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Abstract

Data Assimilation (DA) involves the combination of observational data with the underlying dynam-
ical principles governing the system under observation. In this work we combine the advantages of
the two prominent advanced DA systems, the 4D-Var and the ensemble methods. The proposed
method consists of identifying the subspace spanned by the major 4D-Var error reduction direc-
tions. These directions are then removed from the background covariance through a Galerkin-type
projection. This generates an updated error covariance information at both end points of an as-
similation window. The error covariance information is updated between assimilation windows to
capture the “error of the day”. Numerical results using our new hybrid approach on a nonlinear
model demonstrate how the background covariance matrix leads to an error covariance update that
improves the 4D-Var DA results.
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1. Introduction

Data Assimilation (DA) is a relatively novel and versatile multidisciplinary methodology. Given
a consistent numerical model for a complex time-dependent system, and a set of observations of
the model state taken at various time moments, DA allows us to combine these two sources of
information to obtain a state approximation, which is, in a well defined statistical sense, the
“best” estimate of the true model state.

DA comprises three types of methods: interpolation, variational, and sequential methods [6, 8,
16, 27, 29]. In the first method, the measurements are interpolated from the points of observation
onto the grid points. The interpolation can be weighted by the statistics of the observations. While
simple to implement, this approach is not justified by any physical arguments. The variational and
sequential data assimilation methods fit into the framework of estimation theory. Sequential DA
features the Kalman filter, as described in Kalman [9] and Jazwinski [17], the Ensemble Kalman
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Filter (EnKF) of Evensen [13, 14, 12, 11], as well as several types of particle filters (see, e.g., Doucet
[1, 2], Arulampalam [31], and Berliner [18]). The main drawback of sequential data assimilation
stems comes from the fact that the covariance matrices of the state variables have huge dimensions
for operational models.

The variational methods were introduced by Sasaki [33]. These methods consider the equations
governing the flow as constraints, and the problem is closed by using a variational principle, e.g.,
the minimization of the discrepancy between the model and the observations. This problem fits into
the framework of optimal control theory [24], as it was proposed by Le Dimet [20], Le Dimet and
Talagrand [21], and Courtier and Talagrand [7]. The major drawback of the variational methods is
in assuming the background error covariances are static, nearly homogeneous and isotropic. This
has been pointed out by Parrish and Derber [30], Courtier et al. [29], Cohn et al. [34], and
Lorenc [5]. The ensemble methods provides a alternative to variational data assimilation. The
EnKF estimates the background error covariances from an ensemble of short-term forecasts, as
described in the work of Houtkamer and Mitchell [19], and Anderson [3]. Although sequential
methods and variational methods are implemented separately, some connections between them
have long been known. In fact, for a perfect model, with the same input data (initial background,
background covariance, distribution of observations, and observation covariance), both the 4D-Var
and the Kalman filter yield the same analysis at the end of the assimilation window [35, 36]. This
equivalence between sequential and variational methods provides a possibility of combining the two
approaches, leading to powerful hybrid DA algorithms.

There have been several recent research efforts in this direction. The 3DVar/EnKF of Hamill
and Snyder [26] is a hybrid scheme blending the 3D-Var and the Ensemble Kalman filter. It utilizes
the ensemble framework to propagate the estimation statistics of the model. However, it does not
fully exploit the smoothing characteristics of 4D-Var. The Ensemble Kalman Smoother (EnKS)
of Evensen and van Leeuwen [10] recomputes a new analysis for all recent measurements upon
the receipt of each new observations. This approach is computationally intractable for real world
problems. Zhang et al. [38] devised the Ensemble 4D-Var (E4DVAR). E4DVAR is essentially
constructed as a feedback loop between 4D-Var and the EnKF method. The ensemble mean in
EnKF is periodically replaced by the 4D-Var analysis, and the covariance matrix built from the
EnKF ensemble provides the background information in 4D-Var. Bewley et al. [4] proposed the
Ensemble Variational Estimation (EnVE) method. EnVE is a coupled hybrid of EnKF/EnKS
and 4D-Var. It leverages the nonlinear statistical propagation properties of the EnKF/EnKS to
initialize and properly define an consistent variational iteration similar to 4D-Var.

