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Abstract The hybrid cellular automaton (HCA) algo-
rithm was inspired by the structural adaptation of
bones to their ever changing mechanical environment.
This methodology has been shown to be an effective
topology synthesis tool. In previous work, it has been
observed that the convergence of the HCA method-
ology is affected by parameters of the algorithm. As
a result, questions have been raised regarding the
conditions by which HCA converges to an optimal
design. The objective of this investigation is to
examine the conditions that guarantee convergence to
a Karush-Kuhn-Tucker (KKT) point. In this paper,
it is shown that the HCA algorithm is a fixed point
iterative scheme and the previously reported KKT
optimality conditions are corrected. To demonstrate
the convergence properties of the HCA algorithm, a
simple cantilevered beam example is utilized. Plots of
the spectral radius for projections of the design space
are used to show regions of guaranteed convergence.
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1 Introduction

The hybrid cellular automaton (HCA) method is a
biologically inspired algorithm capable of topology
synthesis that was developed to simulate the behavior
of bone remodeling as presented by Tovar (2004). This
methodology is termed a hybrid technique because it
couples global information obtained from the finite
element (FE) method with the local relationships
utilized by cellular automata (CA) computing. The
incorporation of global information increases the
efficiency of the HCA algorithm. While Karush-
Kuhn-Tucker (KKT) optimality conditions have been
derived for the HCA algorithm (Tovar et al., 2006),

some questions have been raised whether HCA
actually converges to an optimal structure. It is
known that it is possible to obtain different converged
HCA solutions for the same application and these
solutions cannot all be optimal. An application of CA
to truss design has been rigorously shown to converge
to an optimal solution (Slotta et al., 2002). Following
from this work, an analysis of the convergence of HCA
as a fixed point iteration is conducted to determine
the conditions under which this algorithm converges
to a KKT point.

The concept of CA was pioneered by John von
Neumann in the late 1940s. Von Neumann, who
first proposed the concept of a stored program for
the digital computer, envisioned a system with the
capability of solving very complex problems. He
imagined a machine with the complexity of the
human brain that also contained self-control and
self-repair mechanisms. Such a device would have the
capability of repairing itself with available material.
As a result, von Neumann developed the concept
of a fully discrete universe made up of lattice cells
that behave as automata. Each cell would evolve
simultaneously in discrete time steps according to a
simple rule involving its own state and the states of
neighboring cells. According to Burks (1970), the
first self-replicating CA proposed by von Neumann
was composed of a two-dimensional square lattice
composed of several thousand cells. Each cell had
the possibility of up to 29 states. The local rule
involved the state of each cell and its four nearest
neighbors, located north, south, east, and west. This
CA model was so complex that it has only been
partially implemented on a computer (Pesavento,
1995). The von Neumann rule has the property of
universal computation, meaning there exists an initial
configuration of the CA that results in any finite
algorithmic computation (i.e., the CA implements a
universal Turing machine). This implies that any

1



computer program can be simulated by an automaton
(Chopard and Droz, 1998). Thus, complex and
unexpected behavior can emerge from CA rules.
CA are a model of massively parallel computation
(Chopard and Droz, 1998). CA were brought to
the attention of a wide audience in 1970, when
John Conway proposed his now famous Game of Life
(Gardner, 1970). CA are currently being used to
study artificial life in an attempt to better understand
real life and the behavior of living species through
computer models.

A cellular automaton is a discrete dynamical
system that has been utilized to study idealizations
of complex physical processes. The basis for CA is
that an overall global behavior can emerge from local
rules acting over an automaton that possesses only
local state information. A cellular automaton (CA)
consists of a regular lattice of cells, each described
by a finite dimensional vector of states. The lattice
can exist in any finite number of dimensions. CA
evolve in discrete time; therefore, the state of a
cell at a discrete time depends on a local rule that
utilizes information from a finite number of nearby
cells, known as a neighborhood. Both the local rules
and neighborhoods are consistent for each site of the
lattice and are applied for all generations in time.

