cluster c̄. The membership probabilities with respect
to this new cluster c̄ are given by

p(c̄|x) = p(ci|x) + p(cj |x),∀x ∈ X . (14)

Observe that such an addition will preserve the requirements of a probability measure. Using this equation we can
define

p(c̄) = p(ci) + p(cj), (15)

p(y|c̄) =
p(ci)
p(c̄)

p(y|ci) +
p(cj)
p(c̄)

p(y|cj). (16)

Lmax in equation 13 has a maximum value when each data point is in its own singleton cluster. Merging any two
clusters results in a decrease of Lmax. This decrease in the value of Lmax is

∆Lmax(ci, cj) = p(c̄) · d(ci, cj), (17)

where Π =
(
p(ci), p(cj)

)
/p(c̄) and

d(ci, cj) = JSΠ[p(y|ci), p(y|cj)]− β−1JSΠ[p(x|ci), p(x|cj)]. (18)

The agglomerative IB algorithm constructs a hierarchical clustering by merging the pair of clusters that cause minimum
information bottleneck loss as given by ∆Lmax at each step.
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Sequential Information Bottleneck
The agglomerative IB algorithm constructs a hierarchical clustering representation of the data set. However, for large
data sets, this procedure is impractical. The sequential IB algorithm uses the cost function ∆Lmax described above
more efficiently.

The algorithm begins with a fixed partition ofN clusters. Then in each iteration, the following steps are performed:

1. Choose some data point xi at random and remove it from its cluster ck.

2. Assume the data point xi is in a singleton cluster {xi} and calculate the merger cost ∆Lmax({xi}, cj), j = 1,
. . ., N and assign xi to the cluster cj with minimum cost.

3. Update p(y|cj) and p(y|ck).

These steps are repeated till the data points do not change their cluster memberships.

4 Multivariate Information Bottleneck

Figure 1: Input and Output networks for single sided IB

Figure 2: Parallel IB

Multivariate IB [10] generalizes the single sided IB framework to clustering several datasets simultaneously by
preserving auxiliary information about several other datasets. The dependencies between the datasets are captured
by two Bayesian networks Gin and Gout. Gin represents the “compression relationships”—if C is a clustered repre-
sentation of X , then a directed edge from X to C exists in Gin. The Bayesian network Gout captures “information
preservation relationships”–if a clustering C preserves information about Y , then a directed edge exists from C to Y
in Gout. The networks Gin and Gout for the single sided IB are shown in Figure 1. Parallel IB and symmetric IB
shown in Figures 2 and 3 are two multivariate formulations that have interesting applications and interpretations. In
parallel IB, we seek several systems of clusters of the same dataset X that preserve information about the same Y
independently. In effect, these clustering schemes capture independent aspects of the information X contains about
Y . In symmetric IB, the clustering CX compresses X preserving information about Y and at the same time CY
compresses Y preserving information about X . In the Gout corresponding to symmetric IB, this is captured through a
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Figure 3: Symmetric IB

single link from CX to CY . CX preserves information about Y through CY . Hence no direct link between CX and Y
is required.

The information represented by a Bayesian network G is defined as

IG =
∑
i∈S

I(Xi; PaGXi), (19)

where PaGXi is a vector random variable formed from the parents of Xi in the network G and the sum is over all nodes
S of G with indegree ≥ 1. The multivariate IB functional captures the tradeoff between the informations represented
by the “compression” network, IGin , and the “information preservation” network, IGout

LMIB = IGin − βIGout . (20)

In the following discussion, eachXi represents the random variable corresponding to dataset i andCi represents its
corresponding cluster random variable. Lower case letters correspond to specific values of these random variables. The
cluster k in dataset i is represented by cki . For convenience of notation we let Uj = PaGinCj

(the compression variables

Cj are always children in Gin), VW = PaGoutW where W can be a Xi or Cl, V
−j
Cl

= VCl\Cj , and V−jXi = VXi\Cj
where the notation V\C means the vector V with its component C deleted. E(p()) denotes the expectation with
respect to distribution p(). Cj ` VW indicates that Cj is a component of the vector VW .

The conditional distributions {p(cj |uj}) are a stationary point of the multivariate IB functional LMIB if and only
if

p(cj |uj) =
p(cj)

ZCj (uj , β)
e−βd(cj ,uj),∀cj ∈ Cj ,∀uj ∈ Uj , (21)

where ZCj (uj , β) is a normalization function, and

d(cj ,uj) =
∑

{i:Cj`VXi
}

Ep(v−jXi |uj)
[DKL[p(xi|v−jXi ,uj)‖p(xi|v

−j
Xi
, cj)]]

+
∑

{l:Cj`VCl
}

Ep(v−jCl |uj)
[DKL[p(cl|v−jCl ,uj)‖p(cl|v

−j
Cl
, cj)]]

+DKL[p(vCj |uj)‖p(vCj |cj)]. (22)

The first summation in the distortion measure above is over all the data variables Xi, and the second summation is
over all the cluster variables Cl whose information is preserved by clusters in Cj . The last term is used if information
about Cj is preserved by VCj .