This research work proposes a novel hybrid method to generate covariance estimates at both
endpoints of the assimilation window. Our method is the first approach to explicitly consider the
error components removed by the numerical optimization method in 4D-Var. Central to this hybrid
DA method is the construction of a projection operator P. We first build the subspace spanned
by the first search directions explored by the 4D-Var optimizer. The operator P is then defined
as the orthogonal projector onto the orthogonal complement of this subspace. Next, we use the
background covariance B to construct an ensemble of perturbations around the given background
state. This ensemble has mean zero and covariance B. The next step is the construction of hybrid
ensemble, by adding the projected background ensemble perturbations to the 4D-Var optimum
iterate. The hybrid covariance is then assembled from the hybrid ensemble members. Two dif-
ferent approaches allow us to update the error covariance information between windows. We can
propagate each hybrid ensemble member through the model to the next assimilation window (hy-
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brid propagation). Alternatively, we can apply the projection operator on the background ensemble
perturbations at the final time of the assimilation window (hybrid projection). The latter approach
can be essentially thought of as a Galerkin-like projection of the background covariance B onto
the ortogonal complement of the space spanned by the leading 4D-Var error reduction directions.
The new background covariance estimate can be constructed as a convex linear combination of
the static background B and the hybrid covariance. The numerical experiments in section 4 show
that the hybrid covariance estimate is superior to the static background. Moreover, the hybrid
covariance update leads to considerable improvement in the quality of the model forecast.

The rest of this paper is structured as follows. Section 2 discusses the mathematical foundation
of the 4D-Var method. In section 3 we present a step by step description of our hybrid method.
Next, the hybrid DA scheme is tested on a version of the the Lorenz 96 model [25] in section 4.
Finally, section 5 contains the summary and conclusions, along with directions for further research.

2. Mathematical Background on 4D-Var

Consider a time-dependent model given by the initial value problem

{
dx

dt
= M(t, x) t0 ≤ t ≤ tF ,

x(t0) = x0 .
(1)

Let M be the discrete solution operator for the model (1). The discrete approximation to the
exact model state at time t = ti is xi ∈ Rn:

xi = Mt0→ti x0 . (2)

In the following we will denote by t0 and tF the start time and the end time of a 4D-Var
assimilation window, respectively.

Given an a priori forecast error covariance matrix Bt0 ∈ Rn×n, a background model state
xb

0 ∈ Rn at t0, and a set of noisy observations yi ∈ Rm at selected times ti, the discrete 4D-
Var data assimilation problem consists of determining the maximum likelihood initial model state
xa(t0) as the minimizer of the following cost functional:

J (x0) = J b + J o

=
(
x0 − xb

0

)T

B−1
t0

(
x0 − xb

0

)
+

Nobs∑

i=1

(Hixi − yi)
T R−1

i (Hjxi − yi) . (3)

The Hi are observation operators that map the state variables xi ≈ x(ti) to the observation
space:

yi = Hi(xi) . (4)

J b represents the departure from the background value xb, while J o measures the misfit
between the model prediction and the observations.

Current 4D-Var assimilation studies use the same background covariance matrices for each
assimilation window. Ideally however, this background information should be updated periodically
to capture the system dynamics. Using 4D-Var with an improved background covariance would
lead to a higher quality forecast with a larger range of validity.

3



Knowledge of the a posteriori error statistics at the endpoints of the 4D-Var window can be
very valuable. Suppose we compute a good estimate AtF of the a posteriori covariance at the end
of the assimilation window. This is used as the background covariance for the next assimilation
window, allowing us to account for the errors of the day, and ultimately improve the quality of our
forecast.

3. The Hybrid Method

4D-Var experiments usually use a static prescribed background error covariance at the beginning
of each assimilation window. This matrix is built using statistical information inferred from the
background state, the available observations, and the model dynamics. The drawback of this
approach is that an accurate analysis is only guaranteed within each window. The ideal DA
method should account for the “errors of the day”, by updating the background error covariance
matrix between assimilation windows.

