
Shortening Time-to-Discovery with
Dynamic Software Updates for

Parallel High Performance Applications

Dong Kwan Kim, Eli Tilevich, and Calvin J. Ribbens

Center for High-End Computing Systems (CHECS)
Dept. of Computer Science, Virginia Tech

Blacksburg, VA 24061, USA
{ikek70,tilevich,ribbens}@cs.vt.edu

Abstract. Despite using multiple concurrent processors, a typical high
performance parallel application is long-running, taking hours, even days
to arrive at a solution. To modify a running high performance parallel
application, the programmer has to stop the computation, change the
code, redeploy, and enqueue the updated version to be scheduled to run,
thus wasting not only the programmer’s time, but also expensive com-
puting resources. To address these inefficiencies, this article describes
how dynamic software updates can be used to modify a parallel applica-
tion on the fly, thus saving the programmer’s time and using expensive
computing resources more productively. The net effect of updating paral-
lel applications dynamically reduces their time-to-discovery metrics, the
total time it takes from posing a problem to arriving at a solution. To
explore the benefits of dynamic updates for high performance applica-
tions, this article takes a two-pronged approach. First, we describe our
experience in building and evaluating a system for dynamically updating
applications running on a parallel cluster. We then review a large body
of literature describing the existing state of the art in dynamic software
updates and point out how this research can be applied to high per-
formance applications. Our experimental results indicate that dynamic
software updates have the potential to become a powerful tool in reducing
the time-to-discovery metrics for high performance parallel applications.

Key words: dynamic software updates; high performance applications;
binary rewriting; HotSwap

1 INTRODUCTION

Among the most challenging computing application domains is parallel program-
ming for distributed memory multiprocessors. Such systems range from compute
clusters to ad-hoc grids, but fundamentally they coordinate a collection of dis-
tributed computing resources to solve a computationally-intensive problem in

2 Kim, Tilevich, and Ribbens

parallel. Distributed memory multiprocessors help solve important computa-
tional problems in science and engineering, in domains including scientific sim-
ulation, image processing, and bioinformatics.

Writing software for distributed memory multiprocessors has been notori-
ously difficult due to a variety of factors. Parallel programming models over dis-
tributed memory abstractions are difficult to utilize effectively to achieve good
performance. Distributed coordination is challenging and error-prone. The run-
time behavior of a parallel program is difficult to predict from looking at its
source code. Finally, applications in this domain are often written by domain
experts—scientists and engineers—who are extremely knowledgeable in their re-
spective domains but may lack a deep understanding of computing or experience
with modern developments in software engineering.

The raison d’être of parallel high performance computing is to reduce time-
to-discovery, the total time it takes from posing a problem to arriving at a
solution. This metric is the sum of the time it takes to run an application and
the time it takes to develop and fine-tune it. While high performance computing
researchers have traditionally focused on reducing the time to run applications,
another avenue for reducing time-to-discovery is to apply solid software engi-
neering principles, novel techniques, and advanced tools [45, 8, 24]. That is, the
software engineering approaches traditionally used to improve the construction
and maintenance of traditional software can also benefit high performance soft-
ware.

In particular, this article explores how dynamic software updates (DSU)—an
advanced software engineering approach for updating software while it runs—
can be applied to high performance applications, thus reducing their time-to-
discovery. The idea behind dynamic software updates is simple. While a program
is running, the programmer changes the program’s source code, compiles the
program into a binary representation, and then uses a dynamic update system to
replace the running binary representation with the updated one. Implementing a
safe and efficient dynamic update system is strewn with challenges, including the
need to replace a binary representation of a program while preserving its runtime
state as well as dealing with various features of the underlying programming
language and the runtime environment.

Dynamically updating parallel high performance applications presents its
own set of challenges. A typical parallel application includes multiple concurrent
tasks executed on different processors, each running at its own pace and only
periodically communicating with other tasks. These concurrent tasks must be
updated consistently, which is non trivial. In particular, maintaining consistency
during a dynamic update of multiple concurrent processes requires a distributed
coordination protocol. This protocol must not only ensure some runtime invari-
ant (e.g., no two divergent versions of a task are running simultaneously) but
also do so without imposing an undue performance overhead on the parallel
program.

Despite these challenges of applying dynamic software updates to a parallel
high performance application, we foresee that this advanced software engineer-

Shortening Time-to-Discovery with Dynamic Software Updates 3

ing approach is capable of drastically improving how we build and fine-tune
applications in this important domain. High performance applications running
on large numbers of processors are difficult to develop incrementally, as they
are often time-consuming to deploy; the typical try-change-try again develop-
ment cycle does not fit well for applications in this domain. In particular, any
code change involves stopping the execution, changing the program, re-deploying
the changed program, and re-starting the computation anew. In a traditional
high-performance computing (HPC) environment, all these actions can be quite
time-consuming and disruptive. Besides, this development model may not uti-
lize expensive computing resources most effectively, wasting valuable processing
time.

Furthermore, two important trends in HPC applications exacerbate the cost
of starting and restarting a computation: grid computing and real-time simu-
lation. In the case of grid computing, restarting a computation from scratch
requires repeating several steps, all of which are expensive and some of which
may be impossible (i.e., resource discovery and reservation, resource allocation,
data staging, data streaming, and job launching). In the case of real-time sim-
ulation, “system-level” simulations, which use HPC resources, often have hard-
to-anticipate requirements and real-time constraints, thus necessitating dynamic
code updates to avoid stop/restart cycles. Examples of such computations in-
clude hurricane modeling, infrastructure and environment monitoring, epidemic
modeling, and personalized medicine.

We believe dynamic software updating offers a pragmatic approach that can
save human time and computing resources. With dynamic updates, one could
change parameters, specify a different precision, or even switch to a different
model or algorithm on the fly, observing the results of the updates in near real
time. All of these can significantly reduce the time-to-discovery for high perfor-
mance applications.

Having studied a large body of research on various aspects of DSU, we find
that this advanced software engineering technique can provide the following ben-
efits for HPC applications:

– Satisfying new or changed user requirements on the fly
If the initial requirements change while a high performance application is
executing, the computation must be interrupted, so that the code can be
changed to reflect the new requirements. By contrast, dynamic software up-
dates do not require interrupting the computation by enabling code changes
on the fly.

– Reducing software downtime
Off-line software updates result in software downtime—an application pro-
vides no services during updates. In HPC, such downtime is undesirable, as
HPC resources are quite expensive to operate, with large electricity and cool-
ing costs. Dynamic software updates can reduce software downtime, thereby
avoiding the loss of intermediate data and using computing resources more
productively.

4 Kim, Tilevich, and Ribbens

– Avoiding the re-deployment hassle
Deploying HPC applications often requires interacting with a scheduler, a
software module that allocates the required computational resources and
schedules the execution. In heterogeneous grid environments, effective schedul-
ing can become particularly onerous. In any case, re-deploying an HPC appli-
cation imposes an additional burden on the user. Dynamic software updates
can eliminate the need to re-deploy the application by applying the required
changes on the fly.