Multivariate IB clustering algorithms are similar to the single sided IB algorithms. The Iterative MIB algorithm
uses updates for distributions based on the stationary equations (21). The agglomerative and sequential MIB algorithms
use a cluster merging criterion similar to that in single sided IB. To derive this criterion consider maximizing

LMIB
max = IGout − β−1IGin . (23)
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This equation is obtained by multiplying the MIB functional LMIB in (20) by −β−1. Suppose clusters crj and csj in
dataset j are merged to form c̄j , the cluster probabilities with respect to this new cluster are defined as

p(c̄j |uj) = p(crj |uj) + p(csj |uj). (24)

The reduction in the value of Lmax, which is the cost function for merging crj and csj , is

∆Lmax(crj , c
s
j) = p(c̄j)d̄(crj , c

s
j), (25)

where Π =
(
p(crj |uj), p(csj |uj)

)
/p(c̄j |uj) and

d̄(crj , c
s
j) =

∑
{i:Cj`VXi

}

Ep(v−jXi |c̄j)

[
JSΠ

[
p(xi|v−jXi , c

r
j), p(xi|v

−j
Xi
, csj)

]]
+

∑
{l:Cj`VCl

}

Ep(v−jCl |c̄j)

[
JSΠ

[
p(cl|v−jCl , c

r
j), p(cl|v

−j
Cl
, csj)

]]
+ JSΠ

[
p(vCj |crj), p(vCj |csj)

]
− β−1JSΠ

[
p(uj |crj), p(uj |csj)

]
. (26)

The agglomerative and sequential multivariate IB algorithms use the cost function in (25) in a similar fashion to their
single sided IB counterparts.

5 K-means as IB
The popular k-means clustering algorithm has been shown to be a special case of IB [28]. The regular k-means
algorithm can be initialized by randomly chosen cluster prototypes. In each iteration, the distance between the data
points and prototypes is measured, and the data points are assigned to the nearest cluster. For each cluster, the mean
of the data points in the cluster is chosen as the new prototype. To formulate k-means as IB, given a dataset Y = {yi :
i ∈ X}, X = {1, . . ., N}, we interpret the clustering algorithm as compressing the indices x of the data vectors while
preserving the information about their location y. The IB functional for k-means is

Lmax(p(c|i)) = I(C; Y) + λI(C;X). (27)

Note that λ = −β−1 is the penalty parameter. Recall that the optimal solution according to IB is

p(c|x) =
p(c)

Z(x, λ)
exp

[
1
λ

∑
y

p(y|x) log
p(y|x)
p(y|c)

]
.

Since the index x is associated with a particular data vector y, p(y|x) = 0 or 1, so the sum inside exp reduces to

− 1
λ

∑
y

p(y|x) log p(y|c).

Given the index x of a data vector y, we know its cluster membership c, hence, p(y|x, c) = p(y|x). This implies

p(y|c) =
1
p(c)

∑
x

p(y|x)p(c|x)p(x). (28)

Let Nc be the number of clusters. We assume that all N data vectors are equally likely, p(x) = 1
N . Using the iterative

IB algorithm, the n-th iteration is

pn(c|x) =
pn−1(c)
Z(x, λ)

exp

[
− 1
λ

∑
y

p(y|x) log[pn−1(y|c)]

]
, (29)

pn(y|c) =
1

Npn−1(c)

∑
x

p(y|x)pn(c|x), (30)

pn(c) =
1
N

∑
x

pn(c|x). (31)
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However, this iteration does not involve cluster prototypes and its limit depends on the initial values for p(y|c). To
make the connection with k-means, we impose a distance measure d(y,y′) on the data space and initialize p(y|c) as

p0(y|c) =
1

Z0(c, s)
exp

[
−1
s
d
(
y,y(0)

c

)]
, (32)

where y(0)
c are the initial cluster prototypes chosen at random, Z0(c, s) is a normalizing factor, and s > 0 is a scale

factor. After each iteration, the cluster prototypes are chosen to minimize∑
y

pn(y|c)d
(
y,y(n)

c

)
by solving ∑

y

pn(y|c)
∂d
(
y,y(n)

c

)
∂y(n)

c

= 0.

For d(y,y′) being Euclidean distance squared, this becomes

y(n)
c =

∑
y

pn(y|c) y
/∑

y

pn(y|c) =
∑
y

pn(y|c) y. (33)

Now using these cluster prototypes y(n)
c , redefine the conditional probabilities pn(y|c) in (30)) by

pn(y|c) =
1

Zn(c, s)
exp

[
−1
s
d
(
y,y(n)

c

)]
. (34)

For y = yx, the IB iteration (29) satisfies

pn+1(c|x) ∝ pn(y|c)− 1
λ .

For fixed y, let d
(
y,y(n)

α

)
= minc d

(
y,y(n)

c

)
, and observe that pn(y|α) > pn(y|c) ∀c 6= α and pn(y|α)−1/λ �

pn(y|c)−1/λ for −1� λ < 0 and ∀c 6= α. Thus

pn(yx|α)−1/λ ∝ pn+1(α|x)→ 1 and pn(yx|c)−1/λ ∝ pn+1(c|x)→ 0 (35)

∀c 6= α as λ→ 0. Thus as λ→ 0, the IB iteration, with the cluster prototype y(n)
c and distance d

(
y,y(n)

c

)
calculations,

reduces to k-means, where all the probabilities p(c|x) are 0 or 1, and the y(n)
c become centroids, since 1/p(y|c) = the

number of yi assigned to cluster c.

6 Information theoretic co-clustering
Information theoretic co-clustering [6] gives an efficient algorithm for clustering two discrete datasets simultaneously
when a joint distribution of the datasets is available. The rows and columns of this joint distribution matrix are grouped
simultaneously resulting in homogeneous two-dimensional blocks, each of which is called a co-cluster. The resultant
clusters in the datasets are mutually informative of each other. This problem can be formulated as symmetric IB in the
multivariate IB framework. However, the co-clustering algorithm gives a more efficient formulation.

The data samples across the rows of the joint distribution table p(x, y) are represented by X and those down the
columns are represented by Y . The task is to cluster X into CX and Y into CY so that CX preserves maximum infor-
mation about Y and CY preserves maximum information about X . The loss in mutual information due to clustering
the rows and columns is

I(X;Y )− I(CX ;CY ). (36)
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An optimal co-clustering minimizes this information loss. This information loss is equivalent to the KL-divergence
between the probability distributions p(x, y, cx, cy) and

q(x, y, cx, cy) = p(cx, cy)p(x|cx)p(y|cy), (37)

I(X;Y )− I(CX ;CY ) = DKL(p(x, y, cx, cy)‖q(x, y, cx, cy)). (38)

p(· · · ) is used generically here to denote the probability (density) distribution of its arguments. That q as defined is in
fact a probability distribution follows from observing that∑

x

∑
y

∑
cx

∑
cy

q(x, y, cx, cy) = 1.