As previously mentioned, CA are a massively
scalable approach that lends itself to a variety of
disciplines. For instance, CA have been applied to
shape and topology optimization (Kita and Toyoda,
2000), the design of fiber reinforced composites (Se-
toodeh et al., 2006a), wave propagation in excitable
media (Weimar et al., 1992a,b), and for the solution
of heat transfer problems (Lowekamp et al., 1996).
CA rules have recently been devised for the simulta-
neous analysis and design of simple two-dimensional
structures (Gürdal and Tatting, 2000; Tatting and
Gürdal, 2000). While the CA approach works well
for many problems, the size and complexity of a
problem is often limited by inefficient parallelization
on massively parallel processors (MPPs) (Gürdal
and Watson, 2001). Various techniques have been
developed to improve the efficiency of the CA par-
allelization, such as block synchronous and block
pipeline parallel implementations (Setoodeh et al.,
2006b). Other related work on CA can be found in
Hajela and Kim (2001), Abdalla and Gürdal (2004),
Abdalla et al. (2005), Canyurt and Hajela (2005),
Missoum et al. (2005), Setoodeh et al. (2005), and
Ryoo et al. (2007).

In Tovar et al. (2006) the HCA methodology for
topology optimization was developed. This approach
reduces numerical instabilities by using CA principles,
as opposed to filtering techniques. In conventional

CA methods, a global analysis of field states is
not performed. As previously mentioned, the HCA
method was originally developed for the simulation
of the bone remodeling process. This model assumes
that bone remains locally isotropic and structural
changes are driven by an applied mechanical stimulus.
Therefore, it is assumed that the distribution of
material in a region of bone is altered to uniformly
distribute the effects of the applied stimulus. The
HCA method has many similarities to topology
optimization techniques, although not being a formal
optimization method itself. This framework has
been shown to not only be effective at generating
bone architecture, but it also has been extended
to the areas of compliant mechanism synthesis and
crashworthiness design (Patel, 2007).

2 Optimality of HCA Solutions

The basis for the HCA method is that the CA lattice
is used to represent the connected cellular network
of osteocytes in bones. Relying on the assumption
that osteocytes sense the local mechanical stimulus
experienced in bone, each cell of the CA lattice
contains an osteocyte or a number of osteocytes,
surrounded by mineralized tissue. This model
assumes that bone remains locally isotropic and
changes in relative density are driven by a mechanical
stimulus target differential. Therefore, the state of
cell i is defined by the relative (or normalized) density
xi(t), the mechanical stimulus Si(t), and the error
signal ei(t), i.e.,

ψi(t) =





xi(t)
Si(t)
ei(t)



 . (1)

Since the relative density of each cell can vary
throughout the remodeling process, changes in this
parameter will result in a change in the modulus of
the material. Thus, the modulus at a location i is
calculated using a power law relationship,

Ei(t) = E0ixi(t)
p, (2)

where E0i is the base modulus for each cell, typically
set to the modulus of fully dense bone (assumed to
be equivalent to cortical bone), and p is an empirical
value, typically satisfying 2 ≤ p ≤ 3 (Currey, 1988;
Bendsøe, 1989; Rozvany and Zhou, 1991).

It is assumed that bone adapts to its environment
to obtain a state of equilibrium, corresponding to
a local mechanical stimulus target. Therefore, the
strength of the remodeling signal is measured by the
error between the effective stimulus sensed and the
stimulus target,

ei(t) = S̄i(t) − S∗
i , (3)
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Fig. 1 Common 2D ((a)–(d)) and 3D ((e)–(h)) CA neighborhoods.N̂ depicts the number of neighboring cells.

where S̄i(t) is the effective mechanical stimulus, which
incorporates information from neighboring cells, and
S∗

i is the stimulus target. The stimulus target
for bone remodeling studies is defined from clinical
observations. Local rules R are then used to update
the material distribution in the domain, based on the
magnitude of the stimulus error signal.

The set of local rules R that govern the evolution
of the state of each cell of the automaton operate
according to information gathered from the cells in
a prescribed neighborhood. In general, there is no
restriction placed on the size of a neighborhood, only
that the neighborhoods are consistent for each cell.
The use of a neighborhood is similar to filtering
techniques used in topology optimization to avoid
numerical instabilities such as mesh dependency and
checkerboarding.