This article leverages and expands on our recent research, which has put
forward a novel approach to enabling flexible and efficient dynamic updates for
high performance grid applications deployed on the Java Virtual Machine (JVM)
[30, 29, 28]. Grounded in this work, this article further investigates the benefits
of applying dynamic software updates to high performance parallel applications.
Since a significant body of research explores various aspects of dynamic soft-
ware updates, we present a thorough overview of this research and discuss the
opportunities for applying this existing state of the art to HPC applications. In
addition, we detail our experience in designing, implementing, and evaluating a
dynamic update system for parallel, high performance applications, deployed on
distributed memory multiprocessors.

The rest of this article is structured as follows. Section 2 presents our syn-
chronization algorithm and its reference implementation to update parallel high
performance applications on the fly. Section 3 details our efficient and flexible
approach to enabling in-vivo enhancement of parallel high performance applica-
tions. Section 4 describes the existing state of the art in dynamic update systems.
Section 5 discusses future work directions, and Section 6 presents concluding re-
marks.

2 UPDATING HIGH PERFORMANCE CLUSTER
APPLICATIONS DYNAMICALLY

Due to their cost efficiency, compute clusters are among the most widely-used
high performance computing environments. A typical compute cluster features
a large number of homogeneous processors connected to each other with a high
performance interconnect. To submit a computational task to a cluster, users
interface with a scheduler that queues up the submitted tasks for their turn to be
run. To coordinate the execution between different processors, compute cluster
applications use the Message Passing Interface (MPI) [5] middleware library,
which has a standardized interface and is almost universally available. Next we
describe our dynamic software update system that targets compute clusters and
uses MPI for coordination. We start by outlining the main design goal of our
system, then detail our implementation, and finally evaluate the performance of
our system.

Shortening Time-to-Discovery with Dynamic Software Updates 5

2.1 Design Considerations

Compared to applications run on a single machine, cluster applications coordi-
nate the execution of multiple concurrent processes running on multiple compute
nodes. Therefore, a dynamic update system targeting cluster applications must
posses several properties.

One issue is delivering the updated binary representation of a program to
each compute node. Since the nodes on a cluster typically run a shared file
system, copying a new version of the binary will immediately make it available
to all the nodes.

Another issue is updating multiple concurrent copies of a program consis-
tently. In other words, some distributed runtime invariant has to be maintained.
The nature of this invariant depends on the kind of updated application. For
example, for embarrassingly parallel applications, in which the Master commu-
nicates exclusively with Workers and Workers do not communicate among each
other, the required consistency guarantees are quite relaxed; each Worker code
could be updated independently and the correctness of the computation will still
be preserved.

Nevertheless, most high performance parallel applications have much more
stringent update consistency requirements than a typical Master-Worker appli-
cation. One invariant that may have to be maintained is that no two diver-
gent versions of a program are run simultaneously. Since to ensure maximum
parallelism, concurrent processors are synchronized sparingly, maintaining this
invariant can be quite challenging.

Our distributed synchronization implementation has two parts. First, we have
created a distributed synchronization algorithm that implements a consistency
scheme using standard MPI calls. In addition, to apply this algorithm to an
existing parallel application, we have to inject special code to each piece of
software that will be run concurrently and will need to be updated dynamically.
We describe each of these parts in turn next.

2.2 Synchronization Algorithm

Updating multiple concurrent tasks consistently entails receiving the update
information from the user and applying the update consistently to all the run-
ning nodes. Each of these activities requires a distributed consistency algorithm,
which we now describe.

Dynamic updates are initiated by the user who interacts with an update front
end. The purpose of the front end is to accept from the user a new version of the
running program. Then the front end may choose to calculate the delta between
the running and new versions of the program to reduce the amount of code that
would have to be replaced. Finally, the front end instructs the running nodes to
update themselves to the new version.

The step of this procedure that requires distributed coordination is for the
nodes to receive the update request from the front end. Figure 1 shows the algo-
rithm, according to which the root node of the distributed computation receives

6 Kim, Tilevich, and Ribbens

OUTPUT: Update information which will be used for updating on all nodes.
1 updateInfoQueue ⇐ φ
2 create a communication channel chp with a port number p
3
4 REPEAT
5 await the update data ud from the user
6 IF ∃ ud THEN
7 chp receives ud through the port number p
8 add ud to the update queue updateInfoQueue
9 ENDIF

10 UNTIL the application is running

Fig. 1. Waiting for update information from the user.

1 updateInfoQueue ⇐ φ
2 N ⇐ a set of the nodes involved in the computation
3
4 /∗ The root node (rank0) creates a thread which will wait for update information. ∗/
5 IF nodeRank ≡ 0 THEN
6 create a update thread udThread
7 ENDIF
8 ...
9

10 /∗ Broadcast the update information from the root node to all nodes. ∗/
11 IF nodeRank ≡ 0 THEN
12 get updateInfoQueue from the update thread udThread
13 broadcast updateInfoQueue to all nodes N
14 ENDIF
15
16 IF updateInfoQueue 6= φ THEN
17 /∗ Each worker node updates its application on the fly . ∗/
18 update the application appj on nj based on updateInfoQueue
19 /∗ A worker node waits until the others finish their updates. ∗/
20 WAIT UNTIL the updates on the remaining N − nj have been completed
21 ENDIF

Fig. 2. Synchronizing concurrent dynamic updates on multiple nodes.

Shortening Time-to-Discovery with Dynamic Software Updates 7

update requests. To that end, the root node spawns a new update thread that
waits for an incoming socket connection request. An asynchronous IO facility
can be used to avoid busy waiting. When a connection from the front end is
received, the update thread creates a user communication channel (line 2), re-
ceives update data from the user (line 5), and enqueues it (line 8). The thread
can repeat the above procedure continuously until the application is running,
thus possibly enqueuing multiple update requests.

The code on each running node is patched with update management code,
which constitutes a short sequence of method calls and conditional statements.
The exact code location at which dynamic updates should take place depends on
the semantics of the updated application. For some applications, update man-
agement can be seamlessly added to the beginning of the main compute loop;
however, this particular location may turn to be unsuitable for other applica-
tions. Figure 2 displays the algorithm implemented by the update management
code. To synchronize updates, the root node (i.e., the process with rank zero)
broadcasts update information to all nodes. Upon receiving the update informa-
tion, all the nodes, including the root node, update themselves dynamically using
whatever local DSU infrastructure is in place, and synchronize on a barrier.

2.3 Example Implementation

To enable efficient and safe dynamic software updates for parallel high perfor-
mance applications, our approach taps into their development cycle and also
adds some runtime functionality. Figure 3 describes the process by which an
unaware parallel high performance application is enhanced to be dynamically
updateable. The enhancement process starts after the application has been im-
plemented, thus following the principle of separating concerns. The programmer
focuses on implementing the application logic, while a special post-compilation
step adds the required functionality to enable dynamic updates. Furthermore,
our approach does not assume that the application is built with dynamic updates
in mind.

As our example implementation, we have targeted parallel applications that
use the JavaTMtechnology to operate seamlessly in a heterogeneous environment.
The Java technology has been successfully applied to the domain of distributed
parallel computation: heterogeneous computational grids are commonly Java-
based [2]. The JVM also is one of the most advanced virtual execution envi-
ronments ported to a multitude of different platforms. However, our primary
motivation for choosing JVM as our experimentation platform is convenience.
The relatively high level of Java bytecode makes it easier to add functionality to
classes at the binary level, thus simplifying our proof-of-concept implementation.
We believe, however, that our example implementation can be ported to other
HPC platforms with only minor adjustments in the programming tools.