Our goal is to estimate the analysis error covariances At0 and AtF , so that the approximated
AtF can be used as the background covariance in the next assimilation window. Note that 4D-Var
by itself does not yield any covariance information. Second order adjoint models [22, 37] can be

used to obtain information about the eigendirections of ∇2J . The inverse Hessian
(
∇2J

)
−1

is
known to approximate the a posteriori error covariance matrix at t0 [15]. Thus, the eigenvectors
corresponding to the smallest Hessian eigenvalues will give the directions of maximum error growth
in the dynamical model (1).

Our method makes use of three ensembles. The background ensemble is generated using the
error statistics given by Bt0 , and each of its members is propagated to tF . Then, through multiple
4D-Var runs, each of which is started from one background ensemble member, we compute an
ensemble of analysis states at t0. This reference analysis ensemble gives the reference error covari-
ance matrices at the initial and final assimilation times. The 4D-Var analysis is started from the
background state xb

0. The vectors in this subspace are the directions of maximum error growth that
are canceled by 4D-Var during the first optimization iterations. A hybrid ensemble is generated
by projecting the background ensemble perturbations out of the space spanned by the first several
4D-Var increments. The hybrid covariance is then assembled from the hybrid ensemble members.
This is done at t0 and tF . We assess the quality of the hybrid covariance approximation through
an eigenvalue comparison against the reference analysis covariance.

In the following we give a detailed description of our algorithm.

3.1. The Background Ensemble

• At t = t0.

Suppose we are given the background state xb(t0) ∈ R
n, the background covariance matrix

B0 ∈ R
n×n, a set of observations yj ∈ R

m taken at times tj, for j = 1, . . . , Nobs, and the
observation covariances Rj ∈ R

m×m.

1. Generate a set of Ne normally distributed perturbations with mean zero and covariance
Bt0 :

∆xb
i ∈ N (0, Bt0) , i = 1, . . . Ne . (5)

2. Construct a background ensemble of size Ne:

xb
i(t0) = xb(t0) + ∆xb

i , i = 1, . . . , Ne . (6)
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• At t = tF .

1. The background ensemble members at t0 are propagated by running the model up to
tF . We obtain a new ensemble

{
xb

1(tF ), xb
2(tF ), . . . , xb

Ne
(tF )

}
, (7)

where
xb

i (tF ) = Mt0→tF xb
i (t0) , i = 1, . . . , Ne . (8)

2. Compute the mean xb(tF ) and covariance BtF for this ensemble.

3.2. The Hybrid Ensemble

• At t = t0.

Starting from xb(t0), the numerical optimization routine used by 4D-Var generates a sequence
of iterates x(i), i = 1, . . . k. Here k is a truncation index, in that we retain only the first k

iterates, with k ≪ n. This strategy is consistent with the observation that the reduction in
the cost function is fastest during the initial iterations of the optimizer. This phenomenon
has been consistently observed in practice (see, e.g., [23, 28, 32, 40]).

1. Let x
(i)
0 denotes the i-th iterate computed by the optimizer, and denote by St0 the space

spanned by the normalized 4D-Var increments

St0 =


 x

(i)
0 − x

(i−1)
0∥∥∥x

(i)
0 − x

(i−1)
0

∥∥∥




i=1,...,k

, (9)

with x
(0)
0 ≡ xb(t0).

2. Using the singular value decomposition (SVD) of St0

St0 = UΣV T , (10)

we retain only the right singular vectors ui, i = 1, . . . , l that correspond to the largest l

singular values σ1, . . . , σl, where

σk

σ1
< 0.1 , ∀ k > l . (11)

Let
Ut0 =

[
u1

0 u2
0 . . . ul

0

]
. (12)

3. The orthogonal projector onto the orthogonal complement of Ut0 is defined as

Pt0 = I − Ut0U
T
t0

. (13)

4. Project the ensemble perturbations ∆xb
i out of the space Ut0 , and generate the hybrid

ensemble around the optimal 4D-Var iterate x
(k)
0 :