As mentioned before, it is theorized that me-
chanical signals are detected in bone by osteocytes,
which are distributed throughout the bone matrix.
These osteocytes extend cellular processes in order
to transmit signals to their neighbors, forming a
highly interconnected cellular network. Therefore,
in the context of bone remodeling, local information
gathered from neighboring cells can be viewed as
the communication via the osteocytic network. In
the original implementation of HCA, the effective
mechanical stimulus sensed by each cell S̄i(t) is
expressed as the average of the stimuli sensed by all
of the cells within the designated neighborhood,

S̄i(t) =
Si(t) +

∑

k∈N(i) Sk(t)

N̂(i) + 1
, (4)

where Si(t) is the state of mechanical stimulus at
location i, Sk(t) represents the mechanical stimulus

sensed by the kth neighbor, N(i) = {indices of

neighbors of cell i} , and N̂(i) = |N(i)| is the total
number of neighbors in the neighborhood. In practice,
the size of the neighborhood is typically restricted to
the adjacent cells but it can also be extended. Some
common two- and three-dimensional neighborhood
layouts are displayed in Fig. 1.

The local rules R utilized by the HCA frame-
work are designed to model the process of bone
functional adaptation to variations in its mechanical
environment. These rules Ri control the remodeling
activities, i.e., formation and resorption in the bone.
The local rules are formulated to operate on the error
signal ei(t) that incorporates information from each
cell of the CA and its neighborhood to determine
whether material should be added or removed. These
rules drive the evolution of the material distribution,
which is the outcome of the remodeling process. In
Tovar’s work, control based rules and a ratio based
rule, following the principles of fully stressed design,
are presented (Tovar et al., 2007). This work will only
focus on the proportional, integral, and derivative
(PID) control strategy.

The HCA method employs a PID control strategy
whose input is the mechanical stimulus measured for
each cell and its neighbors. The purpose of this
rule is to drive the effective state of each cell to
the mechanical stimulus target S∗. The reasoning
behind proportional control is that it is assumed
that osteoclastic or osteoblastic activity occurs in
proportion to the error between a local effective
mechanical stimulus and the stimulus target. Various
computational models of bone remodeling use some
form of proportional control in their remodeling rule
(Fyhrie and Carter, 1986; Huiskes et al., 1987; Huiskes
et al., 2000; Ruimerman et al., 2005). Integral control
provides a pathway for including a sense of memory
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in the adaptation process. Consequently, this can
be interpreted as osteocytes storing information from
previous states, i.e., ei(t− 1), . . ., ei(t−T ). Thus, the
remodeling activity is proportional to the cumulative
error. The rate of osteoblastic and osteoclastic
activity depending on a prediction of the future error
signal, based on the current and previous error signals
ei(t) and ei(t − 1), represents a form of derivative
control. Hence, the change in relative density ∆xi(t)
for a cell at location i is given as

∆xi(t) = cpei(t) + ci

∫ t

0

ei(τ) dτ + cd∆ei(t), (5)

where cp, ci, and cd are the proportional, integral,
and derivative control gains, respectively. Therefore,
the material update for each cell is

xi(t+ 1) =min

{

max

{

0, xi(t) + cpei(t)

+ ci

∫ t

0

ei(τ) dτ + cd∆ei(t)

}

, 1

}

.

(6)

It has been observed that this PID control strategy
reduces numerical instabilities and improves conver-
gence performance of the HCA algorithm.

Recall that this analysis began with the assumption
of a stimulus equilibrium that was motivated by the
physiology and occurs when the stimulus error in
(3) goes to zero. This represents a criterion for
each cell to enforce. One could reasonably ask what
mathematical problem this criterion is the solution to.
The answer turns out to be the multiobjective opti-
mization problem given below. It has been shown that
the HCA framework is capable of topology synthesis,
although not being a formal topology optimization
method itself (Tovar et al., 2006). Previously, Tovar
el al. (2007) derived a new set of design rules for
the HCA methodology for structural topology opti-
mization, based on the Karush-Kuhn-Tucker (KKT)
optimality conditions. This formulation is based on
a multiobjective optimization problem for minimizing
both mass and strain energy written as

min
0≤x≤1

f(U) + g(M), (7)

where f(U) is a function of the strain energy U , g(M)
is a function of the mass M , and x is the vector of
relative densities for each cell. The Lagrangian of this
optimization problem can be written as

L = f(U) + g(M) + (λ1)T (x− 1) − (λ0)Tx, (8)

where λ0 and λ1 are the Lagrange multiplier vectors
associated with the inequality constraints. The

KKT necessary conditions for the multiobjective
optimization problem are given by

∂L

∂xi

=
∂f(U)

∂U

∂U

∂xi

+
∂g(M)

∂M

∂M

∂xi

+ λ1
i − λ0

i = 0, (9)

λ1
i ≥ 0, (10)

λ0
i ≥ 0, (11)

λ1
i (xi − 1) = 0, (12)

and

λ0
i xi = 0. (13)

For an interior point, i.e., 0 < xi < 1, the La-
grange multipliers λ1

i = λ0
i = 0, satisfying (10)–(13).