The distribution p(x, y, cx, cy) can be written as

p(x, y, cx, cy) = p(cx, cy)p(x, y|cx, cy). (39)

Comparing the distributions p and q above, we can see that q tries to approximate the conditional joint distribution
p(x, y|cx, cy) as a product of p(x|cx) and p(y|cy), i.e, the co-clustering tries to capture the joint distribution of X and
Y through the individual row and column cluster distributions.

We consider the case of hard clustering, where each data sample belongs to only one cluster. In this case,
p(cx|x) = 1 if x is assigned to cx, else p(cx|x) = 0 (similarly for the column data y and clusters cy). The dis-
tribution q preserves several marginal and conditional distributions of p as shown below, as a result of which it is a
good approximation of p. Here q(· · · ) with different arguments is used to denote marginal/conditional probability
(density) distributions of q(x, y, cx, cy), whereas p(· · · ) with different arguments denotes the true distribution, e.g.,
q(x, cx) ≡

∑
y

∑
cy
q(x, y, cx, cy) and q(x|cx) ≡ q(x, cx)/q(cx), whereas p(x|cx) is the probability density of the

random variable X|Cx = cx. A list of useful relationships between q and p follows.

q(cx, cy) = p(cx, cy), q(x, cx) = p(x, cx), q(y, cy) = p(y, cy). (40)
p(x) = q(x), p(y) = q(y), p(cx) = q(cx), p(cy) = q(cy). (41)

p(x|cx) = q(x|cx), p(y|cy) = q(y|cy). (42)
p(cy|cx) = q(cy|cx), p(cx|cy) = q(cx|cy). (43)

q(y, cy|cx) = q(y|cy)q(cy|cx). (44)
q(x, y, cx, cy) = p(x, cx)q(y, cy|cx). (45)
q(x, cx|cy) = q(x|cx)q(cx|cy). (46)

q(x, y, cx, cy) = p(y, cy)q(x, cx|cy). (47)

Let W (x) denote the cluster to which the row data sample x is assigned and W (y) denote the cluster to which the
column data sample y is assigned. The following algorithm attempts to minimize the information loss (38).

1. Start with a random partition and initialize n ← 0. Calculate q0(cx, cy), q0(cx), q0(y|cy) and use these to
calculate q0(y, cy|cx) as given by (44) and q0(x, y, cx, cy) using (45).

2. Compute the cluster index for each row data sample x,
Wn+1(x) = argmin

cx

DKL[p(y, cy|x)‖qn(y, cy|cx)],

Wn+1(y) = Wn(y),
Wn+2(x) = Wn+1(x).

3. UsingWn+1(x) andWn+1(y), compute qn+1(cx, cy), qn+1(x|cx), qn+1(cy), and use these to calculate qn+1(x, cx|cy)
as given by (46).
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4. Compute the cluster index for each column data sample y,
Wn+2(y) = argmin

cy

DKL[p(x, cx|y)‖qn+1(x, cx|cy)].

5. UsingWn+2(x) andWn+2(y), compute qn+2(cx, cy), qn+2(cx), qn+2(y|cy), and use these to calculate qn+2(y, cy|cx)
as given by (44) and qn+2(x, y, cx, cy) using (45).

6. If
∣∣DKL[p(x, y, cx, cy)‖qn(x, y, cx, cy)]−DKL[p(x, y, cx, cy)‖qn+2(x, y, cx, cy)]

∣∣ is negligible, terminate, else
n← n+ 2 and repeat Steps 2–6.

7 Multiway clustering using Bregman Divergences
Banerjee et al. [2] describe a generic framework using Bregman divergences to cluster multiple datasets that share a
single relationship and extend it to multiple relations between the datasets.

Let φ : S → R be a C1 strictly convex function defined on the convex set S ⊂ Rn. The Bregman divergence
dφ : S × int(S)→ [0,∞) is defined as

dφ(z1, z2) = φ(z1)− φ(z2)− 〈z1 − z2,∇φ(z2)〉, (48)

where ∇φ is the gradient of φ and 〈·, ·〉 is the dot product on Rn. The Bregman information of a random variable Z
with values z ∈ S is defined as the expected Bregman divergence

Iφ(Z) = E[dφ(Z,E[Z])]. (49)

The Bregman information captures the “spread” or “information” in a random variable. Different divergence func-
tions can be modeled by choosing an appropriate φ. If φ(z) = z log z, the divergence dφ is called I-divergence and
the Bregman information Iφ is proportional to KL-divergence. For squared Euclidean distance φ(z) = ‖z‖22, Iφ is
proportional to the squared Frobenius norm of the diagonal of the covariance matrix of Z.

Multiway clustering is a generalization of the co-clustering approach described in the previous section. In the co-
clustering approach only two data sets are simultaneously clustered, while multiway clustering aims to cluster several
datasets by preserving the relationships between them. We first consider the case when multiple datasets share a single
relationship.