One of the key issues of dynamic software updates is safety. That is, updating
a running application must not put it in an unsafe state that may affect the
application’s correctness and stability. Thus, it becomes important to identify
a point in the execution of a parallel task at which its software can be safely

8 Kim, Tilevich, and Ribbens
Making Updateable CIAs at Compile Time

…
foo();
bar();
…

Update
Management

Code

…
foo();

Update
Management

Code

bar();
…

Original HPC applications
Updateable HPC applications

Updating
Points

J
JVM

Execute

Fig. 3. Making HPC applications updateable.

updated dynamically. Upon reaching this point, the task should check whether
the update is available, perform the requisite synchronization with the other
tasks, and then update itself if so instructed.

Identifying a specific program execution point at which it is safe to perform
a dynamic update requires a thorough understanding of the semantics of the
parallel application. While identifying such safe update points automatically can
be an immensely complex task, the programmer can easily specify them by hand.
To that end, our approach allows the programmer to specify update information
through a simple configuration file that contains the Java class, method, and
line number, before which the synchronization code should be added. The code
is added directly at the bytecode level, a common software practice for Java
applications with multiple bytecode engineering toolkits readily available [15, 1,
11].

Figure 4 shows that the synchronization code is quite straightforward. The
process with rank zero creates a thread to receive update requests from the user.
To ensure that the thread does not waste computing resources, all the commu-
nication takes place through Java asynchronous IO, which wakes up the thread
only when a new update request is ready to be processed. The rank zero process
then broadcasts the update information to the remaining processes. In the case
when the user initiated a dynamic update, then each process updates itself and
synchronizes on a barrier. If no update is needed, then the only additional cost
is the broadcast (line 5).

Figure 5 illustrates our runtime support for dynamic updates. Our approach
leverages the capacities of the standard JVM HotSwap facility. Upon receiving
an update request, the running JVM sends itself a HotSwap request, relying on
the HotSwap machinery to safely interrupt the execution, reload the updated
version of the specified classes, and restart the computation. Upon restarting the
computation, the first executed method is a barrier synchronization that ensures

Shortening Time-to-Discovery with Dynamic Software Updates 9

1 if (MPI.COMM WORLD.Rank() == 0) {
2 classNames = SelectSockets.INSTANCE.getClassNames();
3 }
4
5 MPI.COMM WORLD.Bcast(classNames, 0, classNames.length, MPI.OBJECT, 0);
6
7 if (!classNames.isEmpty()){
8 ExecutionManager.update(classNames);
9

10 MPI.COMM WORLD.Barrier();
11
12 }

Fig. 4. An example of the synchronization code.

that all the concurrently-running copies of the computation have been updated
consistently.

J
JVM

Updating CIAs at Runtime / UpdateInfoServer

Initiate

J
JVM

Hot
Swap

Initiate

Update

J
JVM

Hot
Swap

Initiate

Update

Broadcast
Update Info.

J
JVM

Hot
SwapUpdate

Updateable
HPC App.

Updateable
HPC App.

Updateable
HPC App.

Rank 0

Asynchronous
Socket communication UpdateInfo

Thread
(Thread)

UpdateInfo
Client

Fig. 5. Updating parallel HPC at runtime.

10 Kim, Tilevich, and Ribbens

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200 invocations, mdsize = 38

Ex
e

cu
ti

o
n

 T
im

e
(m

in
.)

of Cluster Nodes

32 64 128

Original MDS Updateable MDS with 20 updates

16

2.10 %
1.76 %

1.46 %

1.25 %

Fig. 6. Performance overhead on the update management code. Bcast and
Barrier have been executed 200 and 20 times, respectively.

2.4 Evaluation

As our evaluation environment, we have used System G—a state-of-the-art re-
search supercomputer recently constructed at Virginia Tech. System G features
top-of-the-line components, typically found in a modern compute cluster: each
compute node runs two Intel Xenon processors with 4 cores each (a total of 8
cores), 8GB RAM, and Fedora Core 10. The nodes are connected by InfiniBand
(10Gbit+). For all the experiments, we used JDK 1.6.0 0.

The goal of our evaluation was to ensure that the injected update man-
agement code, discussed above, imposes a negligible performance overhead. If
the goal of dynamic software updates is to reduce time-to-discovery, then high
costs of executing the update management code would offset—if not eliminate
altogether—the desired overall performance improvements. Since our update
management code implements a distributed synchronization algorithm, its per-
formance is thus dependent on the number of nodes. The higher the number
of nodes that have to be updated consistently, the higher will be the cost of
synchronizing them.

As our benchmark application, we have used a parallel Molecular Dynamics
Simulation (MDS) application, a benchmark that is distributed with MPJ Ex-
press [7], a middleware library that provides Java bindings to the majority of MPI
calls. Thus, although each individual node runs Java, the nodes communicate

Shortening Time-to-Discovery with Dynamic Software Updates 11

500 invocations, mdsize = 38

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Original MDS Updateable MDS with 20 updates

Ex
e

cu
ti

o
n

 T
im

e
 (

h
rs

)

of Cluster Nodes

32 64 12816

0.81 %
0.43 %

0.59 %

0.16 %

Fig. 7. Performance overhead on the update management code. Bcast and
Barrier have been executed 500 and 20 times, respectively.

with each other through MPI. Therefore, our findings should be representative
of a typical compute cluster application, and our setup does not unfairly benefit
our approach.

MDS applications [44, 32] model the structure, motions, and interactions of
molecular systems, including proteins, cell membranes, and DNA, at an atomic
level of detail through a parallel computer simulation. The primary method
of an MDS application includes the main execution loop, which simulates the
movement of particles by running code on multiple nodes in parallel and synchro-
nizing their execution through MPJ calls. Specifically, the main loop includes
the routines that move particles, calculate the force on particles, and average the
velocity of all particles. The size of the simulation is controlled by adjusting the
number of times the particles are moved, nstep. We ran the simulation for nstep
= 200 and 500. The update management code was inserted in the beginning of
the main execution loop. Thus, the update management code was executed once
per iteration step. We also randomly performed 20 dynamic updates. To cap-
ture the overhead of managing the updates, we have swapped the running class
versions with the same classes. Thus, even though classes were swapped, the
changes did not have any effect on the execution of the application.1

1 See Section 3 for the description of realistic updates that can reduce the time-to-
discovery in parallel high performance applications.

12 Kim, Tilevich, and Ribbens

Figures 6 and 7 show the performance overhead imposed by our update
management code for 200 and 500 simulation steps. We compared the total
execution time of the original and the enhanced for dynamic updates versions
of the MDS application on 16, 32, 64, and 128 nodes. The overhead is incurred
mainly by the MPI Bcast and Barrier calls: while Bcast is executed on each
iteration of the main execution loop, Barrier is called only if a dynamic update
has taken place (i.e., Barrier is called 20 times). As expected, the performance
overhead tends to increase with the number of nodes. Nevertheless, the total
overhead never exceeds 2%. Furthermore, as the number of iterations increases,
the total overhead of executing our update management code decreases.