Therefore, the optimality conditions are satisfied if

∂f(U)

∂U

∂U

∂xi

+
∂g(M)

∂M

∂M

∂xi

= 0. (14)

The strain energy U can be approximated using the
FE method to yield the equilibrium equations

Ku = f, (15)

where K is the global stiffness matrix, u is the global
nodal displacement vector, and f is the global force
vector. Thus, U can be written as

U =
1

2
uTKu =

1

2

N
∑

i=1

uT
i kiui (16)

where ki is the element stiffness matrix, ui is the
element nodal displacement vector, and N is the total
number of elements. Using (16), ∂U/∂xi can be
expressed as

∂U

∂xi

=
1

2

(

∂uT

∂xi

Ku+ uT ∂ (Ku)

∂xi

)

, (17)

which can be reduced to

∂U

∂xi

= −
1

2
uT ∂K

∂xi

u. (18)

Since xi is only present in its corresponding element
stiffness matrix ki and, similarly, the only active part
of the global nodal displacement vector is the element
nodal displacement vector ui, (18) can be rewritten
on an elemental basis

∂U

∂xi

= −
1

2
uT

i

∂ki

∂xi

ui. (19)

Assuming that each element in the FE model is
comprised of isotropic elastic material, the stiffness
matrix for each element can be written as

ki = k0ix
p
i , (20)

where k0i corresponds to the elastic stiffness matrix
when Ei = E0i (refer to (2)). Thus, substituting (20)
into (19) yields

∂U

∂xi

= −
1

2
uT

i

∂ (k0ix
p
i )

∂xi

ui = −
1

2
uT

i pk0ix
p−1
i ui. (21)
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The strain energy density Ui at a discrete location i

can be expressed as

Ui =
1

2v0i

uT
i k0ix

p
i ui, (22)

where v0i is the constant volume of each element.

Inserting Ui into (21) yields

∂U

∂xi

= −pv0i

Ui

xi

. (23)

An expression for ∂M/∂xi can be derived from the
total mass M , which can be written as

M =
N

∑

i=1

mi =
N

∑

i=1

xim0i, (24)

where mi is the mass of an element and m0i is the
maximum mass of the element. Therefore, ∂M/∂xi is

expressed as

∂M

∂xi

= m0i. (25)

By substituting (23) and (25) into (14) and rearrang-

ing terms, the optimality condition for an interior

point can be rewritten as

pv0i

m0i

Ui

xi

=
∂g(M)/∂M

∂f(U)/∂U
. (26)

For the case where f(U) = ω1U and g(M) = ω2M ,

∂f(U)/∂U = ω1 and ∂g(M)/∂M = ω2. Therefore,
for an interior point the optimality condition from

(26) yields

p

ρ0i

Ui

xi

=
ω2

ω1
, (27)

where ρ0i is the density of the solid element, written

as

ρ0i =
m0i

v0i

. (28)

Thus, from this optimality condition, the mechanical

stimulus Si and equilibrium stimulus S∗
i can be

represented as

Si =
Ui

xi

(29)

and

S∗
i =

ω2

ω1

ρ0i

p
. (30)

If the relative density xi of an element is saturated,

i.e., xi = 0 or xi = 1, the optimality condition given

by (27) is no longer valid. For the case of xi = 0,

λ1
i = 0 must also be true in order to satisfy the

condition of (12). Therefore, the conditions in (10),

(12), and (13) are satisfied. Combining the remaining
optimality conditions from (9) and (11) yields

λ0
i =

∂f(U)

∂U

∂U

∂xi

∣

∣

∣

∣

xi=0

+
∂g(M)

∂M

∂M

∂xi

∣

∣

∣

∣

xi=0

≥ 0. (31)

Utilizing the assumption that f(U) = ω1U and
g(M) = ω2M and substituting ∂U/∂xi|xi=0 = 0 from
(21) and ∂M/∂xi|xi=0 = m0i from (25) yields the
optimality condition

λ0
i = ω2m0i ≥ 0. (32)

This condition implies that 0 = Si ≤ S∗
i if xi = 0.