Notation
For i = 1, . . ., n, let Xi be the random variable corresponding to the ith dataset, with range Nmi = {1, 2, . . ., mi}.
Let f : Nm1 × · · · ×Nmn → S be a function of all the random variables, and let S ⊂ Rk be convex. The random
variable Z = f(X1, . . ., Xn) is an n-dimensional tensor Z ∈ Sm1×···×mn . Let X = (X1, . . ., Xn), x = (x1, . . .,
xn), and w denote the measure induced on Z by p(x) so that wx1,...,xn = P (X1 = x1, . . ., Xn = xn) = P (Z =
zx1,...,xn) = p(x1, . . ., xn) = p(x). Let ki denote the number of clusters desired for the dataset i. A multiway
clustering of the datasets is defined as the n-tuple ρ = (ρ1, . . ., ρn) where each ρi : {1, . . ., mi} → {1, . . ., ki}
denotes a mapping from the data samples to their respective clusters. Let X̂i = ρi(Xi) be the cluster random variable
for dataset i that takes values in {1, . . ., ki}.

Multiway Clustering Formulation
Using the cluster random variables X̂i, we can construct a new tensor C with E[C] = E[Z] that is an approximation
of the original tensor Z. As with any information theoretic clustering algorithm, we seek to minimize the expected
distortion between the original representation of the tensor and its approximate representation. In the case of multiway
clustering this distortion is measured in the terms of the loss of Bregman information, and thus the objective function
is the difference in the Bregman information between the original and the approximate tensors,

B = E
[
dφ(Z,C)

]
= Iφ(Z)− Iφ(C). (50)

An optimal multiway clustering minimizes this distortion.
In order to characterize C, we specify the information about the summary statistics of Z that are to be preserved

by C. Let {Vs}rs=1 be a set of r random variables corresponding to the different summary statistics that are to
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be preserved. This set is called a multiway clustering basis. In the simplest case, the basis is the singleton set
{V1} = {(X̂1, . . ., X̂n)}, where X̂i = ρi(Xi) ∀i. This is called the block multiway clustering (BMC) basis.
Information theoretic co-clustering is the special case of this model where n = 2, C is a two-dimensional tensor
(matrix), and the clustering basis is {V1} = {(Cx, Cy)}. Given the summary statistics, the set of potential solutions
for C is

SA =
{
C ′
∣∣ E[Z] = E[C ′], E[Z|Vs] = E[C ′|Vs], s = 1, . . . , r

}
. (51)

All the approximations C ′ ∈ SA preserve the conditional expectations associated with the multiway clustering basis.
The best approximation in SA is chosen according to the maximum Bregman information principle (MBI), which states
that the best approximation is the one that has maximum Bregman information, i.e,

C = argmax
C′∈SA

Iφ(C ′). (52)

A unique solution to the MBI problem always exists in the form

C = hφ(Λ∗, X, ρ(X)), (53)

where Λ∗ = (Λ∗1, . . ., Λ∗r) is the optimal Lagrange multiplier, ρ(X) ≡
(
ρ1(X1), . . ., ρn(Xn)

)
, and hφ is a convex

function. Even though the MBI problem has a unique solution, it can be expressed in closed form as a function of the
summary statistics only for certain clustering bases such as BMC. The algorithm for multiway clustering follows.

1. Start with a random multiway clustering ρ and estimate for Λ.

2. For i = 1, . . ., n, calculate the new cluster assignments for ρi via

(ρi(xj),Λ∗) = argmin
(x̂j ,Λ)

EX|Xi=xj

[
dφ
(
Z, hφ

(
Λ, (X|Xi = xj), (ρ(X)|ρi(Xi) = x̂j)

))]
,

for xj = 1, . . ., mi.

3. Repeat Step (2) until ρ and Λ converge; the solution is then given by (53).

Note that multiple relationships are already modeled by the case z ∈ S ⊂ Rk for k > 1. An alternative approach is
to use multiple tensors Zs to model the relationships. The MBI solution for approximating each individual tensor is the
same as above. The objective function is the weighted sum of the differences between the Bregman informations of the
original and corresponding approximate tensors, and an algorithm similar to the one above optimizes this distortion.

8 Discriminative Clustering
In the algorithms discussed so far, the primary data samples are merely discrete indices and their association with the
auxiliary data is available in the form of a joint probability distribution. Typically this joint probability distribution
is estimated from the co-occurrence frequencies of the primary and auxiliary data. For example, to cluster words by
preserving information about documents, the number of times each word appears across the documents is counted and
a joint probability distribution of word-document associations is estimated from these counts. When the primary data
are real valued vectors and the auxiliary data is discrete, it is not possible to estimate the joint probability distribu-
tion through co-occurrence frequencies. One possible solution is to use kernel density estimation techniques [23] to
estimate the joint probability distribution, but these techniques are extremely unreliable for high dimensional vectors.
Sinkonnen et al. [26] describe a method to address this problem without any explicit joint density estimation.

Let X represent the vector valued random variable corresponding to the primary data whose instantiations are
x ∈ X ⊂ Rn, Y represent the discrete auxiliary data whose instantiations are y ∈ Y ⊂ N, and C represent the cluster
labels whose k instantiations are c ∈ C = Nk. For ease of interpretation, we assume that each data vector is labeled
with one or more class labels y. These labels y constitute the auxiliary data. Each cluster c has two prototypes—mc
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for primary data, and p(y|c) for auxiliary data. Note that all the algorithms for discrete data described so far use only
the auxiliary data prototypes p(y|c), as there is no explicit primary data. Additional prototypes mc, are required to
model primary data in the form of real valued vectors.