∆xh
i (t0) = Pt0∆xb

i(t0)

xh
i (t0) = x

(k)
0 + ∆xh

i (t0) . (14)
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5. Compute the covariance Ah
t0

of the hybrid ensemble. The background perturbations (5)
are normally distributed with zero mean, and covariance Bt0 . Since Pt0 is linear, the

hybrid ensemble at t0 has mean x
(k)
0 :E [

xh
i

]
= x

(k)
0 + Pt0E [

xb
i

]
= x

(k)
0 , (15)

and covariance
Ah

t0
= Pt0 Bt0 Pt0 . (16)

6. Calculate the eigenvalues {ρ1, ρ2, . . . , ρNe
}, and eigenvectors {w1, w2, . . . , wNe

} of Ah
t0

.

• At t = tF :

1. Let

StF =


 x

(i)
F − x

(i−1)
F∥∥∥x

(i)
F − x

(i−1)
F

∥∥∥




i=1,...,k

, (17)

where x0
F ≡ xb(tF ). Note that all of the iterates

x
(i)
F = Mt0→tF x

(i)
0 (18)

are readily available, as they have been computed during the 4D-Var iterations started
from xb(t0).

2. We discard all but the first l left singular vectors ui
F (i = 1, . . . , l) of StF , using the SVD

and equation (11). Let

Ut0 =
[
u1

F u2
F . . . ul

F

]
. (19)

Then
PtF = I − UtF UT

tF
(20)

is the orthogonal projector out of StF . We perform an orthogonal projection of the
background ensemble perturbations

∆xb
i(tF ) = xb(tF ) − xb

i(tF ) (21)

on the orthogonal complement of StF , to generate the hybrid ensemble members at tF :

∆xh
i (tF ) = PtF ∆xb

i(tF )

xh
i (tF ) = x

(k)
F + ∆xh

i (tF ) , i = 1, . . . , Ne . (22)

The background ensemble perturbations at tF are normally distributed with mean zero,

and covariance BtF . Hence, the hybrid ensemble at tF is also Gaussian, with mean x
(k)
F

(the iterate closest to the optimal value):E [
xh

i (tF )
]

= x
(k)
F + PtFE [

∆xb
i (tF )

]
, (23)

and covariance
Ah

tF
= PtF BtF PtF . (24)
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Alternatively, the hybrid ensemble members can be propagated via the model from t0 to tF .
This approach has a higher computational cost than the final time projection algorithm, and
it leads to a different hybrid ensemble:

x̃h
i (tF ) = Mt0→tF xh

i (t0) , i = 1, . . . , Ne . (25)

Our experiments with the Lorenz 96 model [25] indicate that the final time projection (22)
leads to a more accurate a posteriori covariance estimate than the propagation method (25).
Section 4 describes the numerical experiments in detail.

3.3. The Analysis Reference Ensemble

• At t = t0:

Consider the initial time background ensemble (6). Run 4D-Var starting from each ensemble
member xb

i(t0), using

yj = H
(
Mt0→tjxj

)
+ ǫij , j = 1, . . . , Nobs , (26)

where ǫij ∈ N (0, Rj), Rj ∈ Rm×m. This generates a new ensemble of analysis states at the
initial assimilation time, henceforth referred to as the analysis reference ensemble at t0.

1. Compute the mean xa(t0) and the covariance Aa
t0

of the analysis reference ensemble:

xa(t0) =
1

Ne

Ne∑

i=1

xa
i (t0)

Aa
t0

=
1

Ne − 1

Ne∑

i=1

[xa
i (t0) − xa(t0)] [x

a
i (t0) − xa(t0)]

T .

2. Compute the eigenvalue decomposition of Aa
t0

to obtain the eigenvalues {µ1, µ2, . . . , µn}
and the corresponding orthonormal eigenvectors {v1, v2, . . . , vn}.

• At time tF .