Note that the total execution time of each simulation can be as high as 8
hours depending on the configuration. If the running code needs to be changed
during these 8 hours, the ability to update the code dynamically, in our view,
will be well worth the overhead of the update management code, which adds up
to less than 10 minutes 2.

3 FLEXIBLE AND EFFICIENT DYNAMIC
SOFTWARE UPDATES
FOR JVM APPLICATIONS

The distributed consistency algorithm presented in the previous section is quite
efficient, incurring a negligible performance overhead on parallel high perfor-
mance applications running on the JVM. Furthermore, the JVM features a
built-in facility—JVM HotSwap—which provides a standardized API for replac-
ing classes in a running JVM. Unfortunately, as it turns out, HotSwap imposes
serious constraints on what kinds of changes can be made to the swapped classes,
thus significantly limiting the applicability of this facility for updating applica-
tions dynamically. To be able to dynamically update parallel high performance
applications flexibly and efficiently, we have developed an approach, based on
the binary rewriting of Java classes, that overcomes the limitations imposed by
the design of JVM HotSwap. We present the main insights of our approach next.

3.1 HotSwap Constraints

The JVM HotSwap disallows any changes to the signature of a class: a swapped
class has to contain the same set of methods and fields as the currently deployed
version, and only method bodies can be changed. Whenever the programmer
tries to perform any of the updates listed in the second column of Table 1 using
the JVM HotSwap, the JVM throws an exception.

Because in Java, one cannot assume one-to-one correspondence between source
files and their classes in bytecode, complying with HotSwap restrictions can be
nontrivial. For example, a Java inner class is commonly translated by adding
synthetic access methods to its enclosing classes, so that the inner class could

2 2% of 8 hours is 480mins ∗ .02 ≈ 10mins.

Shortening Time-to-Discovery with Dynamic Software Updates 13

Table 1. HotSwap Constraints (the addressed ones are shaded)

Targets Changes
Method Adding a new method

Removing an existing method
Adding formal arguments of a method
Removing formal arguments of a method
Changing the return type of a method
Changing method modifiers

Field Adding a new field
Removing an existing field
Changing the type of a field
Changing field modifier

access their non-public members. This translation strategy is likely to leave the
programmer unaware that a change to one class caused the compiler to add
methods to other classes, thus violating the HotSwap constraint on adding new
methods and rendering the enclosing classes unswappable.

3.2 Binary Refactoring for Proxy Indirection

+bar() : int

+getI() : int

+setI(in i : int) : void

Proxy_A

+bar() : int

+getI() : int

+setI(in i : int) : void

Super_A

-i : int

(Proxy Class)

(Virtual Superclass)

+bar() : int

A

-i : int

Bytecode

Transformation
S

o
u

rc
e

 c
o

d
e

B
y
te

c
o

d
e

Client
A:a

m() {a.foo(); }

A

foo(){}

Client
A:a

m()
{a.foo();
 a.bar(20);}

A

foo(){}
bar(int v){}

Version 1 Version 2

Client
A:a

m() {
 a.foo();

 a.invoke(“bar”,
 new Class[]{Integer},
 new Object[]{
 new Integer(3)});
}

Super_A

foo(){}

getHelperObj(){}

HelperClass

bar(int v){}

A

foo(){ super.foo(); }

Object invoke(
 String mname,
 Class[] argTypes,
 Object[] args){}

A

foo()

{super.foo();}

invoke(){}

Client
A:a

m()
{ a.foo(); }

Super_A

foo(){}

getHelperObj(){}

Time

HotSwapping (version1->version2)

A
int:x

int bar()
{return x;}

int x;

int bar()
{return x;}

Instantiation

version 1

Version 2

A
int:x
int:y

int bar()
{return y;}

A a;
void m()

{ a.bar();}

Object lifetime

Method call

int x;
int bar()

{return y;}

version 2

Object

Raising an

error.

Class

X

X

t

Obj1 before

HotSwapping
Obj1 after

HotSwapping

Fig. 8. Virtual superclass binary refactoring.

Binary refactoring applies structural semantics-preserving transformations to
a program’s binary representation, with the goal of enabling its functional en-
hancement. One of the most common binary refactorings in existence is chang-
ing direct references into proxy references. Our approach uses this refactoring

14 Kim, Tilevich, and Ribbens

to address the limitations of HotSwap described in Section 3.1. A common im-
plementation of indirect referencing is a binary refactoring that we call Virtual
Interface3. Virtual Interface refactors the bytecode of a class into proxy, inter-
face, and implementation classes. The bytecode rewriter makes the client part
of the target version refer to the proxy class in the refactored version. This in-
direction style can incur between 8% and 44% performance overhead, which is
prohibitively high for performance-sensitive applications.

As an alternative, we have created a novel technique for introducing indirect
referencing that we call Virtual Superclass, which incurs only minuscule per-
formance overhead on the refactored programs. Our approach applies Virtual
Superclass to all application classes loaded into the JVM; Figure 8 depicts the
Virtual Superclass refactoring transformations. Every class A is changed to ex-
tend a virtual superclass Super A, with the virtual superclass being inserted into
the class’s inheritance hierarchy.4 Thus, the original class A becomes a proxy for
the virtual superclass, which contains all the original method bodies and fields.

Another advantage of Virtual Superclass is its generality. The existing state
of the art in enabling proxy indirection [16] creates subclass-based proxies, which
have limitations for final classes and methods. By contrast, Virtual Superclass
works for any class or method, as the final modifier does not constrain the
creation of superclasses.

The performance efficiency of Virtual Superclass is explained by the sophis-
ticated optimization capabilities of modern JVMs, which can inline delegating
method calls, if the delegation does not involve dynamic dispatch. In Figure 8,
the call to super.bar can be effectively inlined by modern JVMs, thus com-
pletely eliminating any indirection overhead in most cases. The call is translated
into the invokespecial bytecode instruction, reserved for invoking construc-
tors and methods in superclasses. The delegating call in Virtual Interface uses
the invokeinterface instruction, which implements a form of dynamic method
dispatch, and as such cannot be safely inlined, though its performance has been
improved significantly in modern JVMs [6]. Thus, Virtual Superclass leverages
the low-level differences of bytecode instructions to attain its performance ad-
vantages.

3.3 Flexible In-Vivo Enhancement with HotSwap

To be able to use the standard HotSwap to replace classes in a running JVM,
our approach rewrites all the classes at the bytecode level before deployment.
It is these rewrites that make it possible to change the signatures of replaced
classes, without violating the HotSwap constraints.

The first phase, illustrated in Figure 9, refactors all the loaded classes at
the bytecode level and generates their corresponding virtual superclasses. The
3 The adjective virtual emphasizes the fact that the introduced interface is not seen

by the client program and is only used as an implementation artifact. The client
code never accesses the introduced “virtual” interface directly.

4 The virtual superclass is inserted for each class in the inheritance hierarchy. Thus,
A ext B ⇒ A ext Super A ext B ext Super B.