In vector quantization [12], the average distortion between the prototypes of the clusters and the data is defined by

E =
k∑
c=1

∫
X
Wc(x)d(x,mc)p(x) dx, (54)

where Wc(x) is a cluster membership function, p(x) is the probability density function of X, and d(x,mc) is a
distortion measure that measures the distance between the cluster prototype mc and the data x. As with the IB
framework, the KL-divergence between the auxiliary data distributions of the primary data and the clusters is chosen
as the distortion measure:

EKL =
k∑
c=1

∫
X
Wc(x)DKL[p(y|x)‖p(y|c)]p(x) dx (55)

= −
k∑
c=1

∑
y∈Y

∫
X

[Wc(x) log p(y|c)]p(y|x) dx + constant. (56)

Note that the summation is over the auxiliary data labels y and the cluster labels c. In the case of hard clustering, each
data point is assigned to only one cluster, Wc(x) = 1 if x belongs to cluster c, otherwise Wc(x) = 0. Since Wc(x)
is typically constructed to depend on mc or p(y|c), using such hard cluster memberships gives rise to a distortion
function EKL that is not continuously differentiable with respect to mc or p(y|c). To get smooth gradients that are
required by many numerical optimization procedures, the cluster membership functions are parametrized as

Wc(x) =
1

Z(x)
exp(f(x; mc)), (57)

where Z(x) is a normalization function such that
∑
cWc(x) = 1. f(x; mc) is chosen based on the shape of clusters

desired in the primary data space. The auxiliary data distributions of the clusters are multinomial with
∑
y p(y|c) = 1.

To enforce this constraint, these probabilities are expressed using the soft max parametrization

log p(y|c) = γcy − log

(∑
m∈Y

eγcm

)
, (58)

where one γcy is fixed to avoid degeneracy. From equations (57) and (58), EKL is thus parametrized in terms of the
prototypes mc and constants γcy ∝ log p(y|c). The n-th step of an optimization algorithm that minimizes EKL with
respect to mc and γcy has the form:

1. Choose a data sample x at random and let its class label be y.

2. Choose two clusters c and c′ at random.

3. Update the variables by

m(n+1)
c = m(n)

c − α(n)

[
∂f
(
x; m(n)

c

)
∂mc

]
log
(
p(y|c′)
p(y|c)

)
,

for s ∈ Y
γ(n+1)
cs = γ(n)

cs − α(n)[p(s|c)− δys],

where δys is the Kronecker delta and α(n) is a line search stepsize. Perform a similar update for mc′ and γc′s.
No update is performed if c = c′.
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An alternative formulation for this clustering problem is given by Kaski et al. [20]. The primary data is a sequence
of vectors x̄ =

(
x(i)
)N
i=1

for which x denotes a generic element, and ȳ =
(
y(i)
)N
i=1

is the corresponding sequence

of auxiliary class data with generic class y ∈ Y =
{
yi
}M
i=1

. For each cluster c = 1, . . ., k, let ψc be the vector with
components ψc,y = p(y|c), y ∈ Y , let ψ =

(
ψ1, . . ., ψk

)
, and let ψc be the set of all such possible vectors ψc. View

ψc,y as the value of a nonnegative random variable Ψc,y , where the Ψc,y satisfy
∑
y Ψc,y = 1 ∀c. Ψc is the vector

random variable with components Ψc,y , and Ψ is the vector random variable with components Ψc. Given the primary
data x̄ and the auxiliary data ȳ, the posterior of the primary data prototypes {mc}kc=1 is obtained by integrating out all
the auxiliary data prototypes ψc from the joint conditional distribution,

A = p({mc}|x̄, ȳ) =
∫
ψ1

· · ·
∫
ψk

p({mc}, ψ|x̄, ȳ) dψ1 · · · dψk

∝
∫
ψ1

· · ·
∫
ψk

p(ȳ|{mc}, ψ, x̄) p({mc}, ψ, x̄) dψ1 · · · dψk

∝
∫
ψ1

· · ·
∫
ψk

p(ȳ|ψ)
k∏
c=1

p(ψc) dψ1 · · · dψk (59)

assuming that ȳ is independent of {mc} and p({mc}, ψ, x̄) ∝ p(ψ) =
k∏
c=1

p(ψc).

It is reasonable to assume that Ψc has a Dirichlet distribution with the same parameter n0
c for each component

ψc,y , in which case p(ψc) ∝
∏
y∈Y

ψ
n0
c−1

c,y and

A ∝
∫
ψ1

· · ·
∫
ψk

k∏
c=1

∏
y∈Y

ψ
n0
c+ncy−1

c,y dψ1 · · · dψk =
k∏
c=1

∏
y∈Y

Γ
(
n0
c + ncy

)
Γ
( ∑
y∈Y

(
n0
c + ncy

)) , (60)

where ncy is the number of data vectors of class y in cluster c, and
∑
c,y ncy = N .

The functionA is the posterior probability of the cluster prototypes in the primary data space given both the primary
and auxiliary data. The auxiliary class information is encoded into the objective function by the term ncy . Since the
joint distribution p(x, y) of the primary and auxiliary data is unavailable, interpreting the auxiliary data distribution
ψc,y of a cluster is not meaningful. Instead, the quality of the clusters with respect to the auxiliary classes is analyzed
through a two-dimensional contingency table where the rows represent the clusters and the columns represent the
classes. The Bayes factor of this contingency table is proportional to the objective function in (60).

In order to parametrize A as a continuously differentiable function of the prototypes mc, smooth cluster member-
ship probabilities Wc(x) as defined in (57) are used. Then, the number of samples of class y in cluster c is defined
as

ncy =
∑

x(i):y(i)=y

Wc(x(i)).

Using these substitutions forWc(x) and ncy in the expression proportional toA in (60), and then taking the logarithm,
gives the objective function that is maximized using standard numerical optimization techniques to find the desired
prototypes mc.