1. The analysis reference ensemble members at t0 are propagated by the model up to tF ,
to get {

xa
1(tF ), xa

2(tF ), . . . , xa
Ne

(tF )
}

. (27)

2. Let xa(tF ) be the mean, and Aa
tF

the covariance of this ensemble.

To assess the results of the hybrid method, compare the hybrid covariance estimates Ah
t0

and
Ah

tF
against the analysis reference covariances (Aa

t0
, Aa

tF
), and the background covariances (Bt0 ,

BtF ). Section 4 discusses in details the results obtained for a Lorenz-96 system with 40 variables.
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3.4. The Computational Cost of the Hybrid DA Method

The two most expensive steps of the hybrid DA method are:

• the forward propagation of the background ensemble members (6) through the nonlinear
model, from t0 to tF , and

• the computation of 4D-Var iterates (9) starting from xb(t0).

However, note that these two phases are independent. Thus, they can be performed in par-
allel on a multiprocessor computer, substantially decreasing the computational cost of the hybrid
method. Once the final time background ensemble (7), and the optimization iterates (9–17) have
been computed, the hybrid projection method can be readily applied. The only additional cost
is incurred when computing the SVD of St0 and StF . The hybrid propagation approach has a
higher computational cost, since it needs to propagate the hybrid ensemble members from t0 to tF .
Each hybrid ensemble member can be evolved independently of the rest, but there is no source of
parallelism beyond this level. All the hybrid ensemble members at t0 have to be available before
the hybrid propagation method can compute Ah

tF
.

4. Numerical Experiments

We now test our hybrid DA strategy on the Lorenz 96 model [25]. This dynamical model is
described by the following set of equations:

dxj

dt
= −xj−1(xj−2 − xj+1 − xj) + F , j = 1, . . . 40 , (28)

with periodic boundary conditions: x0 = x40, x−1 = x39.
The background covariance Bt0 is constructed from a 3% perturbation of the initial state, and

a correlation distance of L = 1.5:

Bt0(i, j) = σi · σj · exp

(
−

d2

L2

)
, i, j = 1, . . . , 40 . (29)

We take into account the periodic boundaries when computing d = |i − j|. The observation
covariance matrix is diagonal from a ρ = 1% perturbation from the mean observation values. The
observation operator H captures only a subset of 30 model states, which include every other states
from the first 20 states plus the last 20 states. The length of one assimilation window is set to be 1
time unit. Our implementation of 4D-Var makes use of the L-BFGS routine of Zhu et al. [39], the
de-facto “gold standard” of gradient-based optimizers used in data assimilation studies. Finally,
the ensemble 4D-Var reference solution is generated using 1000 ensemble members.

The simulation time spans two consecutive DA windows. We designates by Bt0 the background
covariance matrix at t0, the start time of the first DA window. First, we generate an approximation
Ah

t1
to the a posteriori error covariance matrix at t1, the end time point in the first assimilation

window. This hybrid covariance is then used as the background information in the second assimi-
lation window, which ends at t2. It is shown that the hybrid covariance is a good approximation
to the reference covariance at t1 (computed using an ensemble of 4D-Var analysis). Moreover, the
use of Ah

t1
as background information in the second window leads to a considerable improvement

in the quality of the forecast.
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4.1. The first assimilation window

Figure (2) shows the eigenvalues of the a posteriori covariance approximations at t0 and t1.
We compute two approximations of the hybrid covariance at t1. First, the background ensemble
perturbations at t1 are projected out of the subspace of 4D-Var increments St1 , as in (22). For the
second approximation, the hybrid ensemble members computed at t0 are propagated through the
model (28) up to time t1.

It is seen that the hybrid method leads to better approximations of the reference covariance
than the background, both at t0 and at t1. The agreement between the hybrid and the analysis
covariance is even better at t1 than at t0. We conjecture that, for this particular model, the error
directions that are not taken into account by 4D-Var during the optimization procedure are reduced
by the system dynamics. Furthermore, as expected, the projection of the background ensemble at t1
onto the orthogonal complement of St1 yields results superior to those obtained when evolving the
hybrid ensemble from t0 to t1. Note that the 4D-Var as well as the ensemble runs can be performed
in parallel on a multiprocessor computer. This leads to a significant decrease in the CPU time
spent in the covariance approximation procedure, over the case of fully serial optimization and
model evaluations.