In the case that xi = 1, λ0
i = 0 must also be true

in order to satisfy the condition of (13). Therefore,
the conditions in (11), (12), and (13) are satisfied.
Combining the remaining optimality conditions from
(9) and (10) yields

λ1
i = −

∂f(U)

∂U

∂U

∂xi

∣

∣

∣

∣

xi=1

−
∂g(M)

∂M

∂M

∂xi

∣

∣

∣

∣

xi=1

≥ 0. (33)

Again, utilizing the assumption that f(U) = ω1U and
g(M) = ω2M and substituting

∂U/∂xi|xi=1 = −pv0iUi/xi|xi=1

from (23) and ∂M/∂xi|xi=1 = m0i from (25) yields
the optimality condition

λ1
i = ω1pv0i

Ui

xi

∣

∣

∣

∣

xi=1

− ω2m0i ≥ 0, (34)

which can be written as

Ui

xi

∣

∣

∣

∣

xi=1

≥
ω2

ω1

ρ0i

p
. (35)

This condition implies that Si|xi=1 ≥ S∗
i .

3 Analysis of Convergence

This paper considers a particular HCA of the form

xi(t+ 1) = min{max{0, xi(t) + cpei(t)}, 1}. (36)

It will be shown that the HCA iteration can be
written in the form of a fixed point iteration

x(t + 1) = G(x(t)), (37)

where G(x(t)) is the function representing the HCA
update. In mathematics, a fixed point x̄ of a
function G(x) is a point that is mapped to itself by
the function: G(x̄) = x̄ (Isaacson and Keller, 1966).
There are numerous theorems in different parts of
mathematics that guarantee that these functions, if
they satisfy certain conditions, have at least one fixed
point. The necessary conditions for the function
representing the HCA update G(x(t)) to converge to
a fixed point will be discussed here.
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In order to show that the HCA update can be
written in the form of a fixed point iteration, the
mechanical stimulus error signal ei(t) must be written
in terms of xi(t). From (3), the mechanical stimulus
error signal is represented by

ei(t) = S̄i(t) − S∗
i . (38)

Recall that the effective stimulus S̄i(t) is the average
mechanical stimulus over the desired neighborhood.
For simplicity, this work will consider an empty

neighborhood, i.e., N̂ = 0 , which implies S̄i(t) =
Si(t), consistent with the optimality condition Si = S∗

i

from (27). In fact, Tovar’s HCA converging to

ei = S̄i − S∗
i = 0 with S̄i 6= Si does not satisfy

even his own optimality criterion (Tovar et al.,
2006). The mechanical stimulus Si(t) was determined
from the derivation of the optimality conditions for
the multiobjective optimization above (29). Thus,
inserting this expression into (38) yields

ei(t) =
Ui(t)

xi(t)
− S∗

i . (39)

Utilizing the definition of strain energy density Ui(t)
from (22) and simplifying the result yields

ei(t) =
1

2v0i

uT
i (t)k0ix

p−1
i (t)ui(t) − S∗

i . (40)

The elemental displacement vector uT
i (t) can be

determined from the equilibrium equation for an
element

ui(t) =
(

K−1(x(t))f
)

Ii

, (41)

where Ii = {indices of nodal displacements of element
i}. Therefore, (40) can be written as

ei(t) =
1

2v0i

(

K−1(x(t))f
)T

Ii

k0ix
p−1
i (t)

×
(

K−1(x(t))f
)

Ii

− S∗
i .

(42)

Substituting this expression into the HCA update for
a single cell yields

xi(t+ 1) =min

{

max

{

0, xi(t) + cp
xp−1

i (t)

2v0i

×
(

K−1(x(t))f
)T

Ii

k0i

×
(

K−1(x(t))f
)

Ii

− S∗
i

}

, 1

}

.

(43)

Therefore, since the HCA update for each cell can
be written in terms of x(t), it follows that the HCA
update for the entire CA lattice can be written as

x(t+ 1) = G(x(t)). (44)

Thus, it is shown that the HCA update is fixed point
iteration.