9 Clustering with k-partite graphs
Long et al. [21] propose a framework for clustering multiple datasets simultaneously by modeling the many-to-many
relationships between pairs of datasets. Let X1, X2, . . ., Xn be the random variables corresponding to the datasets,
and C1, C2, . . ., Cn be their corresponding cluster random variables. Let m1, m2, . . ., mn be the number of data
samples in each dataset and k1, k2, k3, . . ., kn be the number of clusters in each dataset. Dataset i is then represented
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(a)Input data graph (b) Cluster graph

Figure 4: Clustering with k-partite graphs

as Xi = {xih}mih=1 and its clusters are represented as Ci = {cip}kip=1. The samples across any pair of datasets i and
j have many-to-many relationships. Such datasets can be represented by a k-partite graph as shown in Fig. (4)(a). A
k-partite graph is a graph whose vertices can be partitioned into k disjoint sets so that no two vertices within the same
set are adjacent. Let GX =

(
X1, . . ., Xn, EX

)
be the k-partite graph corresponding to the data samples. The samples

in each dataset constitute the partitions of the graph as shown in Fig. (4)(a). The many-to-many relationships between
the datasets are represented by the edges EX in the graph. For example, in the Fig. (4)(a) the relationships between
the datasets X1 and X2 are represented by the edges between the sets of vertices {x1h}4h=1 = X1 and {x2l}6l=1 = X2.
Call this graph the input data graph. The clustered representation of the datasets also represents a k-partite graph,
GC =

(
X1, . . ., Xn, C1, . . ., Cn, EC

)
as shown in Fig. (4)(b), and called the cluster graph. This graph has cluster

vertices labeled c in addition to the data vertices labeled x. This graph has the following properties.

1. Each data vertex is adjacent to one and only one cluster vertex corresponding to the dataset. The edge weight
between any data vertex and its corresponding cluster vertex is set to unity.

2. The cluster vertices across datasets are adjacent to one another if their corresponding data samples are adjacent in
the input data graph. The weights assigned to the edges between the cluster vertices summarize the relationships
between the data samples assigned to the clusters across the datasets.

For example, in Fig. (4)(a) the data sample x13 in dataset X1 is related to x25 in dataset X2. The edge weight
eX(x13, x25) for the edge {x13, x25} in the input graph represents this relationship and is set to the weight of the
relationship. In the cluster graph x13 is assigned to the cluster c12, and x25 is assigned to the cluster c23. As a result
the edge weights eC(x13, c12) and eC(x25, c23) are set to one in the cluster graph. The weight eC(c12, c23) for the
edge between the clusters c12 and c23 is determined by the algorithm based on the other samples assigned to the
clusters. When the algorithm terminates, this weight represents the average weight of the relationships between the
data samples assigned to these clusters. The goal of the clustering algorithm is to assign the data samples in each
individual dataset to their clusters while maintaining the many-to-many relationships across the datasets at the cluster
level also. The many-to-many relationships between the clusters summarize the many-to-many relationships between
the data samples assigned to them and this is captured by the edge weights between the cluster vertices in the cluster
graph.

For some Bregman divergence dφ, define the distance between the input data graph GX and its cluster graph GC

by
L =

∑
1≤i<j≤n

∑
xih∈Xi,xjl∈Xj
eC(xih,cip)=1

eC(xjl,cjq)=1

dφ
(
eX(xih, xjl), eC(cip, cjq)

)
.

For ease of computation, the weights of edges between any pair of datasets Xi and Xj in the input data graph
are represented by the weight matrix A(i,j) ∈ Rmi×mj , where A(i,j)

hl = eX(xih, xjl). Similarly, the weights of the
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edges between the cluster vertices across the datasets Xi and Xj in the cluster graph GC are represented by the matrix
B(i,j) ∈ Rki×kj , where B(i,j)

pq = eC(cip, cjq) . The assignment of the data samples to the clusters in each individual
dataset is represented by the indicator matrices F (i) ∈ {0, 1}mi×ki , where F (i)

hp = eC(xih, cip). The distance L
between the data graph and the cluster graph is computed as

L =
∑

1≤i<j≤n

d̂φ

(
A(i,j), F (i)B(i,j)

(
F (j)

)T)
, (61)

where d̂φ means dφ applied componentwise and summed. An optimal clustering of the datasets satisfies(
F (i)

)T(
F (i)B(i,j)

(
F (j)

)T −A(i,j)
)
F (j) = 0, 1 ≤ i < j ≤ n, (62)

or (since mi ≥ ki implies F (i) has full rank)

B(i,j) =
((
F (i)

)T
F (i)

)−1(
F (i)

)T
A(i,j)F (j)

((
F (j)

)T
F (j)

)−1

. (63)

An exchange algorithm to locally minimize the objective function given in (61) starts with random clusters in each
dataset and performs the following steps in each iteration.

1. Calculate the current objective function value Lcurrent given in (61).

2. Change the cluster assignments in each dataset. For each i = 1, . . ., n, and h = 1, . . ., mi:

• for each p = 1, . . ., ki, calculate the objective function value Lp obtained by removing the data sample
xih from its current cluster ciq and assigning it to the cluster cip;

• assign xih to the cluster cip∗, p∗ = argminp Lp, giving the minimum value for the objective function Lp,

and update the indicator matrix via F (i)
hq := 0, F (i)

hp∗ := 1.

3. Update the weights for the edges between the cluster vertices in GC according to (63).

4. Calculate the new objective function Lnew. Terminate if Lnew = Lcurrent, else repeat the steps with the new
cluster assignments.

10 Clustering binary matrices — cross associations

y1 y2 y3 y4 y5 y6

x1 1 0 0 1 0 1
x2 0 1 1 0 1 0
x3 1 0 0 1 0 1
x4 1 1 1 1 1 1
x5 0 1 1 0 1 0
x6 1 0 1 1 1 1

y1 y4 y6 y2 y3 y5

x1 1 1 1 0 0 0
x3 1 1 1 0 0 0
x2 0 0 0 1 1 1
x5 0 0 0 1 1 1
x4 1 1 1 1 1 1
x6 1 1 1 0 1 1

(a) Input binary matrix (b) Discovered cross associations

Figure 5: Cross associations. Dense regions of ones or zeros obtained by clustering rows and columns of a binary
matrix simultaneously, shown by the rectangles in (b).

