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Fig. 9. AVIRIS image (three flight lines) taken over Appomattox Buckingham State Forest in Virginia, USA.

Fig. 10. IGSCR IS classification of ABSF.

the upper half on the zoomed image (Figs. 6, 7, and 8). Fig. 6 indicates a likelihood that there is insufficient training data for
these regions. Ultimately these water and shadow regions are misclassified using the decision rule in IGSCR (not pictured),
and these regions are classified incorrectly using CIGSCR with Euclidean distance squared. However, notice in Fig. 8 that
the CIGSCR IS using Euclidean distance to the fourth power correctly classified the river and the shadow regions. With soft
clustering, different clusters were formed, allowing these features to potentially be correctly placed in similar clusters, even
though these clusters likely contained small percentages of the training data. In this case, it is potentially useful toknow that
these features are unclassified (in IGSCR) allowing for modification of the training data, and unfortunately CIGSCR doesnot

11



Fig. 11a. CIGSCR IS classification (loblolly pines). Fig. 11b. CIGSCR IS classification (shortleaf pines).

Fig. 11c. CIGSCR IS classification (Virginia pines). Fig. 11d. CIGSCR IS classification (nonpine).

have this capability. However, when more training samples are not available, CIGSCR can potentially provide a better estimate
of the correct class for these data that are not well represented in the training data (although this is obviously not guaranteed as
CIGSCR using two different distance functions produced different classification results). Also of interest is that theuncertainty
in the soft classifications (regions in beige) does not necessarily match the unclassified regions in Fig. 6. There does not appear
to be a correlation between samples that are not part of pure clusters in IGSCR and samples that may belong to multiple classes
in CIGSCR.

The accuracies reported for the classification of ABSF tend to be lower than the classification accuracies reported for
VA1734, which is reasonable considering the classificationof ABSF is attempting to discriminate between spectrally similar pine
species, ABSF is noisy, and ABSF contains several heterogeneous areas, making training difficult. Also note that the VA1734
DR classifications were almost always more accurate than corresponding IS classifications, but ABSF DR classifications are
often less accurate than corresponding IS classifications.All ABSF classifications (IGSCR DR and IS and CIGSCR DR and IS)
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Table 3
IGSCR and CIGSCR decision rule (DR) classification accuracies for ABSF.

no. init. IGSCR (α = .01) CIGSCR (α = .0001) clustering

clusters p = .5 p = .9 ρ = ||x − U ||2
2

ρ = ||x − U ||4
2

ρ = e||x−U||2 (no iteration)

10 83.50 * 47.50 79.50 72.50 *
15 * * 62.50 83.50 79.75 *
20 * * 66.75 73.50 74.25 *
25 51.00 51.00 63.00 75.00 78.75 *

Table 4
IGSCR iterative stacked plus (IS+) and CIGSCR iterative stacked (IS)

classification accuracies for ABSF.

no. init. IGSCR (α = .01) CIGSCR (α = .0001) clustering

clusters p = .5 p = .9 ρ = ||x − U ||2
2

ρ = ||x − U ||4
2

ρ = e||x−U||2 (no iteration)

10 83.75 * 51.75 84.50 72.75 *
15 * * 51.00 84.50 83.25 *
20 * * 51.00 84.00 81.50 *
25 91.00 75.25 51.00 76.75 83.00 *

Table 5
For VA17 IGSCR, number of pure clusters. For VA17 CIGSCR,

the pairs (a,b) = (number of clusters produced, number of associated clusters).

no. init. IGSCR CIGSCR

clusters p = .5 p = .9 ρ = ||x − U ||2
2

ρ = ||x − U ||4
2

ρ = e||x−U||2

10 19 6 15,13 11,11 12,12
15 15 6 20,16 20,19 20,20
20 20 18 25,21 21,21 24,24
25 52 17 30,25 30,28 30,29

Table 6
For ABSF IGSCR, number of pure clusters. For ABSF CIGSCR,

the pairs (a,b) = (number of clusters produced, number of associated clusters).