Shortening Time-to-Discovery with Dynamic Software Updates 15

New Superclass

of A

(With the same schema as

the loaded superclass of A)

Helper

Classes

Bytecode

Rewriting

New version

of Class A

HotSwapping

Superclass

of A

Class A

Class A

Superclass

of A

Proxy of A

JVM

New

Superclass

of A

Helper

Classes

New

Superclass

of A

Proxy of A

JVM

Helper

Classes

New

Version of

Class A

Phase II : Replacement of Class A at runtime

(solid lines)

Phase I : Deployment of Class A

(dashed lines)

Class Difference

Finder

Virtual

Superclass

Generator

Proxy Class

Generator

Helper Class

Generator

HotSwapping

Fig. 9. Supporting a full range of dynamic updates using HotSwap.

virtual superclasses have actual methods implementing application-specific logic
and are swapped by the updating system. Thus, the original code is rewritten
into updateable software, structurally different from the original version, before
being deployed on a virtual machine. When the initial program is changed, the
programmer inputs the changed classes to the updating system, which refactors
them into virtual superclasses and special helper classes. HotSwap can then
replace older class versions of virtual superclasses with newer versions, as they
have the same schema. Helper classes make the updates conform to the HotSwap
API when new methods or fields are added. The new members are added to
helper classes, so that the signatures of virtual superclasses remain the same.

In addition to transforming classes at load time with the Javassist library [15],
our system includes a class differencing module and code generators for proxy,
virtual superclass, and helper classes. The differencing algorithm operates at
the bytecode level, and its output parameterizes the code generators and the
bytecode rewriter. The rewriter translates newly-added methods, constructors,
and fields to helper classes as follows.

New methods/constructors The rewriter adds a special invoke method to
all the instrumented classes as a facility to invoke newly-added methods without
changing the updated class’s signature. Each new method is translated into
a method in a helper class, whose invocation logic is added to the body of
the invoke method. Each call site of a newly added method becomes a call to
invoke, with the added method name as the first argument.

Figure 10 shows an example of adding a new method; the newer version of
A has a new method bar. The first and second columns in Figure 10 illustrate
class diagrams representing classes and their relationships at the source code and
the corresponding bytecode, respectively. The special helper class HelperClass
contains the new method bar and each proxy class contains the invoke method.
Each invocation of bar is translated to invoke invoke instead.

16 Kim, Tilevich, and Ribbens

Version 1 of A Version 2 of A

Class diagram
of original classes

A

void foo(){}

A

void foo(){super.foo();}

Object invoke(
String name,
Class[] argTypes,
Object[] args){}

Super_A

void foo(){}
Object getHelperClass(){}

void foo(){}

void bar(int i){}

A

HelperClass

void bar(int i){}

Super_A

void foo(){}
Object getHelperClass(){}

A

void foo(){super.foo();}

Object invoke(
String name,
Class[] argTypes,
Object[] args){}

bar() added

Class diagram
of enhanced classes

HelperClass
added

Fig. 10. Adding a new method using a helper class.

Each new constructor is translated into an invocation of a “do-nothing” con-
structor and a special initialization method that contains the added constructor’s
logic.

New fields New fields are translated according to two approaches, one op-
timized for performance, while the other for space. The first approach uses a
separate helper class for the new fields whenever a class is replaced with a newer
version. The second approach uses a single class that contains a mapping data
structure that represents all the added fields for all classes. For performance-
sensitive applications, we envision that the first approach will be preferable.
Few HPC parallel applications run in memory-constrained environments that
require the programmer to be space-aware. Modern JVMs can load new helper
classes on demand quite efficiently.

Object state update One complication of using HotSwap for updating running
applications is that it can only update classes—HotSwap has no facilities for
upgrading objects created from an older version of a class to a newer version.
In dynamic update systems, this operation is called Object State Update. Our
approach also can efficiently transfer state between old and new objects, enabling
instances of different versions of a class to coexist in the running application. Our
system updates the state between old and new helper objects for new fields, based
on their respective version numbers. In particular, the update system checks if
the version of a helper object is older than the latest version. If so, a special
helper object is instantiated for the newly added state (i.e., extra fields). The

Shortening Time-to-Discovery with Dynamic Software Updates 17

values of the fields in the older helper object are then copied to the corresponding
fields in the newer helper object.

3.4 Updating Smith-Waterman Parallelization Dynamically

To motivate the need for flexible dynamic software updates in in-vivo enhance-
ment of parallel high performance applications, we describe how the well-known
Smith-Waterman algorithm could be parallelized and developed incrementally
to run in distributed multiprocessors. The sequential version of this algorithm
[3] calculates a similarity score between two sequences. A parallelization of this
algorithm will align an unknown sequence against an entire database of known
sequences, with the database partitioned among different computational nodes.
The resulting computation will follow a simple Master Worker model, with the
Master node assigning tasks to the Worker nodes as well as collecting and filter-
ing the results. Specifically, the Master accepts an unknown sequence as input
and sends it to individual Worker nodes. Each worker node aligns the unknown
sequence against its portion of the partitioned database. The sequences hav-
ing the highest similarity scores (e.g., above a given threshold) are then sent
back to the Master. The Master collects the results, sorts them, and reports the
top-ranked results to the user.

Cases Requirements

of updates

Field Method
Class

Method
body

Sig.
change

Replaced
classes

Case1:
Console File

Saving alignment results as a

file
1 1 1 1 2

Case2:
float double

Displaying alignment results

in a double precision
5 11 6 4 9

Case3:
SW SWG

A need of more practical

alignment algorithm
0 4 1 1 2

Fig. 11. Changes to Smith-Waterman program using extended HotSwap.
SW:Smith-Waterman algorithm [46], SWG:Smith-Waterman-Gotoh algorithm
[19].

Thus, after creating an initial parallelization of the Smith-Waterman algo-
rithm described above, the programmer could deploy and test it in its intended
deployment environment. One common difference between sequential applica-
tions and their parallelizations is that the parallel version produces much more
output data. It is quite likely, for example, that while in the sequential version
of Smith-Waterman algorithm, all the results could comfortably fit on the same
output window, in the parallel version, the results would be more numerous. As
a result, it is possible that the output data in the parallel version could only
be properly examined, if they were saved to a disk file. Thus, the programmer
may wish to change the piece of functionality that simply dumps the results to
standard output to write them to a disk file instead.

18 Kim, Tilevich, and Ribbens

It also may turn out that certain assumption made during the design phase
would no longer hold true. For example, the programmer may have assumed that
the float precision would be sufficient for representing similarity scores, while
after seeing the initial results realize that the double precision is needed.

Finally, it may turn out that the implementation of the alignment algorithm
does not satisfy the expected performance or accuracy requirements. A slight
variation of the algorithm could satisfy these requirements to a greater extent.

As it turns out, all of these three updates involve structural changes to the
bytecode, rendering the standard HotSwap facilities unsuitable for the task.
Specifically, changing the display from the console to a disk file requires replac-
ing classes AlignCommentLine and FileOutput, as well as adding a new method
writeToFile, thereby changing the signature of class FileOutput. Such a seem-
ingly trivial change as using double rather that float precision for the similarity
scores requires modifications of 5 fields, 11 methods, and 9 classes! Because the
similarly score is computed through the interaction of multiple methods in dif-
ferent classes, changing its type (i.e., from float to double) requires changing
the signatures of all of the involved methods. Finally, modifying the alignment
algorithm requires modifying the signatures of 4 methods in 2 different classes.
Because the base algorithms use different parameter sets, the methods’ signa-
tures, invoked when the algorithm is executed, have to be changed accordingly.
Figure 11 presents the exact statistics of the changes involved.