If the HCA iteration is converging to a fixed point
x̄, then it must be true that

‖x(t+ 1) − x̄‖ → 0. (45)

Using (37), the definition of a fixed point, and the
Mean Value Theorem gives

‖x(t+ 1) − x̄‖ = ‖G(x(t)) −G(x̄)‖

= ‖DG(x̂)(x(t) − x̄)‖

≤ ‖DG(x̂)‖ ‖(x(t)) − x̄)‖

(46)

for any vector norm ‖ · ‖ and for some x̂ between x̄
and x(t). This holds for 0 < xi(t) < 1, and also at the
boundary values if xi(t) = x̄i = 0 or xi(t) = x̄i = 1.

If the operator norm

‖DG(x̂)‖ ≤ L < 1 (47)

for some constant L, vector norm ‖ · ‖, and every
x̂, then G(x) has a unique fixed point x̄ and the
HCA iteration converges to x̄ for any starting point
0 < xi(0) < 1 (this is the contraction mapping
theorem). For each ǫ > 0 there exists a vector norm
‖ · ‖ such that

ρ(DG(x̄)) ≤ ‖DG(x̄)‖ < ρ(DG(x̄)) + ǫ, (48)

where

ρ(DG(x̄)) = max
1≤j≤s

|λj |

(λ1, . . . , λs are the eigenvalues of DG(x̄))
(49)

is the spectral radius of the Jacobian matrix DG(x̄),
and (48) holds for all x in a neighborhood of x̄
(Isaacson and Keller, 1966). Hence if

ρ(DG(x̄)) < 1, (50)

then the HCA iteration converges to the fixed
point x̄ for any initial x(0) sufficiently close to
x̄ . Note that if DG(x) is symmetric, then
‖DG(x)‖2 = ρ(DG(x)), and so ρ(DG(x)) < 1 on
0 ≤ x ≤ 1 would guarantee HCA converges for any
0 ≤ x(0) ≤ 1. For nonsymmetric DG(x), the norm
in (48) changes with x, so HCA convergence is
guaranteed only in a neighborhood of x̄.

4 Numerical Example

To analyze the convergence of HCA to an optimal
point, a cantilevered structure modeled with four cells
is considered (Fig. 2). For this example, a one to one
mapping is used between the cells of the CA lattice
and the FE model. Four-noded rectangular finite
elements are used. The nodes along the left edge
of the cantilever are constrained in both coordinate
directions to have zero applied displacements so that
the nodes are fixed. A downward force of 1 N is
applied to the node in the bottom right corner of
the lattice. For simplicity, the dimensions of the
structure are 1 m in width by 1 m in height. As
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mentioned before, the HCA algorithm operates on the
relative density of each cell, therefore, the density is
interpolated between zero and one, using a power law
relationship (2) with exponent p = 3. The Young’s
modulus was set at E = 1 Pa and the Poisson’s
ratio to ν = 0.3. The equilibrium stimulus was set
at S∗

j = 1.2 Pa for j = 1, 2, 3, 4, i.e., each cell in

the lattice is seeking the same target stimulus. For
this equilibrium stimulus, it can be shown using (30)
that the corresponding objective function weights
in (7) are ω1 = 0.2174 and ω2 = 0.7826. The
CA implementation used for the following numerical
experiments is given precisely by (43), and averaging
is not done for the reasons previously given.

x

y

f

1 3

2 4

Fig. 2 Simple2 × 2 cantilevered structure.

The optimal density distribution for this example
was found to be x = (0.999, 0.999, 0.001, 0.999), as
displayed in Fig. 3. Convergence was defined as no
change in the objective function (7) or the design

variable values x larger than 10−7. It is shown that
Cell 3 seeks the minimum density, while Cells 1, 2,
and 4 seek a fully dense state. This result was verified
with MATLAB’s FMINCON (a sequential quadratic
programming algorithm).