Chakrabarti et al. [4] present an algorithm to discover hidden structure in binary matrices. This algorithm is
similar to co-clustering described in Section 6, but is targeted towards clustering rows and columns of large sparse
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binary matrices. The row and column clusters that the algorithm discovers divide a row and column permutation
of a binary matrix into homogeneous rectangular regions (submatrices) called cross associations. Ideally the cross
associations are dense regions of either ones or zeros as shown in Figure (5)(b).

Suppose the rows of the m × n binary matrix are grouped into k clusters and the columns are grouped into l
clusters giving rise to k · l cross associations. Given a cross association Dij , let n0(Dij), n1(Dij) be the number
of zeros, ones in Dij , respectively, and the total number of entries be n(Dij) = n0(Dij) + n1(Dij). Let XDij be
the Bernoulli (binary) random variable taking values 0 or 1 associated with Dij . The probability of zeros in Dij is
P (XDij = 0) = n0(Dij)/n(Dij) and that of ones is P (XDij = 1) = n1(Dij)/n(Dij). Using arithmetic coding [22],
the cost of compressing Dij is given by

C(Dij) ≡ −n0(Dij) log2

(
P (XDij = 0)

)
− n1(Dij) log2

(
P (XDij = 1)

)
(64)

≡ n(Dij)H(XDij ), (65)
(66)

and the total compression cost

F =
k∑
i=1

l∑
j=1

C(Dij) (67)

of the model is obtained by summing up the individual cross association costs. Minimizing F leads to optimal row
and column clusters and in turn optimal cross associations. The cross association algorithm starts with a random set
of row and column clusters. In each iteration, the following steps are performed.

1. Hold the column clusters constant and adjust the row clusters. Remove each row from its current cluster and
assign it to the cluster that results in the maximum decrease in the current objective function value F from (67),
updating the row clusters and the current objective function value.

2. Hold the row clusters constant and adjust the column clusters similarly to Step 1.

3. Terminate if there is no change in the objective function value, otherwise continue.

This is a greedy algorithm, similar to k-means, that will terminate in a finite number of iterations because there
are finitely many row and column permutations, and will converge to only a local minimum point (row and column
cluster assignments) of F . Precisely, the number of possible cross association combinations (ignoring row and column
permutations within a cross association) is {mk } {nl}, the product of Stirling numbers of the second kind [11].

11 Clustering with constraints
Davidson et al. [5] present a modified k-means algorithm that takes into account certain constraints on the data samples
being grouped together while clustering. The constraints that this algorithm models are of two kinds:

1. Must-link: Each must-link constraint specifies a pair of distinct samples that must be in the same cluster.

2. Cannot-link: Each cannot-link constraint specifies a pair of distinct samples that cannot be in the same cluster.

Let x1, . . ., xn be the n data sample vectors to be clustered into the k clusters c1, . . ., ck whose prototypes are
m1, . . ., mk. The clustering has to satisfy r constraints represented by φ1, . . ., φr. Accompanying each constraint φl
is an indicator variable bl that indicates whether φl is of type must-link (bl = 1) or cannot-link (bl = 0). Suppose the
constraint φl involves the data samples xi and xj and bl = 1, then xi and xj must be in the same cluster. If bl = 0, xi
and xj cannot be clustered together. The function g1(l) accepts the constraint index l as input and returns the cluster
index of the first data sample in the constraint. Similarly g2(l) returns the cluster index of the second data sample in
the constraint φl.
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The objective function in traditional k-means is given by

L =
k∑
j=1

Ej , (68)

Ej =
1
2

∑
{i:xi∈cj}

‖mj − xi‖2. (69)

Ej represents the sum of squared distances between the cluster j prototype and the samples assigned to cluster j,
and L represents the sum over all the clusters. The k-means algorithm minimizes L. Given the constraints φ1, . . ., φr,
the authors propose a modified objective function

L′ =
k∑
j=1

E′j ,

E′j =
1
2

 ∑
{i:xi∈cj}

T 1
ji +

∑
{l:g1(l)=j}

(T 2
jl × T 3

jl)

 , (70)

where, taking 00 ≡ 1,

T 1
ji = ‖mj − xi‖2,

T 2
jl =

[
‖mj −mg2(l)‖2 (1− δ(g1(l), g2(l)))

]bl ,
T 3
jl = [‖mj −mh(g2(l))‖2 δ(g1(l), g2(l))

]1−bl .
Here δ(a1, a2) is the Kronecker delta function, defined as δ(a1, a2) = 1 if a1 = a2, and 0 otherwise. The function
h(j) returns the index of the cluster (other than j) whose prototype is closest to the prototype of cluster j.

For each cluster cj , the term T 1
ji represents the sum of squared distances of the samples from the cluster prototype,

which is the same as in the original k-means objective function. The second term T 2
jl is the penalty due to the must-

link constraints violated in cj while the third term T 3
jl is the penalty due to the cannot-link constraints violated in cj .

Suppose xp and xq are to be clustered together (by must-link constraint l), but in the current iteration xp ∈ cu and
xq ∈ cv . The penalty term T 2

ul is then set to the squared distance between the prototypes of cu and cv . Similarly,
suppose xp and xq cannot be clustered together, but in the current iteration xp,xq ∈ cu. Let cw be the cluster whose
prototype is closest to that of cu, then the penalty term T 3

ul is set to the squared distance between the prototypes of cu
and cw.