0

50

100

150

200

250

300

350

400

450

500

Original App.

Refactored App.

0.15%

0.11%

0.09%

0.14%

DB Size (KB) # of seq.

alu.a 221 1,962

yeast.aa 3,321 6,312

drosoph.aa 8,300 14,331

pdbaa 22,169 37,882

Seconds

Fig. 12. Refactoring overhead on the worker portion of Smith-Waterman par-
allelization. x-axis: the databases names in FASTA format, y-axis: the total
execution time.

Shortening Time-to-Discovery with Dynamic Software Updates 19

For this case study, we used the Ibis [2] grid infrastructure, even though
the grid nodes communicated with each other through Java sockets rather than
through the MPJ middleware provided by Ibis. We have also included our binary
rewriting infrastructure into the standard class loading process. All the dynamic
updates are initiated from the Master node, which has remote debugging connec-
tions to each Worker node.5 The programmer interacts with an upgrade script
that takes the classes of a new program version, compares this version with the
current version, computes the necessary updates, and applies them dynamically
through the remote debugging connection to the remote nodes. Figure 12 shows
the indirection overhead on the rewritten Worker code. Because the cost of in-
direction is incurred only when invoking methods, and the Worker process does
most of the computation within a single method, the overall overhead is neg-
ligible. Thus, our novel binary rewriting approach made it possible to use the
standard HotSwap to update a running distributed application, without either
having to modify the JVM or having to degrade the performance. Furthermore,
the updates were applied without having to stop the parallel execution and wast-
ing valuable HPC resources. These results indicate that in-vivo enhancement can
become a valuable tool for delivering parallel solutions under tight deadlines.

4 RELATED WORK

Research on dynamic software updates hails back to the early 1980’s. Many re-
searchers have focused on the challenge of changing a running application with-
out stopping its execution. Each shift in the design of programming languages
and models has brought about a new wave of research on dynamic software
updates.

The following discussion, inspired by a similar overview included in Michael
Hicks’ doctoral dissertation [22], presents key properties of dynamic software
update systems and demonstrates how representative systems support the pre-
sented properties.

4.1 Range of updates

The range of updates property refers to supporting arbitrary updates without
significantly constraining which programming language features can be used in
the updated applications. Ideally, DSU systems should have no limitations on
the update unit such as classes, procedures, and processes.

DYMOS [33] is an integrated environment which consists of a command
interpreter, source code manager, editor, compiler, and run-time support system.
DYMOS permits changes to module definitions, data definitions, and infinite
loop bodies. Ginseng [38] supports changes to function types and the type of
global variables by tracking concrete uses of functions and global variables. Since

5 Starting from JDK 1.4, remote debugging connections do not impose performance
overhead, allowing programs to run at full speed.

20 Kim, Tilevich, and Ribbens

the updating facility of PROSE [40, 39] is based on the HotSwap in the Sun
JDK implementation, PROSE only supports updates to method bodies. Unlike
PROSE, Jvolve [47] can flexibly support schema changes such as additions and
replacements of fields and methods because it uses a modified virtual machine. To
support various kinds of updates, Bialek’s approach [9] automatically partitions
Java applications into a set of classes or Java packages.

4.2 Robustness

The robustness property represents safety, well-timedness, and the ability to
rollback DSU systems. Whenever a robust DSU system updates an application
dynamically, the risk of the updated application crashing has to be minimized.

The DYMOS system mentioned above ensures resiliency to crash or system
failure of the updated applications by enforcing type checking. A new version
of a procedure is compiled within the environment used by the old version. To
improve safety further, DYMOS uses update pre-conditions provided by the pro-
grammer and enforced by the system to ensure that the updated system does
not become unstable as a result of an update. Argus [12] provides crash recovery
facilities that interact with the Argus’ process abstractions called guardians. A
portion of a guardian’s running state is stored in permanent storage. If the pro-
gram crashes, a replacing guardian can be restarted using the persistent old state.
Guarded Software Updating (GSU) [48] can update extremely long-running ap-
plications (e.g., satellite software running for a decade). GSU allows different
versions of a program to be deployed simultaneously, so that the new version
could be tested under the current runtime conditions. If the testing establishes
confidence, then the system can be transitioned to the new version, using the
old one as a backup accomplished through message logging, checkpointing, and
rollback recovery.

Jvolve verifies the updated bytecode for type safety and checks the running
thread’s activation stack to reach a safe update point, delaying the updates if
necessary. POLUS [13] can rollback committed updates to the original versions
of the code and data, which are stored in memory. While using extra memory,
this approach provides fast and easy rollbacks.

4.3 Performance overhead

The performance overhead property refers to the total amount of extra time it
takes to enable dynamic updates. To be applicable for high performance appli-
cations, DSU systems should impose a negligible performance overhead.

POLUS, a DSU system for C applications, uses binary rewriting to redirect
function calls between versions. The introduced function redirection may impose
some performance overhead. However, Chen et al. claim that such overhead is
minimal and less than 1% for most applications [13]. PROSE updates Java ap-
plications dynamically with a negligible run-time performance overhead, thanks
to the aggressive inlining of the existing method calls in the replaced method

Shortening Time-to-Discovery with Dynamic Software Updates 21

bodies. Jvolve uses a custom virtual machine, providing a highly efficient DSU
service with virtually no performance penalty.

4.4 Ease of use

The ease of use property refers to the simplicity with which a DSU system
can be used to apply dynamic updates. Ideally, the update processes should
be transparent to the programmer, with most of the functionality completely
automated. That is, programmers should not have to write any dynamic update
code, and the development process should be separated from the dynamic update
process. Segal and Frieder have observed that the degree to which a particular
DSU system is used is directly proportional to its transparency [43].

To minimize user involvement, Bialek’s system automatically adds dynamic
update functionality to the applications. POLUS also needs only minimal update
information from programmers and automatically generates update patches. Fur-
thermore, to provide good usability, POLUS enables patch processes to be visi-
ble to programmers. Ginseng features a compiler and tool suite for constructing
updateable C applications from programs written without dynamic updates in
mind—it produces updateable programs dynamically and generates dynamic
patches automatically.

4.5 Portability

The portability property refers to the ability to perform dynamic updates on mul-
tiple platforms. Some dynamic updating systems only work on specific operating
and/or middleware systems.

Dynamic C++’s approach [23] requires no special preprocessor or compiler
support. Its lightweight proxy classes can be compiled by any standard C++
compiler.

On the other hand, some DSU systems need comprehensive infrastructure
support such as a custom operating or middleware system. Hauptmann et al.’s
approach [21] leverages certain properties of the Chorus operating system, in-
cluding dynamic process loading, port migration, and thread scheduling. The
Eternal system [36] dynamically updates CORBA-based systems, thus being
portable across CORBA-enabled platforms.

Kang et al. [27, 26] adapt HPC programs, in Fortran, C, and C++, for new
requirements. Their approach leverages the function interception capabilities
of a framework that operations at the assembly language level, thus ensuring
programming language independence.