Since the HCA algorithm is a fixed point iterative
approach, it is possible that there are multiple fixed
points of which only one is a physical optimum point.
The path that the HCA algorithm takes to a fixed
point is affected by a number of parameters, for
example, the material properties, material parame-
terization, the initial density distribution x(0), and
the proportional constant cp. The spectral radius was
evaluated for arbitrary starting values for combina-
tions of two cells (i.e., Cells 1 and 2, Cells 1 and 3,
etc.) while the remaining two cells were maintained
at full density, for cp = 0.05 (Fig. 4). These plots

display the spectral radius over projections of the
design space.

x

y

f

x1 = 0.999 x3 = 0.001

x2 = 0.999 x4=0.999

x* x*

x* x*

Fig. 3 Optimal density distribution for cantilevered structure.

Unexpectedly, it was found that there are discon-
nected regions in which the spectral radius is less than
one. Therefore, if the initial density distribution falls
within a region of spectral radius less than one that
does not contain the optimal solution, convergence
to an optimal solution is not guaranteed. In fact,
for this problem it was observed that local minimum
points (fixed points) may reside in these disconnected
regions of spectral radius less than one.

The convergence properties of the HCA method are
also affected by the value of cp. The spectral radius
was calculated over the design space for starting
values x(0) with x2(0) = x4(0) = 0.999, for cp = 0.01,
0.05, 0.10, 0.25, 0.50, 1.00 (Fig. 5). For cp = 0.01 the
spectral radius near the optimum point is less than
one only in a very narrow sliver along the x1-axis
(see Fig. 5), showing that HCA will fail to converge
to the true optimum point for most starting points
x(0). This indicates that for some values of the
proportional constant, the HCA algorithm may fail to
converge to the optimum point from many different
starting points. HCA can also fail to converge to
anything by cycling, which happens, for instance,
with x(0) = (0.999, 0.999, 0.999, 0.999) and cp = 1.0.

To illustrate the convergence of the HCA method
to a fixed point, the algorithm was applied for two
initial designs (Fig. 6): first, starting from a fully
dense initial density distribution (i.e., xj = 0.999 for
j = 1, 2, 3, 4—for practical programming reasons,
the bounds 0.001 and 0.999 are used rather than
0 and 1), and second, starting from x1 = x3 = 0.1
and x2 = x4 = 0.999. For both simulations, the
proportional constant was set to cp = 0.05. Again,
convergence was defined as no change in the objective
function (7) or the design variable values x larger

than 10−7. For the two cases, the HCA algorithm
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Fig. 4 Plots of spectral radiusρ(G(x(0))) over the design space for combinations of two cells while theremaining two cells were
set to full density, forcp = 0.05. ρ(G(x(0))) < 1 is shown in white, whileρ(G(x(0))) ≥ 1 is shown in black.

converges to a different fixed point (see Fig. 6), neither

of which is the globally optimal solution shown in

Fig. 3. A summary of the convergence properties of

HCA for the aforementioned initial designs, as well

as several other selected designs, is recorded in Table

1. An exhaustive search of the design space was

not conducted; this exercise was simply to point out

that there are multiple fixed points in the design

space. Each converged fixed point in Table 1 was

verified with MATLAB’s FMINCON as being a local
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Fig. 5 Plots of spectral radiusρ(G(x(0))) over the design space for starting values of Cells 1 and 3 and varying values ofcp.
ρ(G(x(0))) < 1 is shown in white, whileρ(G(x(0))) ≥ 1 is shown in black.

minimum point.

5 Observations from Tovar’s HCA

The HCA method presented by Tovar (2004) and
Tovar et al. (2007) is a non-gradient-based optimiza-

tion approach that follows mathematical principles

derived from the KKT conditions. In this algorithm,

the design domain is divided into cells with some

communication property among neighbors. Local evo-

lutionary rules, obtained from classical control theory,
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Fig. 6 Convergence history (hollow circles of decreasing radius correspond to successive iterates, while the solid circle designates
the converged point) of HCA algorithm to optimal points.