no. init. IGSCR CIGSCR

clusters p = .5 p = .9 ρ = ||x − U ||2
2

ρ = ||x − U ||4
2

ρ = e||x−U||2

10 16 8 15,15 10,10 11,11
15 14 11 20,19 15,15 15,15
20 19 9 25,24 20,20 20,20
25 23 15 30,29 25,25 26,26

reasonably separated pines from nonpines, but IGSCR and CIGSCR differed in the identification of individual pines species.
Both classification methods identified individual pines in mixed hardwood/pine stands in the top left corner of the image(Figs.
10 and 11a–d). A visual inspection of the classification images reveals that IGSCR and CIGSCR classifications disagree on
loblolly (IGSCR has underestimated those stands) and shortleaf (both overestimated). IGSCR incorrectly picked out patches of
shortleaf along the “veins” of the image, and both classifications overestimated Virginia pines.

Another potential advantage of CIGSCR with an alternative radial function is the ability to locate clusters associatedwith
classes, even when there is overlap between classes or thereis a small amount of training data for a class. IGSCR failed to
locate enough pure clusters to perform classification, indicated by an asterisk in Tables 3 and 4, in most ABSF classification
attempts. CIGSCR using Euclidean distance squared produced classifications, although the accuracies are low. CIGSCR using
alternative radial functions performed reasonable classifications no matter the number of initial clusters. In highlyheterogeneous
sites like this where limited training data is available formultiple classes, IGSCR has difficulty locating pure clusters. Since
multiple classes are spectrally similar, soft clustering allows for small differences between classes in a cluster to be detected.
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Hard clusters containing one species would be likely to contain a significant amount of the other species, and would therefore fail
the hypothesis test (for reasonablep andα. With soft clustering, portions of both species would be attributed to a soft cluster,
but if there is statistical significance of the difference inthe memberships of the species, the cluster can be associated and used
for training purposes. Furthermore, soft clustering allows for alternative functions to be used to determine cluster assignments.
Recall that these radial functions magnify the difference between small and large probabilities, allowing clusters containing these
less well represented classes to be formed and allowing samples to have high probabilities of belonging to those clusters.

Finally, perhaps the most important question about this semisupervised clustering scheme is whether using the combination
of the association significance test and the iteration improves the clustering for the purposes of classification. Each cluster is
labeled with the class that has the highest average membership in the cluster. Observe in experimental runs in Tables 1 and
2 that all classification accuracies using just clustering are lower than corresponding classification accuracies using CIGSCR
with Euclidean distance. In Tables 3 and 4, iterative refinement was necessary to locate enough clusters (such that each class
was represented by at least one cluster) for classification using Euclidean distance squared. Accuracies are much higher using
alternative distance functions, but little or no iterativerefinement was used. Based on the available results in Tables1–4, the
semisupervised clustering scheme in CIGSCR improves classification accuracies when training data are available to influence
clustering.

V. Conclusions

This paper presented a continuous analog to IGSCR that rejects and refines clusters to automatically classify a remotely
sensed image based on informational class training data. This new algorithm addressed specific challenges presented by
remotely sensed data including large datasets (millions ofsamples), relatively small training datasets, and difficulty in identifying
spectral classes. The resulting classifications are fundamentally different from IGSCR (the discrete predecessor to CIGSCR)
classifications, even when converting the CIGSCR soft classifications to hard classifications. CIGSCR has many advantages over
IGSCR, such as the ability to produce soft classification, less sensitivity to certain input parameters, ability to use alternative
distance functions that often produce more accurate classifications, potential to correctly classify regions that arenot amply
represented in training data, and a better ability to locateclusters associated with all classes. The semisupervised clustering
framework within CIGSCR has been shown here to improve classification accuracies over clustering alone. This semisupervised
clustering framework could be incorporated into many classification algorithms that use clustering. The radial functions used in
CIGSCR resulted in consistently accurate classifications.

The highly automated CIGSCR classification algorithm is a contribution to the remote sensing community that has few if
any automated semisupervised soft classification algorithms analogous to the many automated semisupervised hard classification
algorithms that exist. Future work includes using this softclassifier for many applications of classification in remotesensing.
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