Some Java DSU systems, including JDrums [4], Jvolve, and Dynamic Vir-
tual Machine (DVM) [35], use custom JVMs. The portability of these approaches
is thus constrained by the necessity to provide a customized JVM for every sup-
ported platform.

22 Kim, Tilevich, and Ribbens

4.6 Multi-threading support

The multi-threading support property refers to the ability to safely update a
program that has multiple concurrent execution threads.

DYMOS can update multi-threaded applications due to its design, which uses
the multi-thread variant of the Modula language called StarMod; this particular
dialect makes it easier to synchronize those DYMOS function calls that access
global structures. The design of Argus naturally supports the replacement of
guardians, which are groups of distributed, multi-threaded processes.

To update multi-threaded C programs efficiently, Ginseng improves on barrier-
style synchronization. Its extension, Stump [37], further facilitates safe and
timely updates of multi-threaded programs by enabling the programming to eas-
ily reason about the safety of updates. To that end, Stump takes programmer’s
input in the form of safe program update locations and calculates an extended
set of such locations. It then relaxes the built-in properties of synchronization
constructs to ensure that threads not be blocked at these update locations.

Jvolve can safely update multi-threaded programs by ensuring that all the
threads have reached a safe state, in which updated methods are no longer
allocated on the runtime stack. If a safe state cannot be reached, the updates
are postponed until a later time.

4.7 Distribution support

The distributed support property refers to the ability to update distributed ap-
plications, whose execution spans multiple address spaces, possibly separated by
a network.

Some systems dynamically update distributed applications by using custom
middleware. PolyLith [25] runs C programs on top of a special reconfiguration-
enabled runtime system.

The Conic [31] distributed programming system coordinates multiple dis-
tributed processes. The provided entry points, called channels, are used for inter-
process communication, and a configuration manager can redirect the channels
on the fly.

JDrums provides a special communication layer that enables accessing a
remote JVM through JINI using RPC. The JD reconfiguration tool coordinates
distributed components using a JINI communication protocol.

To adapt HPC applications without degrading their performance, Kang et
al.’s approach injects adaptive code at the existing global synchronization points
(e.g., where MPI Bcast and MPI Barrier are invoked).

4.8 Language constructs support

The language constructs support property refers to accommodating various pro-
gramming language constructs during dynamic updates. Of interest to this dis-
cussions are various language constructs found in C, C++, and Java.

Shortening Time-to-Discovery with Dynamic Software Updates 23

PODUS, PolyLith, On-line Software Version Change (OSVC) [20], and Gin-
seng are specifically designed for dynamically updating programs written in C.
Dynamic C++, Eternal, and Chorus aim at dynamic updates of C++ appli-
cations. Argus, Conic, Erlang [49], Dynamic ML [18], and DYMOS work with
custom versions of various languages that facilitate dynamic updates.

The rapid, widespread adoption of Java technology has served as an impetus
for creating many DSU systems for updating Java applications on the fly. Orso
et al.’s technique [41] refactors bytecode to enable dynamic updates. Bialek et
al.’s system also rewrites the updated software at the source or bytecode levels
to enable its dynamic updates. Several approaches [42, 35, 17] have introduced
custom virtual machines to support dynamic updates of Java applications. Some
approaches [34, 14, 50, 10] introduce new languages features, middleware systems,
or require that software developers abide by specific component models or pro-
gramming rules. Bierman et al.’s UpgradeJ [10] is a Java-like language for type-
safe upgrading classes dynamically.

5 FUTURE WORK

As our experimental platform is the JVM, it would be interesting to explore how
our approach works for new high-productivity languages that target the JVM.
The new language features of these languages are likely to pose new challenges
for dynamic updates. Furthermore, we would like to further improve the usability
of our approach, making it accessible to non-expert programmers. It remains to
be seen whether the complex functionality enabled by our infrastructure can
be exposed through an intuitive GUI. The usability of our infrastructure can
greatly affect its adoption rate. Finally, our approach to dynamic updates of
parallel applications could benefit next-generation software systems including
large scale grid applications, conscientious systems, and autonomic computing.

6 CONCLUSIONS

This article has considered the value of using dynamic software updates to re-
duce the time-to-discovery metrics of high performance parallel applications.
We have presented an extensive overview of the state of the art in dynamic
software updates and reported on our own work on dynamically updating high
performance parallel applications. Our approach demonstrates the benefits of
dynamic software updates for the domain of high performance parallel applica-
tions and contributes several innovative techniques. One technique employs bi-
nary rewriting to overcome constraints of the HotSwap API to support a wider
range of dynamic changes. Another technique introduces an algorithm for ensur-
ing consistency when dynamically updating multiple concurrent parallel tasks.
To demonstrate the efficiency of the algorithm, we benchmarked a parallel molec-
ular dynamics simulation, comparing the performance of the original version and
the one enhanced with the implementation of our distributed synchronization
algorithm. The results show that the overhead of our approach is negligible and

24 Kim, Tilevich, and Ribbens

can be certainly justified by the added ability to update parallel execution on
the fly.

High performance computing researchers and practitioners alike are starting
to realize the potential of reducing the development and fine-tuning component
of the time to discovery in parallel high performance applications. This research
has demonstrated the benefits of applying dynamic software updates to parallel
high performance applications, an approach that can improve many aspects of
engineering software in this domain.

References

1. Byte Code Engineering Lab (BCEL), http://jakarta.apache.org/bcel/.

2. Ibis: Grids as Promised, http://www.cs.vu.nl/ibis/.

3. JAligner, http://jaligner.sourceforge.net/.

4. JDrums, http://www.ida.liu.se/~jengu/jdrums/.

5. Message Passing Interface, http://www.mcs.anl.gov/mpi.

6. B. Alpern, A. Cocchi, S. Fink, and D. Grove. Efficient implementation of Java
interfaces: Invokeinterface considered harmless. In OOPSLA ’01: Proceedings of
the 16th ACM SIGPLAN conference on Object oriented programming, systems,
languages, and applications, pages 108–124, 2001.

7. M. Baker, B. Carpenter, and A. Shaft. Mpj express: Towards thread safe java hpc.
Cluster Computing, IEEE International Conference on, 0:1–10, 2006.

8. V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K. Hollingsworth, F. Shull,
and M. V. Zelkowitz. Understanding the high-performance-computing community:
A software engineer’s perspective. IEEE Software, 25(4):29–36, 2008.

9. R. P. Bialek. Dynamic updates of existing Java applications. Ph.D. Thesis, the
University of Copenhagen, pages 1–216, June 2006.

10. G. Bierman, M. Parkinson, and J. Nob. UpgradeJ: Incremental typechecking
for class upgrades. In European Conference on Object-Oriented Programming
(ECOOP), July 2008.

11. W. Binder, J. Hulaas, and P. Moret. Advanced Java bytecode instrumentation.
In PPPJ ’07: Proceedings of the 5th international symposium on Principles and
practice of programming in Java, pages 135–144, New York, NY, USA, 2007. ACM.

12. T. Bloom and M. Day. Reconfiguration and module replacement in argus: theory
and practice. Software Engineering Journal, 8(2):102–108, 1993.