In order to minimize the objective function L′, we start with a random set of clusters and iteratively update the
cluster prototypes so that the new clusters further minimize L′. The gradient of (70) with respect to the prototypes is
set to zero, and the solution of this equation provides the updated prototypes that further minimize L′ in each iteration.
The updated prototypes based on current cluster assignments are given by

mj =
yj
zj
, (71)

where

yj =
∑

{i:xi∈cj}

xi

+
∑

{l:g1(l)=j}

[
mg2(l) bl(1− δ(j, g2(l))) + mh(g2(l)) (1− bl)δ(j, g2(l))

]
,

zj = |cj |+
∑

{l:g1(l)=j}

[
bl(1− δ(j, g2(l))) + (1− bl)δ(j, g2(l))].
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12 Disparate clusterings
Jain et al. [18] present an approach to partition a given data set into several alternate or disparate clusterings that are
different from each other. Each clustering provides an alternate view of the data and such clusterings are useful to
uncover the different groups inherent in the data.

Given a data set G = {g1, . . ., gn}, gi ∈ Rl, we wish to uncover two clusterings C(x) = {c(x)
1 , . . ., c(x)

r } and
C(y) = {c(y)

1 , . . ., c(y)
s } with r and s clusters, respectively. Let m(x)

1 , . . . ,m(x)
r be the prototypes for the clusters in

C(x) and m(y)
1 , . . . ,m(y)

s for those in C(y).
The objective function for disparate clustering that the authors propose is

F =
r∑
i=1

∑
{k:gk∈c(x)i }

‖gk −m(x)
i ‖

2 +
s∑
j=1

∑
{k:gk∈c(y)j }

‖gk −m(y)
j ‖

2

+ λ

r∑
i=1

s∑
j=1

(
m(x)
i

T
m(y)
j

)2

.

The intuition behind this objective function is that if the prototype vectors of the clusterings are orthogonal to one
another, the cluster assignments (based on nearest distance to prototype) generated are independent. A k-means style
iterative algorithm is used to minimize F , and the prototypes are updated in each iteration using the equations

m(x)
i =

I +
λ

|c(x)
i |

s∑
j=1

m(y)
j m(y)

j

T

−1

m(x)
i ,

m(y)
j =

(
I +

λ

|c(y)
j |

r∑
i=1

m(x)
i m(x)

i

T

)−1

m(y)
j .

These solutions are obtained by setting the gradient of F with respect to the prototypes to zero. In each iteration, we
first update the prototypes using the equations above. Then the data samples are reassigned to the nearest clusters in
the two clusterings and the procedure is repeated till convergence.

13 Discussion
A comparative survey of the above methods yields the following key characteristics:

1. clustering multiple datasets with relationships between them
(IB, multi-variate IB, multi-way clustering, discriminative clustering, disparate clustering),

2. clustering relational data
(co-clustering, clustering k-partite graphs, cross-associations),

3. explicit constraints
(must-link and cannot-link constraints).

The variety of formulations presented here reveals that constrained clustering (either explicitly or indirectly specified)
is a key emerging theme in the last decade for knowledge discovery and data mining. Relational data is only going
to become more prominent with the advent of social networks, web mining, and other domains where relationships
are key elements of data being modeled. The nature of constraints are both prescriptive (e.g., to preserve information
about an auxiliary variable, to capture overlaps in induced similarity) as well as prohibitive (e.g., to disallow data
items from being clustered together and to infer disparate clusterings). We anticipate that, as the scope of clustering
applications grows, newer formulations will be invented and lead to a unified theory of modeling, exploiting, and
enforcing constraints over data/clusters.

18



References
[1] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran,

X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore, J. Hudson, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock,
W. C. Chang, T. C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R. Grever,
J. C. Byrd, D. Botstein, P. O. Brown, and L. M Staudt. Distinct types of diffuse large B-cell lymphoma identified
by gene expression profiling. Nature, Vol. 403(6769):503–11, 2000.

[2] A. Banerjee, S. Basu, and S. Merugu. Multi-way clustering on relation graphs. In Proceedings of the 7th SIAM
International Conference on Data Mining, pages 69–79, 2007.

[3] A. Banerjee and J. Ghosh. Scalable clustering algorithms with balancing constraints. Data Mining and Knowl-
edge Discovery, 13(3):365–395, 2006.

[4] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-associations. In Pro-
ceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
79–88, 2004.

[5] I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. In
Proceedings of the 7th SIAM International Conference on Data Mining, pages 25–35, 2005.

[6] I. S. Dhillon, S. Mallela, and D. S. Modha. Information theoretic co-clustering. In Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 89–98, 2003.

[7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience Publication, 2000.

[8] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-wide expres-
sion patterns. PNAS, 95(25):14863–14868, 1998.

[9] B. J. Frey and D. Dueck. Clustering by Passing Messages Between Data Points. Science, 315(5814):972–976,
2007.

[10] N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby. Multivariate information bottleneck. In Proceedings of
the 17th Conference in Uncertainty in Artificial Intelligence, pages 152–161, 2001.

[11] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 1994.

[12] R. M. Gray. Vector quantization. IEEE ASSP Magazine, pages 4–29, April 1984.

[13] J. A. Hartigan. Clustering Algorithms. Wiley, 1975.

[14] V. R. Iyer, M. B. Eisen, D. T. Ross, G. Schuler, T. Moore, J. C. F. Lee, J. M. Trent, L. M. Staudt, J. Hudson
Jr., M. S. Boguski, D. Lashkari, D. Shalon, D. Botstein, and P. O. Brown. The transcriptional program in the
response of human fibroblasts to serum. Science, 283(5398):83–87, 1999.

[15] A. K. Jain. Data Clustering: 50 years beyond K-means. Pattern Recognition, 2009. to appear.

[16] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice hall, 1988.

[17] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM Computing Surveys, Vol. 31(3):264–
323, Sep 1999.

[18] P. Jain, R. Meka, and I. S. Dhillon. Simultaneous unsupervised learning of disparate clusterings. In Proceedings
of the 8th SIAM International Conference on Data Mining, pages 89–98, 2008.
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