Initial point x(0) Computed fixed point Objective function
(0.999,0.999,0.999,0.999) (0.987,0.999,0.553,0.999) 3.79659
(0.100,0.999,0.100,0.999) (0.001,0.999,0.001,0.999) 4.41418
(0.100,0.999,0.999,0.999) (0.987,0.999,0.553,0.999) 3.79659
(0.999,0.999,0.100,0.999) (0.999,0.999,0.001,0.999) 3.67563
(0.200,0.999,0.200,0.999) (0.999,0.999,0.001,0.999) 3.67563
(0.300,0.999,0.300,0.999) (0.987,0.999,0.553,0.999) 3.79659

Table 1 Converged HCA fixed points forcp = 0.05.

minimize the local error between a reference state
S∗ and a mechanical stimulus S (i.e., state variable)
at each cell. These rules modify the topology of
the design domain by changing the relative density
x of every cell (i.e., design variable). In order to
avoid numerical instabilities, the algorithm defines
an effective mechanical stimulus S̄ (or effective state
variable) as the average value of the cell and its
neighboring cells. In Tovar et al. (2007), several
examples are presented in which HCA converges to
different final designs for different control parameters
and neighborhood sizes. Even though it is claimed
that these final designs are optimal, this is not true
in a precise mathematical sense.

In engineering CA literature, HCA/CA fixed
points are often called “optimal points” even though
such points may not be “optimal” in any precise
mathematical sense. The KKT conditions used to
define optimality in HCA, Si = S∗

i , were derived for
each independent cell and not for a neighborhood.
The satisfaction of these optimality conditions is not

guaranteed when using an averaging procedure for Si

or ei. Furthermore, the simple averaging procedure
might result in cancellation or attenuation of the error
between the mechanical stimulus and the reference
state, so that ei = S̄i − S∗

i = 0 but Si 6= S̄i = S∗
i ,

violating the KKT optimality conditions. Evidently,
the use of the “effective state variable” induces a
mathematical incorrectness that has to be addressed.
For this reason, a final converged design has to be

obtained for empty neighborhoods, N̂ = 0.
When analyzing the convergence of the HCA algo-

rithm, it is compulsory to change control parameters
(e.g., proportional, derivative, and integral gains) and
other algorithm parameters (e.g., neighborhood size),
and analyze the effect on speed and the sequence of
designs analyzed. However, for HCA, each control
technique and neighborhood size corresponds to a
different fixed point iteration function with its own
fixed points. As shown in this paper, the HCA
update x(t+1) = G(x(t)) is fixed point iteration, and
G(x(t)) can have multiple fixed points. Depending
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on how the HCA update function G(x(t)) is defined,
the fixed points may or may not correspond to a
physical optimum point or even a mathematically
local optimum point. Therefore, the convergence of
HCA does not imply that a local optimum point has
been found.

6 Conclusion

In this paper it is shown that the HCA update
iteration is equivalent to fixed point iteration, a
well understood mathematical process. The goal
of the HCA update iteration is to converge to an
optimum design, satisfying the KKT conditions. The
main contribution of this paper is to prove that the
HCA update iteration does in fact converge to an
optimum design under the appropriate conditions.
The optimality conditions for the HCA were revised
and corrected in this work. Another contribution of
this paper is the explicit form of the KKT conditions
for the HCA update iteration.

Due to the nature of HCA fixed point iterative
schemes, it is possible that multiple fixed points exist,
of which only one or none is a physical optimum point.
It has been shown for a simple example that the
HCA algorithm can converge to different fixed points,
depending on the initial conditions. It is important
to note that a converged design found by the HCA
algorithm does not imply a mathematically optimum
design, unless it satisfies the KKT conditions derived
in this paper. However, the results clearly show that
HCA can converge to an optimal design with the
appropriate initial conditions and HCA parameters.

An additional discovery, admittedly unexpected,
was that the HCA is not globally convergent to
an optimal design. This conclusion stems from
evaluating the spectral radius over the design space.
Disconnected regions of spectral radius less than one
exist in the design space. Therefore, if the initial
design does not reside within the region of spectral
radius less than one (i.e., the basin of attraction)
containing the optimal design, and is not sufficiently
close to the optimal design, convergence of the HCA
update iteration to an optimal design cannot be
guaranteed. It is also possible that the HCA iteration
will converge to an alternate fixed point in the design
space that does not satisfy the optimality conditions.

Some past HCA studies did not achieve optimal
designs as a result of an ill-posed HCA update.
As previously mentioned, each control technique
and neighborhood size utilized for the HCA iteration
corresponds to a different fixed point iteration function
with its own fixed points. Current research is being
conducted on methods for achieving optimal designs

with the HCA iteration using neighborhoods, because
utilizing neighborhood information should reduce
synthesis time as a result of the shared information
between cells.

Readers interested in more convergence details are
encouraged to contact the corresponding author.
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