13. H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. Polus: A powerful live updating
system. In ICSE ’07: Proceedings of the 29th international conference on Software
Engineering, pages 271–281, Washington, DC, USA, 2007. IEEE Computer Society.

14. X. Chen. Extending RMI to support dynamic reconfiguration of distributed sys-
tems. Proceedings of the 22 nd International Conference on Distributed Computing
Systems (ICDCS’02), pages 401–408, 2002.

15. S. Chiba and M. Nishizawa. An easy-to-use toolkit for efficient Java bytecode
translators. Proc. of 2nd Int’l Conf. on Generative Programming and Component
Engineering (GPCE’03), pages 364–376, 2003.

16. P. Eugster. Uniform proxies for Java. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications, pages 139–152, 2006.

Shortening Time-to-Discovery with Dynamic Software Updates 25

17. B. Gharaibeh, D. Dig, T. N. Nguyen, and J. M. Chang. dReAM: Dynamic
refactoring-aware automated migration of Java online applications. Technical Re-
port, Iowa State University, August 2007.

18. S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without dynamic types. Tech-
nical Report, The University of Edinburgh, December 1997.

19. O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol.,
162:705–708, 1982.

20. D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line software version
change. IEEE Trans. Softw. Eng., 22(2):120–131, 1996.

21. S. Hauptmann and J. Wasel. On-line maintenance with on-the-fly software re-
placement. In ICCDS ’96: Proceedings of the 3rd International Conference on
Configurable Distributed Systems, page 70, Washington, DC, USA, 1996. IEEE
Computer Society.

22. M. Hicks. Dynamic Software Updating. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, August 2001.

23. G. Hjálmtýsson and R. Gray. Dynamic C++ classes: a lightweight mechanism
to update code in a running program. In ATEC ’98: Proceedings of the annual
conference on USENIX Annual Technical Conference, pages 6–6, Berkeley, CA,
USA, 1998. USENIX Association.

24. L. Hochstein, J. Carver, F. Shull, S. Asgari, and V. Basili. Parallel programmer
productivity: A case study of novice parallel programmers. In SC ’05: Proceedings
of the 2005 ACM/IEEE conference on Supercomputing, page 35, Washington, DC,
USA, 2005. IEEE Computer Society.

25. C. Hofmeister. Dynamic reconfiguration. Ph.D. Thesis, University of Maryland,
1993.

26. P. Kang, Y. Cao, N. Ramakrishnan, C. J. Ribbens, and S. Varadarajan. Modu-
lar implementation of adaptive decisions in stochastic simulations. In SAC ’09:
Proceedings of the 2009 ACM symposium on Applied Computing, pages 995–1001,
New York, NY, USA, 2009. ACM.

27. P. Kang, N. K. C. Selvarasu, N. Ramakrishnan, C. J. Ribbens, D. K. Tafti, and
S. Varadarajan. Modular, fine-grained adaptation of parallel programs. In ICCS,
pages 269–279, 2009.

28. D. K. Kim, Y. Jiao, and E. Tilevich. Flexible and efficient in-vivo enhancement
for grid applications. In 9th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2009). IEEE, 2009.

29. D. K. Kim, M. Song, E. Tilevich, C. J. Ribbens, and S. A. Bohner. Dynamic soft-
ware updates for accelerating scientific discovery. In The International Conference
on Computational Science 2009 (ICCS 2009), 2009.

30. D. K. Kim and E. Tilevich. Overcoming JVM HotSwap constraints via binary
rewriting. In First ACM Workshop on Hot Topics in Software Upgrades (HotSWUp
2008). ACM, 2008.

31. J. Kramer and J. Magee. Dynamic configuration for distributed systems. IEEE
Trans. Softw. Eng., 11(4):424–436, 1985.

32. A. Kumar. Molecular Dynamics Simulations. http://www.personal.psu.edu/

auk183/MolDynamics/Molecular%20Dynamics%20Simulations.html.

33. I. Lee. DYMOS: A Dynamic Modification System. Ph.D. Thesis, University of
Wisconsin, Madison, April 1983.

34. Y.-F. Lee and R.-C. Chang. Java-based component framework for dynamic recon-
figuration. IEE Proceedings - Software, 152(3):110–118, June 2005.

26 Kim, Tilevich, and Ribbens

35. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support
for type-safe dynamic Java classes. Proceedings of the 14th European Conference
on Object-Oriented Programming, 1850:337–361, June 2000.

36. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Exploiting the internet inter-
ORB protocol interface to provide CORBA with fault tolerance. In COOTS’97:
Proceedings of the 3rd conference on USENIX Conference on Object-Oriented Tech-
nologies (COOTS), pages 6–6, Berkeley, CA, USA, 1997. USENIX Association.

37. I. Neamtiu and M. Hicks. Safe and timely dynamic updates for multi-threaded pro-
grams. In Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI), June 2009.

38. I. G. Neamtiu. Practical dynamic software updating. Ph.D. Thesis, University of
Maryland, pages 1–212, August 2008.

39. A. Nicoara and G. Alonso. Dynamic AOP with PROSE. In Conference on Advanced
Information Systems Engineering (CAiSE), pages 125–138, 2005.

40. A. Nicoara, G. Alonso, and T. Roscoe. Controlled, systematic, and efficient code
replacement for running Java programs. In Eurosys ’08: Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, pages
233–246, New York, NY, USA, 2008. ACM.

41. A. Orso, A. Rao, and M. J. Harrold. A technique for dynamic updating of Java
software. Proceedings of the International Conference on Software Maintenance
(ICSM’02), October 2002.

42. T. Ritzau and J. Andersson. Dynamic deployment of Java applications. In Java
for Embedded Systems Workshop, London, May 2000.

43. M. E. Segal and O. Frieder. On-the-fly program modification: Systems for dynamic
updating. IEEE Software, 10(2):53–65, 1993.

44. D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon,
C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo,
J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry, J. L. Klepeis, T. Lay-
man, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler,
M. Theobald, B. Towles, and S. C. Wang. Anton, a special-purpose machine for
molecular dynamics simulation. Commun. ACM, 51(7):91–97, 2008.

45. F. Shull, J. Carver, L. Hochstein, and V. Basili. Empirical study design in the area
of high-performance computing (hpc). Empirical Software Engineering, Interna-
tional Symposium on, 0:10 pp., 2005.

46. T. Smith and M. Waterman. Identification of common molecular subsequences. J.
Mol. Biol., 147:195–197, 1981.

47. S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic software updates for Java:
A VM-centric approach. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), June 2009.

48. A. T. Tai, K. S. Tso, L. Alkalai, S. N. Chau, and W. H. Sanders. On low-cost error
containment and recovery methods for guarded software upgrading. In ICDCS ’00:
Proceedings of the The 20th International Conference on Distributed Computing
Systems (ICDCS 2000), page 548, Washington, DC, USA, 2000. IEEE Computer
Society.

49. R. Virding, C. Wikström, and M. Williams. Concurrent programming in ERLANG
(2nd ed.). Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1996.

50. A. Warth, M. Stanojević, and T. Millstein. Statically scoped object adaptation
with Expanders. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications,
pages 37–56, 2006.