4.2. The second assimilation window

At the beginning of the second time window, the background error covariance matrix Bt1 is
updated to account for the model dynamics, as follows:

Bt1 = αBt0 + (1 − α)Ah
t1

. (30)

Here Bt0 is the background covariance for the first window, and Ah
t1

is the a posteriori error
covariance computed by the hybrid method. For our particular experiment, α = 0.1.

Figure 3 shows the covariance approximations at t1 (now the beginning of second window). The
hybrid DA yields a covariance that is more accurate than the one stemming from the background
ensemble.

In order to assess the impact of the improved background covariance matrix on the model
forecast, we run the 4D-Var in the second window using

• the constant background covariance from the first window Bt0 , and

• the updated covariance Bt1 as defined in (30).

The root mean square error(RMSE) of the two optimal trajectories inside [t1, t2] is defined by

RMSE =

√√√√ 1

N

N∑

i=1

‖xt(ti) − xi‖
2
2

‖xt(ti)‖
2
2

(31)

where xt(ti) is the “true” solution at ti, and xi = Mt1→ti x(t1).
The two optimal trajectories were compared at N = 100 equidistant time points in [t1, t2].

The RMSE of the analysis computed using Bt0 is 0.0028. The updated hybrid covariance reduces
the RMSE to 0.0011. This two-fold reduction in the error suggests that the hybrid covariance
matrix does a good job of capturing the main components of the “error of the day” (i.e., the error
accumulated during the first assimilation window), which leads to a more accurate forecast.
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5. Conclusion

Recently, considerable research efforts have been put into the development of variational DA
procedure that updates the background covariance matrices such that the specific flow dynamics
(hence, the “errors of the day”) can be taken into account. This paper proposes a hybrid DA
method that yields an approximation of the a posteriori error covariance matrix. This hybrid
covariance is built by removing the most significant error directions explored by 4D-Var (during the
first few optimization iterations) from a set of background ensemble perturbations. The projection
operator is easy to construct at both endpoints of an assimilation window because the basis vectors
are provided “for free” by the 4D-Var process. Both the 4D-Var and the background ensemble
runs can be performed in parallel on a multiprocessor machine. This significantly lowers the
computational cost of the hybrid method. The only additional cost comes from the background
ensemble projection at the window end points (for the hybrid projection strategy), or from the
propagation of the hybrid ensemble from the beginning to the end of the window, in the case of
the hybrid propagation approach.

We demonstrate the hybrid DA strategy on the Lorenz-96 system. The hybrid approach is
found to yield an a posteriori covariance approximation which is considerably superior to that
inferred from the background state information. The use of this hybrid covariance in the next
assimilation window results in an optimal trajectory whose RMSE is two times smaller than that
of the analysis obtained when reusing the constant background covariance. Hence, the hybrid
projection method correctly accounts for the “errors of the day”, and is expected to improve the
quality of the model forecast.
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(e) Hybrid covariance matrix at t0 (f) Hybrid covariance matrix at t1

Figure 1: Background (a–b), analysis reference (c–d), and hybrid (e–f) covariance matrix approximations at t1 = 0
and t2 = 1.
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(a) Eigenvalues at time t0. (b) Eigenvalues at time t1.

Figure 2: Eigenvalue comparison of the background, analysis, and hybrid covariances at t0 and t1. The hybrid
covariance at t1 was computed through (i) projection out of the 4D-Var increment subspace, and (ii) propagation of
the hybrid ensemble members through the model from t0 to t1.
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(e) Hybrid covariance matrix at t1 (f) Hybrid covariance matrix at t2

Figure 3: Background (a–b), analysis reference (c–d), and hybrid (e–f) covariance matrix approximations at t1 = 1
and t2 = 2.
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Figure 4: Eigenvalue comparison of the background, analysis, and hybrid covariances at time t1 and t2 (second
assimilation window).
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